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Abstract

Curve subdivision schemes on manifolds and in Lie groups are constructed from linear subdivision schemes
by first representing the rules of affinely invariant linear schemes in terms of repeated affine averages, and then
replacing the operation of affine average either by a geodesic average (in the Riemannian sense or in a certain Lie
group sense), or by projection of the affine averages onto a surface. The analysis of these schemes is based on thei
proximity to the linear schemes which they are derived from. We verify that a linear schame its analogous
nonlinear schem&' satisfy a proximity condition. We further show that the proximity condition implies the con-
vergence off and continuity of its limit curves, i has the same property, and if the distances of consecutive
points of the initial control polygon are small enough. Moreoves Hatisfies a smoothness condition which is
sufficient for its limit curves to b€, and if T is convergent, then the curves generated’tare alsaC?. Similar
analysis ofC2 smoothness is postponed to a forthcoming paper.
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1. Introduction

This paper defines and analyzes a wide class of curve subdivision schemes on manifolds. Curve subdi-
vision schemes in general consist of repeated refinement of control polygons. Especially well studied are
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the linear schemes with rules for defining the control points at the finer level as finite linear combinations

of control points in the coarser level—see e.g. (Dyn, 1992) and (Warren and Weimer, 2001). Since any
such convergent curve subdivision scheme is affinely invariant (cf. (Dyn, 1992)), we prove that the rules

of the scheme can be expressed in terms of repeated affine averages. Explicit representations of this tyf
are given for the quadratic and cubic B-spline schemes, and for the 4-point interpolatory scheme of Dyn
et al. (1987). This representation of affinely invariant linear subdivision schemes, which is not unique, is

used to define nonlinear schemes on manifolds in two different ways. One way is to replace affine aver-
ages by geodesic averages. The second consists of projecting affine averages onto the manifold. The:
constructions of nonlinear schemes from linear ones apply to surfaces, to Lie groups and in particular
to matrix groups such as the Euclidean motion group, and to abstract manifolds such as the hyperbolic
plane. Further applications of these two concepts can be found in (Wallner and Pottmann, 2004).

The analysis of such a nonlinear scheme is performed by its proximity to the corresponding linear
scheme which it was derived from. The proximity condition is proved to hold for all the above mentioned
nonlinear schemes. Itis shown that if the linear scheme is convergent, the proximity condition leads to the
convergence of any analogous nonlinear scheme, and to the continuity of its limit curves, provided that
the distances of consecutive points in the initial control polygon are small enough. Moreover, if the linear
scheme satisfies a certain condition which is sufficientdédimit curves, then each of its analogous
convergent nonlinear schemes genei@tdimit curves. Furthermore, the limit curves generated from
the same initial control polygon by different nonlinear schemes, all derived from the same linear scheme,
are close to each other.

Analysis by proximity to a linear scheme is a technique which was used before in various situations.
We mention the paper by Dyn and Levin (1995), which analyzes linear nonstationary schemes by prox-
imity to linear stationary schemes. In the context of nonlinear schemes proximity is used in (Daubechies
et al., 2004), and in the analysis of median interpolating subdivision schemes and their extensions in (Xie
and Yu, 2005), based on the paper of Oswald (2004). In the first two papers mentioned above, the con-
ditions of proximity required for smoothness are too restrictive. In the last two papers the nonlinearity
is rather weak. Other papers related to median interpolating subdivision schemes are Donoho and Yt
(2000), Pang and Yu (2004), and Xie and Yu (2004).

Non-linear interpolatory schemes in Lie groups were constructed from linear schemes by Donoho
(2001), and used in various applications such as in smoothly interpolating a motion given at discrete in-
stances. A similar construction of spline-like subdivision schemes on manifolds is suggested by Duchamp
(2003). Although these constructions are different from the constructions in this paper, we believe that the
analysis tools developed here and in the forthcoming paper conceffismoothness (Wallner, 2005)
apply to these nonlinear schemes.

A general analysis of certain subdivision schemes on abstract Riemannian manifolds is done in
(Noakes, 1998, 1997, 1999). The geodesic analogues of the second and third degree B-spline Lane
Riesenfeld algorithms are shown to converge to smooth curves with Lipschitz derivatives.

We would like to mention a few other kinds of nonlinear schemes. In the functional setting, interpola-
tory schemes based on the idea of essential non-oscillation are studied in (Cohen et al., 2003), a certai
class of weakly nonlinear schemes are studied in (Oswald, 2003), and shape preserving schemes al
studied in (Kuijt and van Damme, 1998). In the geometric setting, examples of geometry driven schemes
are presented in (Marinov et al., 2004). The analysis of the above schemes is along different lines, and
applies to the particular class of schemes studied.
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The outline of the paper is as follows. Section 2 discusses linear schemes and the construction of their
analogous nonlinear schemes on surfaces and in matrix groups. All the proofs of the results in this section
are postponed to Appendix A. The results in Section 3 are rather general and are not confined to the
schemes of Section 2. Conditions for convergence of subdivision schemes andd@drsim@othness of
the generated limit curves are formulated. These conditions are known for linear schemes. A proximity
condition between two schemes is introduced. It is shown that convergena@'asidoothness for a
schemeT follow from the proximity condition satisfied by and a linear schem&, which satisfies
conditions for convergence ar@' smoothness. The proofs of the results in this section are given in
Appendix B. Section 4 returns to the schemes introduced in Section 2, and verifies that a proximity
condition holds between a linear scheme and its analogous nonlinear scheme, constructed in one of the
ways described by Section 2. The proofs of the results in this section are presented in Appendix C. The
results of Sections 2—4 are then combined in Section 5. Convergenag'asmdoothness is stated and
proved for the nonlinear schemes constructed in Section 2 from appropriate linear schemes, and also for
schemes on abstract Riemannian manifolds and in a certain class of Lie groups.

2. Linear and nonlinear subdivision rulesbased on averaging
2.1. Linear subdivision rules and averaging

We use the symbagb for a sequence of poinfs . A subdivision schem§ is a mapping which takes a
point sequence as input, and which has another point sequef)cas output. For the sake of simplicity
we consider only infinite sequences, where the index runs in the integers. Closed polygons are
modeled by periodic infinite sequences. An ‘ordinary’ finite polygan..., p, is represented by the
sequence.., p1, p1, P2, ---, Pr, Pr» - ... We assume that there is an integer dilation faddos 1 such
that for all polygonsp, ¢ the relationg; = p;,1 for all i implies that(Sq); = (Sp);;n. The case of a
dilation factor N > 2 is important to us because sometimes in the analysis it is necessary to consider
several applications of a binary subdivision scheme as one round of subdivision. For the sake of a unified
treatment, we allow thaV assumes any value greater or equal two.

We restrict our attention to subdivision schemes whose definition uses the notivarafeor affine
combination We let

av,(x,y) =1 —a)x +ay. Q)

We write down the definition of some well-known subdivision rules in terms of the av operator: The
interpolatory four-point scheme of Dyn et al. (1987) has dilation fastet 2 and is defined by

Spa = pi. Spaiy1=avi2(aV_zu(p;, pi-1), AV_2u (Pit1, Pi+2))- (2)
Degreen B-spline subdivision S,,” according to (Lane and Riesenfeld, 1980) és= 2 and is recur-
sively defined by one splitting step andaveraging steps:

Sy p)2i = (S P)2i+1= pi,

Sy p)i = avi2((Sim-1P)is Sem-vP)iv1), m=1,....n. (3)
We mention two cases explicitly: Quadratic B-spline subdivision (Chaikin’s algorithm) has the form

S p2i = avia(pi, pi+1), S P2i+1=ava(pi, pi+1)- 4)
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Cubic B-spline subdivision$s,” reads

S@p2i = ava2(pi, pi+1),

S@ pai+1 = avij2(aVia(pis1, i), &Vija(pit1, pis2))- (5)
For a linear scheme there exists a sequenega;);<z such that
Sp; = Zaj—Nipi- (6)

a is called themaskof S, and is said to be finite if only finitely many’'s are nonzero. The subdivision
scheme is affinely invariant, if

Y ajni=1 j=0... . N-1 7)
It is trivial that a finite mask exists for subdivision schemes expressible via the av operator, and that the
scheme is affinely invariant. Indeed also the converse is true:

Theorem 1. Any affinely invariant linear subdivision rulg with finite mask is expressible via thav’
operator.

The proof is given in Appendix A.2.

The expression of a subdivision rule in terms of the averaging operator is not unigue. It should be noted
that convergent linear subdivision schemes are either converging towards zero or are affinely invariant,
see (Dyn, 1992).

Remark. Note that Theorem 1 guarantees only that each oMgles of the linear schemgis express-
ible by the av operator. Yet it does not imply that any affinely invariant scheme has a recursive definition
by repeated averaging similar to (3).

2.2. Geodesic averages in surfaces and geodesic subdivision

We would like to replace the straight lines of affine space (which are the shortest curves ending in two
given points) by the geodesic lines in a surface (which again are the shortest curves, at least locally), anc
the average of two points by a corresponding point on the geodesic. This concept belongs to Riemanniar
geometry, but we study it first for surfaces. The reason for this is that our method of analyzing smoothness
of nonlinear schemes requires comparison with linear schemes, and for our proofs the ambient spac
where a surface is immersed in is necessary. We consider abstract Riemannian manifolds only in the ven
end.

Geodesic lines of a surfade in R” in the sense of elementary differential geometry are the solution
curvesc(t) of the symbolic differential equation

‘LM, (8)
and all of them are traversed with constant velocity. It is well known that for all surface ctmehe

component ofi(z) orthogonal toM depends only oi(z): With the tangential componen%’” of ¢, we
have

i
&) = d—f oy (60). 6(0)). 9)
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where Il is the vector-valued second fundamental formMfin the pointc(z). Il, is a symmetric
bilinear mapping which takes tangent vectors at the ppiras input, and whose values are vectors
orthogonal toM at p (cf. (do Carmo, 1992, §6.2)). It follows that geodesic lines in surfaces are the
solution curves of the differential equation

¢=11.(¢,6). (10)

Eq. (10) implies that it:(¢) is a geodesic, then so is any curve of the faei@y + b). This property allows

us to re-parametrize a given geodesic such that it is traversed with unit speed. In that case the length
of the curve segment between points) andc(s) equals|t — s|. The reparametrization property above
means that there is never a unique geodesic ending in given poardg.

A convenient way to denote the geodesic starting atith tangent vectow is in terms of theexpo-
nential mappingwhich is defined as follows: exjw) means the point(r), if c(z) is the geodesic with
initial value ¢(0) = p and initial tangent vectoy = ¢(0), andw = tv. The decompositiom = tv is of
course not unique, but all possible ways of computing,exp yield the same result. The geodes(c)
has the property that exprv) = c(z), for all 7.

If we are to replace straight lines by geodesics, we need the existence of a unique shortest geodesic
which connects the two given points (unique up to reparametrization). For an introduction into this topic
see e.g. (Milnor, 1969, §10), or Theorem 3.7 and Remark 3.8 of (do Carmo, 1992).

Basically, if p andg are close enough, there is alwaysmoothly dependent an such that exp(v) =
g, andc(r) = exp(tv) is the shortest geodesic witti0) = p andc(1) = ¢g. Within a compact subset of
a complete surface this is true for all points which are closer than a given small maximum distance. The
properties enumerated above follow from the fact that geodesics fulfill the differential equation (10).

Our geodesic averaging (see below) requires the existence of a continuation of the ge@ibsic
yond the defining two points. This always exists locally, and for all parametiittse surface is complete
(see the references above).

In this paper we are not concerned with the problem of existence of geodesics at all, we just assume
that we can carry out all necessary constructions. We define

Definition 1. If ¢ is the unique shortest geodesic which jainandy, then we let

g-av,(x,y) :=c(at), ifc0) =x, ct)=y. (12)

The g-av operator serves as a replacement of the av operator.
Note that both the affine average and the geodesic average fulfill the relations

avi_q (y, x) =avy(x, y), g-av,_,(y,x) =g-ay,(x, y). (12)

This follows from the fact that for all geodesic§), alsoc(zp — ¢) is a geodesic. We should mention that
even if we use the word ‘average’ we do not restrict the fagttw the intervalO, 1].

Definition 2. The geodesic analoguk of an affinely invariant linear schent® which is expressed in
terms of averages, is defined by replacing each occurrence of the av operator by the g-av operator.

Fig. 1 shows the result of geodesic subdivision according to the algorithm of Lane—Riesenfeld.
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Fig. 2. Left: Helical motions (i.e., group geodesics) which connect a sequence of positions of a rigid body. Right: Two rounds
of geodesic B-spline subdivision of degree three.

2.3. Geodesic averages in matrix groups

This section extends the concept of geodesic subdivision to the group of Euclidean motions, such that
the helical motions appear as geodesic-like curves (cf. (Bottema and Roth, 1979) or (Karger and Novak,
1985)). This means e.g. that the geodesic midpoint of two positions of a rigid body is found by first
determining the shortest helical motion which transforms the first position (att#n@) into the other
(attimer = 1), and then evaluating this helical motion half way in between, i.e.=at /2. Fig. 2 shows
the helical motions which connect given positions of a rigid body, together with the result of subdivision
defined in this way.

The general concept we have to discuss here is that of a one-parameter subgroup of a matrix group
or more generally, of a Lie group. The relation between matrix groups and abstract Lie groups is in
some ways similar to the relation between surfaces and abstract Riemannian manifolds. We consider the
abstract case only in the end. For an introduction into Lie groups, see e.g. (Onishchik and Vinberg, 1990).

The curves we use for subdivision in a Lie group are called geodesics also, which will be justified when
we show that they too satisfy a second order differential equation just like the geodesics in surfaces.

Let G be a linear Lie group, i.e., a smooth manifold immersed in the spaee<of matrices, which
is closed with respect to matrix multiplication and matrix inversion. Prominent examples,aaadD
SQ,, the groups of orthogonal matrices and of orientation-preserving orthogonal matrices. The group of
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Euclidean motions, here denoted by, SOR", is also a matrix group: a matrixe SO, and a translation
vectort € R" are composed, in block matrix notation, to ftaet+ 1) x (n + 1) matrix

(1 0
R g] . (13)
Multiplication of two such matrices yields the result
1 0 (1 0O]_ 1 0 (14)
|1 &1 2 & I1+81-12 81-82

which corresponds to the composition of transformations which are represented by the matrix/vector
pairs(gz, t1) and(gz, t2). Thus also the group of Euclidean motions fits the matrix group formalism.

The symbol " used in the definition of SPx R” means a certain semidirect product, and it is
obvious how to defin€& x R”" for any groupG of n x n matrices. For the general definition of ‘semidirect
product’, see e.g. (Onishchik and Vinberg, 1990, p. 15).

One-parameter subgroups of matrix Lie groups are curves of the form

— ()
c(t) =exptv) =Y -
k=0
The tangent vectoé(0) equalsv. We use those curves as the geodesics emanating from the identity
element of the group. Geodesics emanating from any other elegnerit are, by definition, the left
translates

c(t) =g -exp(tv). (16)

Why we use left translates and why the curves defined by (16) represent the helical motions, if evalu-
ated for the Euclidean motion group, is the topic of Appendix A.3. The existence of a matrix logarithm
shows that there is a neighbourhood of the identity where fog dtlere is a one-parameter subgroup
c(t) = exp(tv) with ¢(1) = g, such that bothy andt depend smoothly og. By left translation of this
neighbourhood, we get an analogous local statement for any point in the group. If a concrete group like
the Euclidean motion group is given, we often know how to find the shortest geodesic which ends in two
given points: For SPx R”, it is the shortest helical motion which connects two given positions of a rigid
body.

We establish that for groups the geodesics fulfill a second order differential equation similar to the
differential equation of geodesics in surfaces, and we show cases where they are traversed with constant
velocity. This enables us to treat both the surface case and the Lie group case together.

(15)

Lemma 1. Assume that is a Lie group ofn x n matrices. Then the curves ¢16) are precisely the
solution curves of the differential equation

¢ =B (¢(1), ¢(0)), (17)
with
B,(v,w) = %(vg_lw +wg ). (18)

If G has the property that left translatioris+— gh are isometric with respect to a Euclidean scalar
product in the linear space af x n matrices, then the curves ¢i6) are traversed with constant velocity.



600 J. Wallner, N. Dyn / Computer Aided Geometric Design 22 (2005) 593622

The proof is given in Appendix A.4.

Definition 3. A Lie group ofn x n matrices is called of constant velocity, if there is a Euclidean metric
in then?-dimensional space of matrices, such that the curves of (16) are traversed with constant velocity.

We endow the:?-dimensional vector spad®**" of matrices with the scalar product
(v, w) =tr(ww"). (29)

We have(v, w) = (w, v) because of tow") = tr((vw™ ") = tr(wo’).

Lemma 2. With the scalar producfl9), bothG and G x R”" are of constant velocity, if; is a subgroup
of the orthogonal grougD,. Any compact matrix group becomes a subgroufpfafter a suitable
coordinate transform.

The proof is given in Appendix A.4.
Lemma 2 directly applies to the (special) orthogonal groups(80,), and also to the Euclidean
motion group.

2.4. Projecting averages and projection subdivision
The method of projection is a very general way of introducing nonlinearity.

Definition 4. A generalized projectio® onto a submanifold/ of Euclidean space is a smooth mapping
onto M defined in a neighbourhood &f, such thatP (x) = x forall x € M.

How smooth exactly? must be depends on the application. We later require that the norms of first and
second derivatives aP are bounded by some constants. One example of a projection is the orthogonal
projection ontoM ..

Definition 5. The projection analogug of an affinely invariant linear schen which is expressed in
terms of averages, is defined by replacing each occurrence of the av operaraMy “

In this way we get projection variants of the B-spline schemes and the interpolatory 4-point scheme
defined by Egs. (3), (4), (5), and (2), respectively.

Remark. Instead of adding a projection after each occurrence of “av”, as in Definition 5, we could have
defined an analogous projection schemby simply definingZ p; = P Sp;. There is no reason why the
results of this paper should not be true for this simpler definition, but the analysis is no longer analogous
to the geodesic case. This is the reason why we use Definition 5 here.

Examples of projections which are readily computable are the gradient flow towards general level
set surfaces, and orthogonal projection onto selected surfaces like spheres, tori, or the Euclidean motiol
group. Orthogonal projections onto that group are treated by Belta and Kumar (2002) and Wallner (2004).
We briefly mention that ifA is ann x n matrix with positive determinant, a possible projection of the
affine transformatiorx — A - x 4+ a onto the Euclidean motion group is the Euclidean motior-
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A @

Fig. 3. Projection onto the Euclidean motion grogp, a) and (B, b) are two positions of the teapot, with, B € SO3 and
a, b € R3. Left; Positions ay((A,a), (B, b)), Right: PositionsP av, ((A, a), (B, b)). « has the values,@/4,1/2, 3/4, 1.

- 4 =

Fig. 4. Projection subdivision in the Euclidean motion group according to the interpolatory four-point scheme of (2). Left:
Right: 72p.

PQ -x+a,whereAJ = PDQ is a singular value decomposition, arids a positive definite matrix.

In applications,J is chosen as the inertia matrix of the rigid body being transformed. This projection
procedure is illustrated in Fig. 3, which shows the result of both linear and projection averaging. The
former in general does not yield matrices which correspond to Euclidean positions. Fig. 4 shows two
rounds of interpolatory subdivision according to the projection analogue of the four-point scheme of (2).

3. Convergence and smoothness analysis
3.1. Convergence and smoothness conditions

This section introduces conditions called ‘convergence’ and ‘smoothness’ conditions. It will be seen
later that indeed they are the main ingredients in our proofs concerning the convergence of a subdivision
scheme, and the continuity and smoothness of its limit curves.
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If pis a sequence of points, we use the symbplfor the sequence of differenceSp; = p; 11 — p;.
Further we define

d(p) =supllpix1—pill,  lIpllec =suplipill. (20)
Obviously,
d(p) = 1 Ap]lco- (21)

Definition 6. A subdivision schem§ is said to satisfy a convergence condition with fagtgr< 1, if
d(S'p) < puod(p) foralll, p; (22)

and it is said to satisfy a smoothness condition with factaysu; < 1 and the dilation facton, if in
addition to (22) for alt, p,

d(N'AS'p) < phd(Ap). (23)
A mixed smoothness condition is satisfied if (22) holds and theug is 1 as above such that for a|l p
d(N'AS'p) < ph Pr(D)d(p), (24)

where Py is a linear polynomial with nonnegative coefficients.

There are schemes where (22) or (23) is true only fof gheater or equal a certain numbier For
example, the interpolatory 4-point scheme of (2) has 2, as is explained in more detail later. In that
case we define a new subdivision rdle= S*, which then fulfills both (22) and (23). We subsequently
analyzeS instead ofs.

Mixed conditions of the type (24) occur naturally in our smoothness analysis of nonlinear schemes.
This is the reason why we consider them, instead of more familiar conditions of the/fovh S’ p) <
C1uid(p).

Most of our statements consider polygons whose points are contained in someMubisRt’, and
fulfill the condition d(p) < . Such a class of polygons is denoted By, .. The statements employ
a scheme §”, which is linear and whose properties are known, and another sch&evhich is to
be analyzed is to help with the analysis). In the following we impose the additional condition that
Tp e Py.if pe Py, butwe don't require the same f6p.

For instance, we will encounter the case that the smoothness conditions are true pndymgy s for
somes > 0.

3.2. Convergence and smoothness of linear schemes

In this section we verify that convergence and smoothness conditions actually hold for the linear
schemes mentioned above. Following (Dyn, 1992), we use the concépht derived schems, of a
linear subdivision schemg, which is recursively defined by

So=S, Si(Ap) = NAS;_1p. (25)

There may be no derived schemesSlis affinely invariant, ther; exists (cf. (Dyn, 1992)). For the
convenience of the reader, we repeat some definitions here, especially because Me-casenot so
familiar. It is customary to use the terms in the sequeadéise mask of the scheme)(the polygon) Sp
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(the subdivided polygon)Ap (the difference polygon) as coefficients of the formal Laurent series
p(z) Sp(z), andAp(z), respectively, such that e.g@(z) = > a;z'. Such functions in general are called
generating functions of the respective sequencesqaénds called thesymbolof S. By definition, and
in view of (6)

Sp(x) =a@p@E"),  Ap()=Q1-2p@z " (26)
(25) implies that the symbai'*!(z) of the derived schem§, satisfies
1— ZN 1— z N-1
a[”(zm(z’V)Z—N =Na@p@EH— = a¥(2) =4 T (27)

For any subdivision schemgtwo rounds of subdivision yield yet another sche&,If S has dilation
factor N, then the dilation factor o§? equalsN?. The mask: and symbokt(z) of S? are given by

cj=Y ajna,  c@)=a@ac"). (28)
The norm|| S| of S is defined by
ISI=sup [Spllec- (29)
IPloo<1
In terms of the mask, we have
151 = mjaxZ laj_yil.- (30)
Knowledge of the norms of derived schemes vyields fagigrse, as required by (22):
1 [l Sall 1
d(Sp) = |1ASPllec = = 1S1AP||cc < ——d = —|18ll; 31
(Sp) = IASPll NII 1Ap|| N (p) = 1o NII 1l (31)

and similarly for (23): We usé(Ap) = || A%p|l« and compute

1 1 1
d(NASp) = = [(NA)?Splle < —[1S2l d(A =S 32
( P) NII( )°Spll NII 2l d(Ap) = 1 NII 2|l (32)
B-spline subdivision of degreeaccording to (3) ha®’ = 2 and the symbol
a()=1+2""/ 2" (n=0. (33)

Its first derived scheme is the — 1)-st degree B-spline schemenlt> 2, Egs. (30), (31), and (32) show
that convergence and smoothness conditions are fulfilled with fagteesl/2.
If the symbola(z) of a linear schemd with dilation factorN has the form

k
dA+z+-+ D [(A—apzta)) (€Z, k>0, (34)

j=1

thenS is defined, apart from an index shift, by a splitting step, aaderaging steps with factoss. An
example of such a symbol fa¥ = 2 is furnished by the B-spline schemes defined by (3), whose symbol
is given by (33). The symbol of the interpolatory four-point scheme of (2) has the form

1 5\ /1 1
a(z)z—w(—3+z)+(—+w)(—+z)+1. (35)
F4 2 Z
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For 0< w < 1/16,a(z) has the form (34) witli = -3, N = 2, and

2w+yto 2w —y Loy 1
@ =5 _ _— > (04 =5 . _ (04 - >
L2 2w—y Fop 34 2w+ y Foo )

y =+ 2w(l+2w), 01’2:\/2w(1—4w:|:2y).

It follows that the four-point scheme of (2) has a recursive definition similar to (3). It satisfies a conver-
gence condition, but not a smoothness condition. It is known (see (Dyn, 1992, Egs. (3.22)ff)) that in the
case O< w < 1/8, the iterated schem#® has the required properties. We hané?);| = 8w + 1, and
[1(5?)2]| < 4. In view of (32), it follows that for O< w < 1/8, §2 fulfills a smoothness condition with
factorspg < 1/2, 41 <1, andN =4.

3.3. Proximity conditions

In this section we present the inequalities which we use to quantify the differences between linear
subdivision schemes of known properties and nonlinear ones, in order to conclude similar properties for
the nonlinear schemes. Following (Pottmann, 2003), we define

Definition 7. Subdivision schemesS, T satisfy a proximity condition for a clas8,, s of polygonsp, if
there is a constar@ such that for allp € Py, s,

ISp — Tplleo < Cd(p)?. (36)

A higher order proximity condition which involve& Ap) can be used to sho@? smoothness of limit
curves. This will be the subject of (Wallner, 2005).

As has been mentioned before, it is possible that a subdivision schieimes not fulfill (22) or (23),
and we have to consider:= S* instead. IfS andT are in proximity, then obviously this is true f6¥
andT” also. So the smoothness analysis will be applieSl émd 7 := T'~.

3.4. Convergence from proximity and an approximation result

It is our aim to show that a convergence condition satisfied by a linear subdivision séhegether
with a proximity condition satisfied by and7 implies that7 also satisfies a convergence condition, and
generates continuous limit curves.

Theorem 2. Suppose tha$, T satisfy a proximity condition for alp € Py, ., and S satisfies a conver-
gence condition with factong < 1. Then there i$ > 0 and 1g < 1 such thatT' satisfies a convergence
condition with factorig for all p € Py,5. By choosing small enough, we can achieve thag — 1o is
arbitrarily small.

The proof is given in Appendix B.1.

It is not difficult to show that a convergence condition together with proximity ensures convergence
even of a nonlinear subdivision algorithm. In order to define what that means exactly, we introduce the
following auxiliary functions:



J. Wallner, N. Dyn / Computer Aided Geometric Design 22 (2005) 593622 605

Assume thaf is a subdivision scheme and thats a polygon. For eacli’/ p we consider the piece-
wise linear function?'’ £, which is linear in the intervalg N/, (i + 1)N~/] (i € Z), and whose values
at the integer multiples oV —/ are given by the points df/ p. We use the notation

f=Fo(p), Tf=FTp), T*f=F(T?p), ... (37)
Then
T®f=lim T/ f (38)
Jj—>o0
parametrizes the limit curver p”. It is obvious by construction that

Ip = qlloo = | Fj(p) = Fi(@) | - (39)

Theorem 3. We assume thaf is a convergent linear subdivision scheme of finite mask, and7that
as required by Theorer®. With the notation of Theore we let f = Fo(p) for p € Py .s. Then the
sequencd’/ f converges to a continuous limit in the maximum norm.

The proof is given in Appendix B.1.

Remark. Itis difficult to find examples where geodesic or projection subdivision do not converge. There
are nonlinear schemes which fulfill a convergence condition fopalith d(p) finite: It is easy to
show that the geodesic analogIieof a schemeS with symbol (34), which works by one splitting step
andk rounds of averaging, has the property thal p) < max(|ai|, |1 — a1)d(p), if 0 < o; < 1 for
j=2,...,k. Inthe case & a1 < 1 this implies a convergence condition fBr and Theorem 3 applies.

When doing subdivision in a surface, we want to ensure that the limit @ is contained in that
surface, if the surface is closed.

Lemma 3. Suppose thal’ converges in the sense of Theor@nif there is a closed set such that7/ p
is contained inK for all j, then so is the limit curv&* p.

The proof is given in Appendix B.1.

Our next result concerns the distance of the limit curves of a nonlinear scheme which is in known
proximity to a linear scheme, from the limit curves generated by the linear scheme. The following obser-
vation is used in the statement of the theorens: i§ affinely invariant and convergent, then the norms of
the iterates of converge to 1, implying that the normj$’ || are uniformly bounded.

Theorem 4. We use the requirements and notation of Thea2eand we assume th&thas the property
that || S'|| < A. Then for any polygop € Py 5,

AC
1S%p = T pllec < 1_—ﬁzd<p>z. (40)

The proof is given in Appendix B.1.

Remark. Theorem 4 allows to transfer stability propertiesSafo 7. If e.g. |S®(p + &) — S®(P) |l <
D - |||, then
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AC
|T=(p+e)—T(p)| < 1——,#(d(p +&)?+d(p)?) + Dlellx

<

. (2d(p)* +4d(p)lelloo + 4llel1%,) + Dlle oo

3.5. Smoothness from proximity

The following theorem establishes that smoothness conditions as defined by Definition 6 follow from
the proximity conditions as defined in Definition 7.

Theorem 5. Suppose thas, T satisfy the proximity condition fgr € Py, ., and thatS satisfies a smooth-
ness condition of typ@3) with factorsug, 1 such that

1
< Up=—, <1 41
Ho MO \/ﬁ 251 ( )
Then there i$ > 0 such thatl" satisfies a mixed smoothness condition of {(d¢ with factorsi; which
also satisfy(41), for all p € Py s.

The proof is given in Appendix B.2.
With this result, it is possible to show that the cun&$ p areC* if d(p) is small enough.

Theorem 6. Under the conditions of Theorefy with S of finite mask, the limit curveE> p are C* for
all polygonsp such thatT’ p converges.

The proof is given in Appendix B.2.

Remark. The completeness of the norm of the space we are working in is essential for the proofs of both
Theorems 3 and 6. But we neither used the finite dimension of the space, nor the fact that the norm is
induced by a scalar product.

4. Verification of proximity conditions
4.1. Geodesic subdivision

We show that a linear subdivision scheme and its analogous geodesic scheme (both for a surface an
for a matrix group of constant velocity) fulfill a proximity condition.

We consider a surfack contained in a Euclidean vector space, which is equipped with geodesics—
either in the sense of elementary differential geometry, or in the matrix group sense. In both cases,
geodesics are the solution curves of a differential equation of the form

() = Bewy (¢(0), ¢()), (42)

whereB is either the second fundamental form of (10) or the expression defined byB(18)supposed
to depend continuously on the poimt This is trivial for the group case, and follows frafif smoothness
of the surface under consideration in the Riemannian case. RecalB thaboth cases is symmetric
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and bilinear. Moreover, solution curves are traversed with constant velocity, and the reparametrization
properties of Section 2.2 hold true.

We use the symbdl, M for the tangent space @f at the pointx. We consider such open subs&ts
of M where there exists a constabdtwith the property that

xeV,v,weliM, <1 lwl <1=[B:(v,w)ll < (43)

Clearly all points inM have a neighbourhood where there exist® > 0 such that (43) holds true.
A global D exists if M is compact. In the surface case, the fact that there exists a dlofmalthe entire
surfaceM means that the normal curvaturesisfare bounded.
In the case of a matrix group of constant velocity, the congiaoan be computed explicitly: Led =
maX, juj<1 [vw|l. Then forflvll, [lwl < 1 we have|| B, (v, w)[| < 2(lvllllg~ w + [lwlllgtv]) = D
The following is easy to show:

Lemma 4. Assume thaf43) holds true withD > 0 and an open sét, and that the points, y are joined
by a unique shortest geodesic of lengtti/D. If the geodesic segment usedgiav, (x, y) is contained
in V, then

lav, (x, y) — g-av, (x, y) | < 2D min(ja| + a2, |B] + B%)lIx — ylI, (44)
withg=1—«.

The proof is given in Appendix C.2.
By using the elementary estimate of Lemma 4 several times, we are able to prove the following general
result:

Lemma 5. Let V and D be as in(43). Consider an affinely invariant subdivision schefand its
analogous geodesic scherfieLet the classPy, ; consist of all polygong in V with d(p) < § and which
have the property that all geodesic segments used in subdividing accordihgrcontained inV .

ThenS and 7 fulfill a proximity condition for all polygong € Py, ;. The constanC in the proximity
condition depends ofi, D, ands.

The proof is given in Appendix C.2.

Remark. As a consequence of the proof of Lemma 5 we see that it holds also for nonstationary schemes if
the factors used in averaging are bounded: The upper bouli§lon T p||, as required by the proximity
condition then is of the forn€d (p)?, whereC depends on an upper bound of these factors.

4.2. Taylor’s formula

In proving the proximity condition for projection subdivision schemes, we represent the projection
operator by its Taylor expansion. For the convenience of the reader, we write down Taylor’s formula in
the form we use it. IfP is a mapping of sufficient smoothness fr@®# to R™, then for allx, 2 such that
the line segment with endpointsandx + 4 is contained inP’s domain,

dP(h)+ .+d)’§P(h,...,h) d¥t, P(h, ... h)
1! k! (k +1)!

Px+h)=Px)+ ; (45)
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for someg € [0, 1]. Thekth derivative ofP in the pointx, d* P, is ak-linear mappingR")¢ — R™ of
the form

i . 9FP(x)
d*P(uy, ..., = Lot ———, 46
X (u1 ui) ' Z ug Uy Oxi1...Qxik ( )
ije(l,....n}
where the vectors; have coordinates; . Its norm is defined by
Idi Pl == max{||di P(uy, ..., u0)|: uill < 1}. (47)

If the domain of P is an interval, thed* P(u, ..., u) = u* P® (x), and||d* P| = | P¥ (x)|.
4.3. Projection subdivision

In order to show proximity results for projection subdivision, we require the existence of upper bounds
for the norms of the projection’s derivatives. In compact subsets, upper bounds always exist in analogy
to the constanD of (43).

We consider an open subdétof R” (the space where the surface under consideration is contained
in), where there are constariis D’ > 0 such that

xeU=|d,P| <D, |d*P|| <D (48)

If P is the orthogonal projection ont®, then D measures a certain curvature df, and D’ has an
interpretation as a change of curvature.
The following is a simple application of Taylor’s formula. It is similar to Lemma 4.

Lemma 6. Assume that/, D, D’ are as in(48), and that the straight line segment which contains the
pointsx, vy, (1 — a)x 4+ ay is contained inJ. Then

D .
lave (x, y) — Pav, (x, y)|| < > min(le| + o2, 18] + B%)Ilx — yl1%, (49)

wheref =1 —«.

The proof is given in Appendix C.3.
Similar to the geodesic case, we have

Lemma 7 (the projection analogue of Lemma ®et U, D, and D’ be as in(48). Consider an affinely
invariant subdivision schemgand its analogous projection scherfie Let the classP;, ; consist of all
surface polygong with d(p) < §, and such that the line segments used in averaging in the application
of T are insideU.

Then$ and T fulfill a proximity condition for all polygong € Py, ;. The constan€ in the proximity
condition depends ofi, D, D’, ands.

The proof is given in Appendix C.3.
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5. Results
We give a definition, which collects the requirements we impose on a linear subdivision s€heme

Definition 8. We call a linear subdivision schen$e0-admissible, if it is affinely invariant and fulfills
the convergence condition (22) with a faciay < 1. S is called 1-admissible if in addition a smoothness
condition (23) holds true, such that the factpgs 1, are bounded according to (41).

By the analysis of linear schemes (cf. (Dyn, 1992})yadmissible subdivision schenSeproducesC*
limit curves ¢ =0, 1).

Theorem 7. If S is ak-admissible schemé,= 0, 1, andT is its analogous geodesic scheme in a surface
in the sense of Sectidh2, thenT converges and > p is a C* curve for all p with d(p) small enough.

Proof. Lemma 5 says thaf and7 meet a proximity condition. In the cage= 0, Theorem 2 together
with Theorem 3 shows the convergenceTotind the continuity of its limit curves. In the cake= 1,
Theorem 5 shows a mixed smoothness conditiorffoand Theorem 6 shows that the limit curvesrof
areCl. O

We say a few words concerning the sentence pailvith d(p) small enough” in the statement of
Theorem 7. It does not mean that for a given surface there is a global cohstaatt that for allp with
d(p) < & the theorem holds. Suchéain general exists only in a compact subsetMf but can exist
globally if there exists a global constabtsuch that (43) holds.

One inference however can safely be made: If a nonlinear subdivision scheme happens to converge, if
applied to a given finite polygon, then the limit curve is smooth, if the appropriate conditions as set down
in Theorem 7 are met. This is becayséself is contained in a compact set, for which there exists0
such that the theorem applies; and in the process of subdiviéipin,converges towards zero.

In Section 2.2 we defined geodesic averaging and the geodesic analogue of an affinely invariant linear
scheme by expressing it in terms of averages, and by replacing the affine average by the geodesic average
The same definition applies to Riemannian manifolds, if geodesics and the exponential mapping are
understood in the Riemannian sense, see (do Carmo, 1992). We give an example below.

Corallary 1. Theorem7 applies to geodesic subdivision in Riemannian manifolds.

Proof. By the global embedding theorem of Nash (1956), any Riemannian manifold can be embedded
as a surface of the same smoothness into a Euclidean space of sufficiently high dimension. Theorem 7
applies to this surface.d

Example. Fig. 5 shows four points connected by geodesics in the conformal disk model of the hyperbolic
plane H2. It consists of the points of the open unit disk in Euclidé&n For an introduction into this
topic, see e.g. (Alekseevskij et al., 1993). The vector model diconsists of the points of the upper
sheet of the two-sheeted hyperboloid with equatiba x? + y2 + 1 in R3, which is one half of the unit
sphere with respect to the pseudo-euclidean scalar proQucys, z1), (x2, y2, 22)) = X1X2+ Y1y2 — 2122.
Mapping a poin{x, y) from the disk model to the vector model is defined by projecting the geoint, 0)
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Fig. 5. Geodesic B-spline subdivision of degree three in the hyperbolic plane. Left: Polygmdﬂ"“p. Right: PolygonsAp
and ZAT%p.

from the point(0, 0, —1) onto the hyperboloid. The scalar product and norm of tangent vectors in the
vector model is defined via the scalar product ab@¥é.is thus equipped with a Riemannian metric.
So faritis not a surface in a Euclidean space, because the scalar product we use is not Euclidean. Sma
pieces ofH? are realizable as a surface of Gaussian curvatdri R3, but it has been shown that there is
no C? immersion of the entire hyperbolic plane if&3. For that, we have to resort to higher dimensions.
We never actually use this embedding except by referring to its existence in the proof of Corollary 1.
Recall that in the Euclidean unit spherelof, geodesics are defined via eXpv) = cost - p+sint - v,
if v is a unit vector; and the geodesic distaia€g, g) of points p, g fulfills cosé(p, g) = (p. g). In the
vector model ofH?2, this is similar: exg(zv) =costy - p + sinhz - v, if {(v,v) =1; and cosld(p, g) =
[{p,q)|. In the disk model, geodesics appear as circles which intersect the unit circle orthogonally.
We demonstrate the geodesic analogue of the cubic B-spline scheme in the hyperbolic plane in Fig. 5.

Theorem 7 not only applies to geodesic subdivision in surfaces as defined in Section 2.2 but also
for the case of matrix groups treated in Section 2.3. We will however be able to show a stronger result
(Theorem 8 below). The difference between these two theorems is that now there is a global constant
8 > 0, depending only on the scheme and the group, which ensures converg@ipdfad (p) < 8. The
reason for this is that in the matrix group case, there is a global con3ttont(43).

Theorem 8. Assume that; is a matrix group of constant velocity. §f is a k-admissible scheme with
k=0or k=1, andT the analogous geodesic schem&inthen there existd > 0 such thatl’ converges
andT>p is aC* curve for all p with d(p) < 8.

Proof. The resultis based on Lemma 5 (which establishes proximisyasfd7T), Theorems 2 and 3 (for
convergence and continuity), and Theorems 5 and 6fosmoothness). O

In order to extend this result to abstract Lie groups, we give the following definition, which extends
the definition of matrix groups of constant velocity.
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Definition 9. A Lie group is called of constant velocity, if it is locally isomorphic to a matrix Lie group
of constant velocity.

Remark. The condition regarding constant velocity refers to the Lie algebra of a Lie group, because
this is the object shared by all Lie groups which are locally isomorphic. In particular, all real Lie groups
whose Lie algebra is compact (cf. (Onishchik and Vinberg, 1990)), are locally isomorphic to a compact
Lie group (loc. cit., p. 228), which in turn is realizable as a matrix Lie group (loc. cit., p. 241). So in view
of Lemma 2, all real Lie groups with compact Lie algebra are of constant velocity.

Corollary 2. Theoren8 holds withG replaced by a Lie group of constant velocity, with geodesics defined
by (16), and with geodesic averages as in Definitibn

Proof. Geodesics are invariant with respect to left translation in the group, and therefore so is geodesic
subdivision. Both continuity and smoothness are local properties. It is therefore sufficient to consider a
neighbourhood of the identity in the group. By the constant velocity assumption, we may assume, without
loss of generality, that such a neighbourhood is realized in a matrix group. Geodesics are invariant with
respect to this local embedding of the group, so Theorem 8 regarding matrix groups applies.

There is a result very similar to Theorem 7, which concerns projection subdivision:

Theorem 9. If S is ak-admissible schemé&,= 0, 1, and T is its analogous projection scheme, thEn
converges and > p is a C* curve for all p with d(p) small enough.

Proof. Lemma 7 establishes proximity 6fand7. Then we invoke Theorems 2 and 3 to show conver-
gence ofT" and the continuity of its limit curves (in the cake= 0), and Theorems 5 and 6 to shaW
smoothness (in the cage=1). O

Remark. In Theorems 7, 8, and 9, proximity was essential for the convergente 6t T depends on
a particular representation 6fin terms of averages, and proximity holds for all possible choices. of
By Theorem 4, any two schem&sand 7, which are analogues ¢f, satisfy
— 2AC
IT*p = T*plloe < ——d(p)?, (50)
1—pug
wherep is such that proximity holds. This shows that the actual choice of the representation in terms of
averages has a very small influence on the limit curves.
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Appendix A. Proofs of resultsin Section 2
A.l. Preliminary results

To begin with, we enumerate some simple properties of norms of polygons.
P —qllec <= d(p) <d(q) + 2. (A.1)

This follows from the triangle inequality, because nfjax — ¢; || < ¢ implies that

lpive— pill <lpivs — Givall + lgiv1 — qill + llgi — pill <e +llp —qllc + €.
Likewise it is obvious that

[Ap — Aqlle <2llp — qlls,  d(Ap) < 2d(p). (A.2)
Note that because of (A.2), Eq. (24) is also a weaker form of (23) with a constant polynomial.

A.2. Proof of Theorem 1

The proof of Theorem 1 is elementary linear algebra: The affine combination of (6) defines, fgr each
aruleF;(p) forcomputing the poinsp ;. There are essentially only different F;’s, becauseé’; , y (p) =
Fj(op), whereo is the right shift operato(op); = p;+1. We would like to express the rulds (j =
1,..., N) in terms of averages. As the mask is finite, only finitely mag contribute toF;(p), so we
haveF;(p) = F;(ps, ..., Pr)-

It is well known from linear algebra that for points in someR?, repeatedly computing affine com-
binations by (1) yields all the points of the smallest affine subspawdich contains the points;; and
it is also well known thalU equals the set of all affine combinatiopss; p; with > b; = 1.

This means that for all andp there is a rules ; ,, whose definition employs only averages, and with
the property thaG ; ,(p) = F;(p). The statement of this lemma is that we can cha@sg independent
of p,i.e.,G; is arule for computing”; (p) whose definition employs only averages.

Both F; andG  , are affinely invariant in the sense that for all affine mappingee have

Ol(Fj(Pr’ s pv)) = Fj (Ol(Pr), s a(Ps)) = Gj,p(a(pr): SRR} Ol(Ps))- (A3)
If we chooses — r pointsp,, ..., p, as a basis dR* ", then for anyp,, ..., p, there is an affine mapping
o with a(p;) = p;. It follows that for all p, we have

Fi(p)=Fj(a(p,),...) =Gj5(a(Pr),...) =G 5(p). (A.4)

Note that the rule7; ; is independent op. O
A.3. Lie groups: Why left translates?

We want to convince ourselves that left translates of one-parameter subgroups are indeed what we
want for applications. In particular we want to see the connection with the helical motions.
Let G be a group ofi x n matrices. For reasons which will become clear lateis to act onR” by

g_l - X, (A5)
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if g € G andx € R". The fact that we do not use the more canonical actien does not make any
difference for applications. We could say that instead of representing a linear mapping by its matrix, we
represent it by the inverse matrix.

Group multiplication is defined as matrix multiplication. Because of

(gh)y tx=h"t-g " x (A.6)

the meaning of the produgt: in terms of the group’s action is to appd/first andh afterwards.
The action of a matrix/vector paig, ¢) with g € SO, andr € R" is given by

- - -1
Lot 0} [1] (A7)
_x i _t g X
The product of the matrix/vector paifg1, t1) and(g», r2) acts by applyinggi, ;) first and theng,, #,):
- -1 -1 -1
1. ]1 o} _[1 0] '[1]:[ 1 0 } [1] (A8)
X |12 &2 1 81 X 1+81-12 81-82 X

Wee see that the multiplication of matrices in (14) is consistent with the action (A.7).
One-parameter subgroups of the motion group of Eucli®sare the helical motions(z), which in
a suitable Cartesian coordinate system are represented by the matrices

1 0 0 0O 0 O
| 0 coswt) —sin(wt) O 0 0 —w O
“O=110 sinw) cosw) 0|-Pl"|0 » 0 o0 (A.9)
pt 0 0 1 p 0 0 O

co(0) is the identify transformation, and it is clearly seen thgt-¢) is the transformation inverse to
co(t). The general form of a helical motiarir) emanating from the identity at= 0 then is of the form

c(t) = B~ eo(t) B = explit - P, (A.10)
where 8 represents a change of coordinate system. Obviouéhy) is the transformation inverse to
c(t). This means that inverting all matrices changes the sense in which the one-parameter subgroups are
traversed. For a general introduction to the kinematics of Euclidean space, see (Karger and Novak, 1985).
Now suppose that we are given poimtsand two “positions’s andh of these points. We write simple
g andh here, even ifg andh are block matrices. The points at “positigit and “positionk” are the
points
g, (A.11)

If c(¢) is a helical motion which transforms positign (for + = 0) into positionk (for + = t), then
necessarily

c(t) g7ty =h"x;, or (gc(r))_lxi =h 1. (A.12)

This means that left translatgs c(z) of one-parameter subgroups are the curves which have a meaning
in applications, if we adopt the inverted action (A.5).

A.4. Lie groups: The differential equation of geodesics

This section is devoted to the proof of the statements of Section 2.3.
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Proof of Lemma 1. We first verify that (17) holds. Assume that) = g exp(tv). By differentiating Eq.
(15) we geti(r) = g exp(tv)v, &(t) = g exp(tv)v?, which implies that’ = cv? = cvc™tcv = B..(¢, ¢).

We verify that|¢|| = const: Left multiplication in the group was supposed to be isometric, so the
relation¢ = cv implies that||¢|| = ||v], i.e., is constant. O

Proof of Lemma 2. We show that left translatioris— g - i in the group are isometric & is a subgroup
of O,. We have to show that a tangent vectoattached to the poing does not change its norm if it
undergoes the linear mapping— g - v. We use the relatiop” = g~1.

lgvll® =tr(gvv’g") =tr(g gvv’) =tr(vv’) = |[v]|% (A.13)

A similar computation is performed for the groGpix R”. We apply left translation by the eIeme[ritg]

to the tangent vectdr? 9]:
2 tr[ wigu }
0 (guw)(gu) +(gv)(gv)

H[i 3][2 S] ZZH[; 8?)]
]

= tr(ggTuuT) + tr(ggTva) =tr(uu’) +tr(vv’) = ‘
As to compact matrix groups acting on a Euclidean vector space, it is well known that the definition of
|| X112, @S the average (with respect to a left invariant measui@)asver || gx ||? yields a positive definite
guadratic form, such tha¥ is a subgroup of the orthogonal group defined|by|new. SO also in this
case we may assume (by changing the coordinate system to a basis which is orthonormal with respect t

Il - lInew) that G is a subgroup of Q2 This concludes the proof.O

2

Remark. In groupsG x R”", right multiplication usually is not isometric with respect to the scalar prod-

uct (19). It is therefore necessary to consider left translates of one-parameter subgroups, and not righ
translates. This is achieved by letting the group act by inversion.

Appendix B. Proofsof resultsin Section 3

B.1. Convergence and continuity

The proof of Theorem 2 concerning the convergence condition which follows from proximity works
by induction:

Proof of Theorem 2. We start from (22) and want to show that thergis< 1 such that

d(T'p) <mhd(p) foralll, pwithd(p) <3$. (B.1)
We letd; :==d(T'!p). By (A.1) and (36),
d; <d(ST'1p) +2Cd(T' 1 p)2. (B.2)

We use (22) to get the recursion formula
di < podi—1 + 2Cd7 ;. (B.3)
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We choosé > 0 such that

o= o+ 2Cs < 1. (B.4)
We show that iftZ(p) = dp < 8, then

di+1 < Iod). (B.5)
Clearly (B.5) implies (B.1). (B.5) is clear fdr= 0 because of the choice &f

dy < do(po + 2Cdo) < (o + 2C8)do = frodo. (B.6)

If we assume that (B.5) holds true fdr 1, then
dy < pod) 1+ 2Cd} 4 < g *d(p)(po +2C g d(p))
< Jig td(p)(po +2C8) < fipd(p). (B.7)
This shows that (B.5) must also be true thr Thus, by induction we have shown (B.1). The statement
about the differenc@o — uo is clear from (B.4). O

The fact that convergence conditions ensure convergence, as they do for linear schemes, is stated by
Theorem 3. Its proof depends on the fact that for a linear convergent schefrimite mask the rate of
convergence towards its limit is well known: There is a constardepending only or§ and neither on
J nor onp, such that

| Fi4a(Sp) = Fi(p) |, < Cd(p). .8
This follows e.g. from Egs. (3.8)—(3.10) of (Dyn, 1992).

Proof of Theorem 3. We use (B.8) and (36) together with (39) to compute
T f =T flloo < | Fja (T p) = Fia (ST p) | + | Fia(ST p) = Fi(T p)
< Cod(T? p)* + Cd(T’ p).
By Theorem 2, this expression is bounded by a factor tipsgswith 1« < 1. It follows that7/ f is a
Cauchy sequence with respect to the maximum norm, i.e., the limit curve exists and is continaous.

Proof of Lemma 3. We use the functiong* f with f = F,(p) and want to show thaf> £ (¢) € K for
all ¢ in the parameter domain.

Choose a sequengewith lim 7, = ¢ such thats, —t| < N~F andT* £ (#;) is one of the points of * p.
Our construction is such that £ (#,) € K. We have

| T°f@) ~T fao| < [T f@) =T fO| + | T"f () = T* fF@) |
< T fO =T fFO | +d (T p). (B.9)
Because bothi 7> £ (t) — T* £ (¢)|| andd(T* p) converge to zero, we have
T f(t) =lim T* £ (1,). (B.10)
It follows that7T*° f (t) € K, asK is closed. O

We come to the proof of the approximation result of Theorem 4:
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Proof of Theorem 4. We assume tha§ meets a convergence condition of the form (22) with fagigr
By Theorem 2T does likewise, with factog. We show that

-1
IS'p = T'plloo < Cd(p)* Y IIST I, (B.11)
i=0
This is obvious forl = 0, if we define an empty sum to be zero. For 0, we assume that (B.11) holds
for / — 1 and perform an induction step:

IS'p = T'pllos <IIS'p = S TPl + IS Tp — T Tl

-2
IS 1Sp = Tplloo + Cd(Tp)? Y ||| 72 ~2
i=0
-2
<|ISHCd(p)? + CPd(p)? Y IS |20, (B.12)
i=0
which equals the right hand side of (B.11). Thus we have

A

-1 -1 0
Z ”Sl ||ﬁ2(l_l_i) g A Z ﬁZ(l—l—i) g A Z ﬁZ(l—l—i) — T ﬁz
i=0 i=0 i=0
CA
= 8'p = T'pllos < 1——172‘“”)2 (B.13)
for all /. Now (40) follows and the proof is complete

B.2. Smoothness properties

Proof of Theorem 5. We assume that (23) holds. By Theorem 2, we know that the¥e-i§, such that
d(T' p) < od (p), (B.14)

if d(p) < 8. We want to show that there j& < 1, and a linear polynomiaP, with nonnegative coeffi-
cients such that

d(N'AT' p) < Ey P1(d(p) (B.15)
for all p with d(p) < §. Analogous to the proof of Theorem 2, we let
dy=d(N'AT'p), g=T"1p. (B.16)

Egs. (A.1) and (A.2) together with the proximity condition show that
dy=d(N'ATq) <d(N'ASq)+2- N'||ASq — ATql|x
<d(N'ASq)+2-2-N'[ISq — Tqll~
< uad(N'71Aq) + AN'Cd(g)?. (B.17)
In view of Theorem 2, we can now replagé;) by an upper bound, and obtain

AN'Cd(q)? < 4Nlc(ﬁg—1d(p))2 =4NC(Njz3)'td(p)>. (B.18)
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Convergence of the subdivision process was an assumption, so we can without loss of generality assume
thatd(p) is arbitrarily small. In view of Theorem 2, we may also assume [thgt- iio| is so small that
with (41) we haveiy < 1/+/N. This implies that

2
Nt =: iy < N(%) =1 (B.19)
Thus
4CN'd(q)? < fiy*d(p)®Po, (B.20)
with a positive constan®,. From (B.17), we get
dy < dy—yju1 + Pod (p)°fiy " (B.21)
Repeated application of (B.21), starting with: 1, implies that
-1
d; < pydo+ Pod(p)? Z uy . (B.22)
j=0
Defining
iy = max{ug, i1} < 1, (B.23)
we get
d; < jtydo + d(p)?iiy 1 Po. (B.24)

There isC’ > 0 such thatC’ < 1, so that we havel(p)zﬁll‘1 < d(p)C'It}. Now (B.24) implies the
inequality

dy < iy[d(Ap) + C'd(p)l Po] < 132+ C'LPo)d(p), (B.25)
for d(p) < 8. We letP,(x) = 2+ PoC'x, and the proof is complete.O

The smoothness condition (23) does not express the existence of a first derivative as such, but rather
its continuity. For linear schemes, however, it is known that these conditions erSusesoothness of
limit curves. We show now that this is true also for nonlinear schemes, provided they are in proximity to
linear ones.

It is well known thatC* smoothness of the limit curvE™ f as defined by (38) follows from existence
of the limit

llim Fi(N'AT p), (B.26)
—00
with respect to the maximum norm, provided this limit is continuous. It then equals the derivative of the

curve T f (cf. (Warren and Weimer, 2001, 83.1.4)). For the convenience of the reader, we give this
result in a form which directly applies to our setting.

Lemma B.1. Assume that the sequengpé of polygons has the property thim,_, ., 7 (p') = f with
respect to the maximum norm. We let

g = Fi(N'Ap). (B.27)

If g; is a Cauchy sequence, atich d(N'Ap') =0, thenf is Ct with ' =lim,_, ., g; (with respect to the
maximum norm
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Proof. The derivativesf, are piecewise constant and in general not continuous. The fungtitinearly
interpolate the valuesf;), at each point of discontinuity aff;)’, and

1ff = &illee <A(N'APD). (B.28)

The sequencg; is a Cauchy sequence by our assumption, and the previous equation shoyjsighat
also. Especially for alt the pointwise limit limf;/(¢) exists. Thus, for any finite, b, the dominated
convergence theorem yields (see (Rudin, 1987)):

b b
f(®) = f(a)=lim(fi(b) — fi(a)) :Iim/f/:/lim fi. (B.29)

Eq. (B.29) expresses the fact thdt= lim f/. Eq. (B.28) implies thaf’ = lim g;, so f’is continuous. O

Proof of Theorem 6. The casek = 0 is Theorem 3. Fok = 1 we consider the derived scherfieand
proceed analogously. The defining equation (25) implies that the smoothness condition of (23) which is
supposed to hold faf, is nothing but a convergence condition of the form (22) for the derived sclieme
Analogous to the proof of Theorem 3 we rewrite (B.8) $or

| Fi+1(S18p) = Fi(Ap) |, < Cd(Ap). (B.30)

By Theorem 5, a mixed smoothness condition of the form (24) hold% fae verify that Lemma B.1
applies to the polygong’ p. We defines; by

| FrraNHEAT  p) — F(N'AT p)
< || FissWAT = S.8)N'T ||, + [ (FraaS1 = FOAN'T p||

< @N)|(T = S)(N'AT'p)|, + Cd(AN'T' p)
< @N)C'N' (110d(p))” + Cul PuDd(p) =2 . (B.31)

For (B.31), we have used (36), (22), and (24). By (48N < 1, and)_, B; < oo. This shows that the
sequence; := F;(N'AT'p) is a Cauchy sequencg. satisfies a smoothness condition by Theorem 5,
which implies thatZ(N'AT!p) — 0. Thus Lemma B.1 applies, and the limit cui@® f is Ct. O

Appendix C. Proofs of resultsin Section 4
C.1. Preliminary results

We first show some simple lemmas, which are needed later. The first one is concerned with the distance
of endpoints of a curve which is traversed with unit velocity:
Lemma C.1. Assume that is a curve with||¢|| =1 and||¢|| < C. Then

Ct?

|c(@) +1¢(0) — c(0) | < - - Ct?/2< |e(t) — c(0)], (C.1)

t<1/C=t| <2|c(t) — c(0)]. (C.2)
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Proof. Taylor's formulac(t) = ¢(0) 4+ ¢¢(0) + é'c'(@t) with 6 € [0, 1] implies that
lc@) —c(0) —1¢(0)| =

t2
SE00)|, (C.3)

le@) = cO) | = |[t¢(0) —é@D) | = It - cll — |0 (C.4)

Egs. (C.3) and (C.4) immediately imply (C.1).

The functiong () :=t — Ct2/2 is monotonically increasing fare [0, 1/C] with ¢ (1/C) = 1/2C =:
Lmax- ¢ is also concave in this interval (and its inverse functiort is convex), sap(t) > t/2 if t €
[0,1/C], andgp~Y(L) < 2L, if it exists in[0, 1/C].

As (1) :=|lc(t) — c(0)] has the property that (¢) > ¢ (¢), it follows thaty (r) < L implies¢(¢) < L,
and (by monotonicity and concavity)

t <min(¢~(L),1/C) < min(2L,1/C).
This implies (C.2). O

The next lemma already points towards comparing linear and nonlinear averages.

Lemma C.2. Assume that is a curve with||¢|| < C. Then

oo + ?

> Ct2. (C.5)

| av(c(0), ¢(n)) — ctan | <

Proof. We use Taylor's formula and find that the left hand side of (C.5) expanc%mmz'c'(et) —
a?t?¢(0’at)| with 0,0’ € [0, 1], which implies the upper bound given by (C.5)0

C.2. Geodesic subdivision

The next lemma uses the norm of the bilinear mapg@ngsed in the differential equation of geodesics
to give a simple upper bound of their second derivatives. It follows directly from (42) and (43).

Lemma C.3. If c(#) = exp, (tv) with ||¢[| =1, then
Il < D, (C.6)
with D from (43).

We the above lemmas, the proof of Lemma 4 is easy.

Proof of Lemma 4. We assume that is the minimal geodesic with(0) = x, ¢(#) = y. By (C.5) and

(C.6), an upper bound is given thz. Because of the symmetry of the geodesic average expressed
by (12), this relation remains true if we replagdy 1 — «. Thanks to Lemma C.%,< 2||x — y||, which
completes the proof. O

The proof of Lemma 5 proceeds by induction.
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z

<

Fig. C.1. Proof of Lemma 5.

Proof of Lemma5. By Theorem 1, the schentgis expressible in terms of averagesSlis defined by
N different rules, each of which involves the average operator at most once in the form

SpiN+j =av0(j(pi+rj’ pi+si,')a (C7)
then Lemma 4 implies immediately that there is a consfastich that
ITpin+; — Spin+,ll < Cd(p)>.

As to two or more steps of averaging, we perform an induction step. We assume thatcpaiilts’ are
defined in a linear and a nonlinear way, respectively, by

x=a%(y,z), X' =gay0,2), (C.8)
as illustrated by Fig. C.1. We also assume that
ly =zl <Cd(p), ly—=yl.lz—2 <C'd(p)>. (C.9)

Our aim is to show that alse andx’ meet a proximity condition. By induction, this would show tisat
andT are in proximity.
We introducex” = av, (y’, z’) (see Fig. C.1) and use Lemma 4 again:

lx = x| < " = 5" 4+ llx =" < C"lly = 2P+ llavu(y — ¥, 2 = 2
<C"(ly =yl +1ly =zl +llz = z/ll)2 +C"maxX(|ly — y'll, llz = 2'll).-
Thus, by (C.9) and (p) < 6,
Ix —x'|| < C"d(p)*.
This is what we wanted to show.O

C.3. Projection subdivision

The following is an immediate consequence of the definitio@oby (48):
LemmaC.4. If ¢(r) = P(x +tv) with |v|| = 1, then||¢|| < D'.

We now turn to the proof of the lemmas already stated above.

Proof of Lemma 6. We consider the curve(r) = P(x +vt) with x + vt = y andt = ||y — x| and apply

Lemma C.1. It follows that the left hand expression of (49) is boundegoly- aZ)D”—,:. Exchangingc
andy yields an analogous estimate with-kr instead olx. O
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Proof of Lemma 7. This is very similar to the proof of Lemma 5. We replace the reference to Lemma 4
by a reference to Lemma 6.0
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