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Abstract

We analyze the convergence and smoothness of certain class of nonlinear
subdivision schemes. We study the stability properties of these schemes and
apply this analysis to the specific class based on ENO and weighted-ENO
interpolation techniques. Our interest in these techniques is motivated by
their application to signal and image processing.

Introduction

Subdivision schemes are a powerful tool for the fast generation of curves and
surfaces in computer-aided geometric design. In such algorithms discrete data
are recursively generated from coarse to fine scales by means of local rules.
The stability and the convergence of such refinement process, as well as the
smoothness properties of its limit function if it exists, have been the subject
of active research in recent years. We refer to [6] and [19] for general surveys
on subdivision algorithms, and e.g. to [14], [15], [22] for more specialized
results on their convergence and smoothness.

An important motivation for the study of subdivision algorithms is their
relation to multiresolution analysis and wavelets (see e.g.[11] or [13]). In par-
ticular, the contribution of a single wavelet coefficient in the representation
of a discrete signal is precisely obtained by applying a subdivision scheme
from the scale of the coefficient up to the signal discretization scale. There-
fore, understanding the stability and smoothness of subdivision algorithms is
fundamental in the context of applications of wavelets to data compression
or signal denoising, in which certain coefficients are quantized or discarded.

In all those instances of subdivision schemes which have been analyzed
so far, the refinement process is based on linear rules. The present work is



concerned with the situation where this rule is nonlinear in the sense that
the refinement operator depends itself on the data to be refined .

Our main motivation for such a study is the analysis of nonlinear mul-
tiresolution representations introduced by Ami Harten [23] in the context
of the numerical simulation of conservation laws. As we recall in more de-
tails, these representations are based on nonlinear refinement rules which
involve a data dependent stencil selection. The goal of this stencil selection
is to make the refinement process more accurate in the presence of isolated
singularities such as discontinuities. It is no surprise that these ideas have
recently been applied to image compression. In this context, it is hoped
that a better adapted treatment of the singularities corresponding to edges
might improve the sparsity of the multiscale representations of images, and
in turn the rate/distortion performance of compression algorithms based on
such representations (see [12], [17],[21] and [26] for several results which re-
lates the sparsity of the representation to concrete rate/distortion bounds).
Some first numerical results, all based on tensor product techniques, which
do confirm this intuition are available in [2], [3], [8], and [9].

From a mathematical point of view, edges are indeed the main limitation
to the performance of wavelet based coding: this is reflected by the poor
decay - O(N~'/2) - of the error of L? best wavelet N-term approximation
for a “sketchy image function” f = yq, where €2 is a bounded domain with
a smooth boundary. This reflects the fact that this type of approximation
essentially provide local isotropic refinement near the edges. Improving on
this rate through a better choice of the representation has motivated the
recent development of ridgelets in [4] and of curvelets in [5] which are bases
and frames having some anisotropic features, resulting in the better rate
O(NY.

Nonlinear multiscale representations are another possible track for such
improvements, provided that one can overcome two difficulties: firstly, for
a proper anisotropic adaptation to the edges, it is crucial to develop non-
linear methods which are not based on tensor products, and secondly, one
needs to control the stability of these representations. This second point
is crucial: since nonlinear multiscale representations cannot be thought as
decompositions of the signal into a fixed wavelet basis, the error produced
by thresholding or quantizing the coefficients is no more clearly understood:
such perturbations might be greatly amplified by the iteration of the non-
linear refinement rules involved in the prediction process. In order to solve



this problem, we essentially need to understand the behavior of the nonlinear
subdivision schemes corresponding to these iterative refinements.

The objective of the present paper is to provide appropriate tools for
analyzing the smoothness and stability of quasilinear subdivision schemes,
and apply these tools in the particular case of the essentially non oscillatory
(ENO) refinements introduced in [24].

The results of this paper represents the first step in the study of nonlinear
multiscale representations. Using these results, our next perspective, is the
analysis of data compression algorithms based on such nonlinear representa-
tions.

Our work is organized as follows. A quick overview of the framework in-
troduced in [23] is given in Section 1, together with several relevant examples
of quasilinear schemes. In Section 2 and 3, we prove several results concern-
ing the smoothness and stability analysis of quasilinear subdivision schemes,
in the uniform and Holder metric. In Section 4, we apply these results to
the particular example of the four points ENO and WENO refinement rules.
Finally, an appendix is devoted to the generalization of the results of Section
2 and 3, to other smoothness and error measures, such as L,, Sobolev or
Besov norms.

Motivation and Background

The framework introduced by A. Harten [23] for the discrete multiresolution
representations of data is based on two interscales discrete operators: the
projection and the prediction operators .

The projection operator ij_1 acts from fine to coarse level of resolution.
This operator extracts from v/, the data string at the level j of discretization,
the discrete information at the coarser level of resolution, j — 1, i.e. V7L
The prediction operator Pj] ~! acts from coarse to fine level of resolution.
It yields an approximation of the the discrete vector v’/ from the projected

vector v/~!. These two operators should in addition satisfy the property
. -
Pl P =1, (1)

i.e., the projection operator is a left inverse to the prediction operator.



The approximation build by Pj_l is defined as follows
= ij_lvj_l.

This gives the redundant representation of the vector v’ by its approzimation
9/ and the prediction error

el =0 — .

From (1) , we have that ijfl is onto, and that the prediction error belongs
to the finite dimensional space W/~!, defined as the null space of the pro-
jection operator. Therefore by decomposing e/ in terms of a basis of W7/~!,
we can eliminate the redundant information in e/. We denote by d’~! the
coordinate vector of the error vector in this basis of W/, In analogy with
the wavelet terminology we call d/~" the detail vector. Since ¢/ = P} v/
can be equivalently characterized by (v, d’~!). By iteration we obtain a
one to one correspondence between v/ and its multiresolution representation
(v0,d° ..., d"1).

If both discrete operators, projection and prediction are linear, then
the corresponding multiresolution transform is equivalent to a biorthogonal
wavelet transform.

Some of the prediction operators proposed by Harten [23] are nonlinearly
data dependent since they are based on essentially non-oscillatory (ENO)
prediction techniques. By using them, the corresponding multiresolution
transforms cannot be thought as a change of basis, which make the analysis
of these transforms more difficult.

The representations introduced by Harten are formulated for specific
types of discretization, often used in computational applications (e.g., the
point values and the cell averages discretization). The selection of the dis-
cretization depends on the problem under consideration, e.g., for the image
modelisation by square integrable functions, an appropriate choice of the
discretization is by the cell averages (instead of point values discretization,
which does not make sense in this case). In the following, we briefly evoke
the nonlinear prediction operators based on ENQO, in the point value and cell
averages context.

Example 1. Point Value Multiresolution _
In this setting, we interpretate the discrete vector v/ = (v])gez as the
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point values of a continuous function v on the grid IV := (277k)rez, i.e.
vl := v(277k). This suggest the choice for P’ , as the simple downsampling
operator. For the prediction operator, we notlce that the vector ¢/ should
coincide with v/ on the coarse grid; then building prediction operator can be
viewed as an interpolation problem. The details are defined by the restriction
of the interpolation error ¢/ on A7"1: =T\ TV ie.

= (Ui - @i)keAJ‘—l-

In the sequel, we present an important class of local predictors obtained by
Lagrange interpolation.

At scale j we want to predict for each k € 7 the value 0, 41 from the
values (v]')ez. To such a k we associate a prediction stencil of length M

Sp(k) :={(k —r)277* . (k—r+M—1)27t}

with 7 an integer representing the position of the stencil with respect to k.
Using the values (v(7)),es, k), we define p" € Tl as the unique polynomial
of degree M which interpolates the values of v on S, (k). We then define the
predicted value _

Bopry = 0 (2 + 1)277H),

Note that M is exactly the order of accuracy of the prediction. If the pa-
rameter 7 is fixed independently of the data, we obtain a linear prediction
operator, and the multiresolution transform is then equivalent to a biorthog-
onal interpolatory wavelet transform, for which the dual scaling function is
the Dirac distribution.

The goal of ENO interpolation is to obtain a better adapted prediction
near the singularities of the data. The idea is to select by some prescribed
numerical criterion the polynomial p” which is the least oscillatory in the
neighborhood of k.

We give below the formulae for the third order accurate prediction (M =
4). The predicted values @%Hl,r using S,(k), r =0, 1,2, are obtained respec-
tively by

~J 54 Jj— 5 j—l 1,7-1

U2k+1,0 %6 k + 16 k+1 16 k+12 + 16Uk+13’

~J J— J—

U2k+1,1 16 Vk— 1+ + 16vk+11 16Uk+217 (2)
~j 1, - 5 15 ] 5l

Yokt12 = 16Vk-2 _6 + + 76 Vk+1



In the case of prediction by the value of the unique cubic polynomial that
interpolates v/ on the centered stencil, the corresponding multiresolution
transform is equivalent to the Dubuc—Deslaurier interpolatory wavelet trans-
form (see [16] and [20]). For the properties of the interpolant as well as for
the smoothness of the limit of this iterative process, we refer the reader to
[14], [20] and [16].

Example 2. Cell average multiresolution

In the cell average context, R is partitioned in disjointed dyadic cells [V =
{4 = [k277, (k+1)279) }1ez. In this context, the discrete vector v/ is viewed
as the average (2j fri v(t) dt)keI‘j of a locally integrable functi'OH.

As in the point values setting, this suggests to take for Pj , the averag-
ing operator. The construction of the prediction operator is similar to the
prediction in the point values setting. To each F{;l, we associate a stencil of
cells

o (k) = (k=277 (h=r 1274, (k= M= 1)2 0, (ke D)2,

Using the averages within the stencil S,(k), we define ¢" € IIp_; as the
unique polynomial of degree M — 1 which interpolates these averages.

We then define the predicted averages as those of ¢" on the half intervals
[277F12k, 27F1(2k + 1)] and [277F1(2k + 1), 2771 (2k + 2)].

Notice that by using the averages of a local integrable function we can
obtain the point values of its primitive function. This interpretation allows
to obtain the polynomial used to make the prediction in cell averages context
through a derivation of the prediction polynomial used in the point values
setting for the primitive function.

The multiresolution decomposition based on cell averages is equivalent
to the biorthogonal wavelet transform, for which the dual scaling function is
the box function, [18].

We can also make the same remarks concerning the possibility of using
ENO-type reconstructions. In the case of two order accurate prediction based
on Lagrange interpolation, the predicted averages @y, , using S,(k), r =
0,1, 2, are given by

~J . un,g-1_ 1 5-1 1,7-1

Voo 1= g Uk 7 9Vka1 T Uk

A -1 1,5

Vggy = gvk—11 + vy . gvk+1i (3)
G . _1,9-1 1,51 _ 5 -

Uppo = —gUk_o t+ 35U, + gl -
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In both types of discretization, the details are defined as the prediction error
at the odd samples.

Weighted-ENO interpolation . The weighted-ENO (WENO) interpo-
lation developed in [7] is based on the ENO idea. In this technique, in con-
trast to ENO interpolation which uses only one of the candidate stencils to
make the prediction, one consider a convex combination of the polynomials
associated to these stencils, i.e.

M—-1
N T
UV = Z Uy,

r=0

with o, > 0 and E,{‘igl a, = 1. In ENO interpolation, a small round-off error
perturbation of the data can result in changing the selected stencils. This
situation is avoided in WENO interpolation which provides with a smooth
transition between the stencils. A possible form of the weights is given in [7]
by
= =0, M-1
RS TE

where

d Mi (21-1)
a, = ———, and b, := 27\~ /
(€4 b,)? P r

al (1) 2
i ( glfc )) dr.  (4)
The d, are fixed positive constants. The b, are defined by the sum of the
squares of L? norms for all the derivatives of the interpolation polynomial p,
over the interval I'}. The factor 2793~V is introduced to remove any level
dependency on the derivatives. Here € is introduced in order to avoid the
denominator to vanish, b, are the so called “smoothness indicators” of the
stencil S,(k) : if the function v(z) is smooth inside the stencil S, (k), then
b, ~ O(27%), else if the function has a discontinuity inside the stencil S, (k),
then b, ~ O(1).

The rational form of the weights is chosen in order to emulate the ENO
idea and to be computationally efficient. If the stencil S, is located in a
smooth region, the smoothness indicator b, is close to 0 and then the weight
- is close to 1. In contrast, if the stencil contains a singularities the smooth-
ness indicator b, is larger and the weight «,. is closer to 0.



In the case of four point interpolatory schemes, we compute the predicted
value as a convex combination of the predicted values by the three stencils,
as follows

Vg1 7= QU1 0+ 10 g1 + Q20 o (5)
where o, a; and ay represent the weights associated to the right, centered
and left stencil, respectively. More precisely

~J . oas,J—1 S5as+aig ,,J—1 S5as+2a1 \,,J—1
Ugpy1 = T6Vk—2— ~ 16 ka1 + (1 o= ) Jup ) (6)
S5o0+201,,)—1 _ baotay,,J— Qg ,,J—
+(1+ 8 )Uk+1 16 Vk+2 T 16 Vk+3s

The weights associated to the three stencils are defined as in [25] and [7]. In
this case (M = 3), (4) gives

bo = coo(Viyo — 20%y + 01)% + Con(vhyo — 404, +3v))?,
by = c1,o(vé+1 - 2“% + Ui—1)2 + Cl,l(viﬂ o 02—1)2’ , 0
by = cap(vi — 204y +vh_o)® + 21 (Bvf — 4l +vl,)?

where ¢; j, © = 0,1,2,57 = 0,1, are fixed positive constants. Some possible
choices of the constants are suggested in [7].

As we already explained, stability of the multiresolution transform is
a key issue in applications where some coefficients are discarded (such as
compression or denoising). In this paper, we limit our study to the nonlinear
subdivision scheme corresponding to the iterative application of prediction
operator, from coarse to fine scales, without adding any details. To begin
with, we give some basic notations and definitions and recall some properties
of the subdivision operators.

A subdivision scheme defines a function (called the limit function) as the
limit of a subdivision process in which an initial finite set of points, called
the control points, is recursively refined.

Definition 1 A data dependent subdivision rule is an operator valued func-
tion S which associates to each v € L (7Z) a linear operator

S(v) : loo(ZZ) — U (72),
defined by a rule of the type

(S(v)w)y == zl:ak,l(v)wl, (8)
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where the coefficients a (v) are zero if |k — 21| > M for some fized M > 0.
We define the associated quasilinear subdivision scheme as the recursive
action of the quasilinear rule Sv := S(v)v on an initial set of data v°, ac-

cording to . _ . _
A (T Ly o (9)

In the above definition, M typically represents the size of the stencil used in
the subdivision rule. For linear subdivision schemes, the coefficients a;; do
not depend on the data v, i.e. S(v) = S a fixed operator. For linear and
uniform subdivision schemes, these coefficients have the form a;; = ay_y.

The analysis of a subdivision scheme consists of establishing conditions
for the convergence of the scheme, and in characterizing the smoothness as
well as the order of approximation of the set of limit functions. We refer the
reader to [6],[19] and [22] for a general survey on this subject, in the linear
and uniform case.

Definition 2 A subdivision scheme, generating recursively the data {v7 : j €
72}, is called uniformly convergent if, for every set of initial control points
V0 € Uoo(ZZ), there exists a continuous function f € C(R), called the limit
function, such that

li T f(277k)| =0 10
im_sup fvg — f(277k)| =0, (10)

and that f is non-trivial at least for one initial data v°.

We also associate a function f7 to the data v/ as the piecewise affine inter-
polation to {(277k,v’) : j € ZZ,}. Thus

fla) =3 vz — k), (11)

kEZ

where p(z) := max{1—|z|, 0} is the hat function. It is clear that the uniform
convergence of the subdivision scheme is equivalent to

lim [|f7 — f||z.. = 0.

j—4o0

The limit function f is denoted by S>°v". The following definition plays an
important role in the analysis of subdivision schemes.



Definition 3 Let N > 0 be a fized integer. The data dependent subdivision
rule has the property of polynomaial reproduction of order N if for all u €
loo(7Z) and P € Iy there exists P € Ty with P — P € Ty, such that
S(u)p = p where p and p are defined by pr = P(k) and py, = ]B(g)

In particular, the ENO and WENO schemes discussed in the previous
section satisfy such a property up to the order M for point values and M —1
for cell averages. We recall the definition of the n-th order forward finite
difference operator,

n

(A" = 3 (1™ vksm. (12)

m=0

For the first order finite difference we omit the superscript 1. In the case of
linear subdivision scheme, using a formalism based on Laurent polynomials
[19], it has been proved that if the subdivision scheme has the property of
polynomial reproduction up to the order N, then there exist similar schemes
for the differences of order n:=1,---, N +1

S Uoo(ZZ) = Uoo(ZZ),  A™(Sv) = Sp(AM).

The convergence and smoothness properties of a subdivision schemes are
then studied through the contraction properties of the schemes S,. More
precisely, denoting by p..(A) the spectral radius of an operator A in £, the
uniform convergence of the linear subdivision is equivalent to the property
P (S1) < 1. Moreover, if for some m € {1,---, N + 1}, we have py(Sn) <
27™ 1 then the limit function is in C*® for all s < s* = —% (and
therefore m — 1 times differentiable since s* > m — 1).

In order to study quasilinear subdivision schemes, we need to introduce
some additional definitions. We start with the boundedness property.

Definition 4 A data dependent subdivision rule is called bounded if there
exists a constant B > 0 such that for all v € (o (7Z),

1S (v)le.. < B, (13)

where the norm stands for the (o, operator norm.
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Clearly, this property can also be expressed by saying that the coefficients
{ak,(v)} are bounded independently of k, [ and v. In the following, we always
assume that the rules that we study are bounded.

We have already remarked that, in the WENO technique, the transition
between two stencils is made in a continuous way. This property is crucial
in the study of the stability of quasilinear subdivision schemes. This notion
is expressed in the next definition.

Definition 5 A data dependent subdivision rule is called continuously de-
pendent on the data if for every v, w € ly(ZZ), the associated operators S(v)
and S(w) satisfy

1S(v) = S(W)lew < Cllv = wllee, (14)

where C' dependents in a non-decreasing way on max{||v||e,, ||w||e, }-

The fact that the constant C' might grow with ||v||,, and ||w]|,, is encoun-
tered in the practical examples that we have in mind such as WENO inter-
polation.

We finally introduce the notion of joint spectral radius associated to a
data dependent subdivision rule.

Definition 6 The joint spectral radius of a data dependent subdivision rule
S is the number

A=

So

oo

Poo(S) = limsup sup IS (=) -+ S(u?)]
j—00  (uOul,... . ui—1)E(loo (Z))I

In other words, pw(S) is the infimum of all p > 0 for which there exists
C > 0 such that for all arbitrary (u/);>o in ls and v € £, one has

1S -+ S(W)vlle, < Cp'|Ivllee (15)
for all 7 > 0. Note that in the case of linear subdivision schemes, this is
exactly the spectral radius of S in /.

Convergence and Smoothness analysis

In this section, we provide sufficient conditions for the convergence of quasi-
linear subdivision schemes and for the smoothness of the limit function. In
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fact the results in this section, but not those of the next section, apply to a
wider class of subdivision schemes than the class of quasilinear subdivision
schemes. In this class, a scheme is defined by a data dependent rule , S, and
by given sequence of data {u' : [ € Z,} and initial data v° according to
v/ = S(uw ) - S(u®)v®. As in the linear case, the results of this section are
obtained through the study of the associated schemes for the differences. The
existence of the scheme for the differences is obtained by using the property
of polynomial reproduction of the data dependent rule. This result is given
in the next proposition.

Proposition 1 Let S be a data dependent subdivision rule which reproduces
polynomials up to degree N. Then for 1 < n < N + 1 there exists data
dependent subdivision rule S,, with the property that for all v,w € ly,

A"S(v)w := S, (v)A"w.

Proof :
Let 1 <n < N +1 and let u := S(v)w. Combining (12) and (8), we obtain
(Amu), =Y (-1)™() 3y ot (V)01 (16)

m
m=0 Is.t. [k+m—20|<M

Therefore, (A™u); can be written as a linear combination of the w,

(A”u)k = zl:bk,l(v)wl, (17)

where by (v) = > (—l)m(n )ak+m,l(v). Note that by;(v) is zero for [ <

m=0

(k— M)/2 and | > (k+n+ M)/2. For each fixed k we thus have a finite
vector (bkyl(v))leEk with E}, := {l : (k — M)/2 << (k +n+ M)/Q}
Since the rule reproduces polynomials of degree up to N, we have

> a(0)m =Pu(k), 0<m<n—1, (18)
lk—21|<M

with P, € II,,. Applying the n-th order finite difference operator A™ on this
identity, we obtain

> by ()™ =0, m=0,...,n—1. (19)
!
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Therefore, for each &k (by;(v))icr, is orthogonal to the vectors (I™),cp, for
m = 0,...,n— 1. It follows that (b ;(v))icr, can be written in terms of a
basis of the orthogonal complement of span{(I"™),cg, |m =0,...,n—1}. A
natural choice for this basis is given by

()= () (=)™, it 1=0,...n,
(1):=0, if [¢{0,...,n},

and taking e, (1) := eo(l —¢q) with (k—M)/2 < ¢ < (k—n+M)/2. Therefore,

we have
b (v) = Z Br.q(v)eq(l), (20)

(k—M)/2<q<(k—n+M)/2

€0
€0

from which we derive a subdivision rule for the n-the order differences of the

type
(A”U)F;bk,z(v)wzz > Braw)(A"w), (21)

|k—2q|<M
L

Notice from the above proof that the the stencils used in S,, are always
smaller than those used in S. Moreover, if S is bounded (resp. continuously
dependent on the data), then S, is also bounded (resp. continuously depen-
dent on the data). The next result gives a relation between the joint spectral
radius of these schemes.

Proposition 2 For alln =0,---, N, one has peo(Snt+1) > poo(Sn)/2.

Proof:

We shall prove that py(S1) > pso(S)/2, and the general result will follow by
induction. Let p > px(S1), and C' > 0 such that for all sequence (u');>o in
ls and v € l,, one has

1S1(w’™") - S1(u’) Avlle., < Cp'l|Av]le, (22)
for all 7 > 0. Defining
w = S S(ul)w, (23)

it follows that . .
1AW ||e,, < CP||Av]|g,. (24)
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We use the relation

lw/le.. = supsup{|wf| : 1 € [2k, 27 (k + 1))}, (25)
keZ

and exploit the fact that the scheme is local. The values of w] for [ €
[27k,27(k + 1)) only depend on those of v, for |l — k| < M. For a fixed k,
we define ¥ by 9y = v if || — k| < M and ©; = 0 otherwise, and we let
wl = S(u) - S(u®)v. It follows that wy = w] for [ € [27k,2/(k + 1)) and
that @/ = 0 for |l — 2/k| > 272M. In turn, we obtain that

SUDye[2ik,27 (k+1)) lwi| = SUD;¢[2ik,2i (k+1)) |wg|
< ok <zianr [A]]
< CV || Aw/ e,
< C(2p)'[|AD e
< 2C(2p) [0l

It follows that ||w’|l,, < 2C(2p)’||v]|r.., and thus p,(S) < 2p. Letting p
tendto po(S1), we obtain the claimed result. r

Note that convergence of the subdivision scheme implies p(S) > 1 since
otherwise S®v° = 0 for all initial data v°. Therefore, the above result shows
that we always have

Poo(Sn) > 27" (26)

We are now ready to establish a sufficient condition for the convergence
of quasilinear subdivision schemes and for the C° smoothness of the limit
function with s < 1.

Theorem 1 Let S be a data dependent subdivision rule which reproduces
constants. If the rule for the differences satisfies ps(S1) < 1, then the quasi-
linear subdivision scheme based on S is uniformly convergent and the limit

function S®v° is C* for all s < —logl’kA.
og 2

Proof:
Let p be such that ps(S1) < p < 1. There exists a constant C' such that for
all initial data v° € £, and j > 0,

1AVl < CP (| AVl (27)

14



Observe that

G g Gl Gyl vl + Uiﬂ

17 = f e < SUP lvge - — il |U2k+1 - T| (28)

We now write
vt — ol = > o it (29)

lEF,
and
; vl —|— vl ;
e = > diav] (30)
leF},

where Fj, == {l; |k — 1| < M}, ¢y = agy — d(k — 1) and dy; = agpq1, —
w Since our scheme reproduces constants, the vectors (cg)icr,

and (dg)ier, are orthogonal to the constant vector. By the same reasoning

as in the proof of Proposition 1, we conclude that both U]+1 — vi and vg,ﬁl —
Uﬁ# are linear combinations of the finite differences Avlj for | = k —

M,---, k+ M — 1 From this it follows that
1775 = Fllpe < ClAY |le, < CP | AV (31)

Therefore the sequence f; converges uniformly to a continuous limit f =
S>90. We also see that

1l < 00w + Xjso 17 = s,
< O([[0°lese + 180" les) < Cf0° | -

In order to prove that f € C* it suffices to evaluate |f(z) — f(y)| for
|z —y| < 1. Let j be such that 27771 < |z —y| <277, We then write

@) = FW)l <|f(@) = @)+ [f(y) = W+ [ () = F )l
<2f = fllw + 17 () = P (y)
< CP || AV e + 27 (7)o
< O || AV |e, + (| AV e,
< Cp || Ao,
< Clz =y’ [|Av°Je...

with s := —log(p)/log 2. This concludes the proof. \

In the following, we give sufficient conditions for the C'* smoothness of the
limit function for s > 1.
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Theorem 2 Let S be a data dependent subdivision rule which reproduces
polynomials up to degree N. If the rule for the differences satisfies poo(Sni1) <
27" for some n € {0,--- N}, then the quasilinear subdivision scheme based

on S is uniformly convergent and the limit function S®v° is C* for all

_log poo (Sn+1)
s < ol seet),

Proof:
Notice that by Proposition 2, the assumption that py(Sp11) < 27" implies
that peo(Smi1) < 27™ for m = 0,1, -+, n. In particular p,(S;) < 1 and the
scheme is convergent by Theorem 1.

We shall use induction on n to prove C* smoothness. For n = 0, the
result is proved by Theorem 1. For n = 1, we let f = S®v° and we assume
that pso(S2) < 1/2. Introducing

w’ =27 Av? =278, (v 1) S (v %) -+ Sy (v0) A, (32)
we have
Aw? = 2T A7 = 278y (11 1) S (v 2) - - Sy (v°) A%, (33)
and therefore if p is such that 2p,(S2) < p < 1, then
|Aw |l = P A0 = O | A% (34)

We obtain as in Theorem 1 that w’ uniformly converges to a continuous
function g namely
lim sup |w] — ¢(277k)| = 0.
Jj—oo g
Introducing the function ¢ := X1} and the functions
g =Y wip(2 k), (35)

keZ

one easily check that ¢/ = <L f7, where f7 is the affine function defined by
(11), i.e.

[ @de = (@)~ 0, (30)

for all @ and b. We know that lim; , || f? — f|lz.. = 0, and we also have
lim; o0 |l¢7 — g/, = 0. Tt follows that

[ otaras = @) - ) 1)



for all @ and b. Therefore, f is differentiable with f’ = g. Moreover, as in

Theorem 1, we obtain that g € C* for all t < —w < —1 — loBpoolSy)
og 2 log 2

Therefore f € C* for all s < —%. Iterating this argument for n > 1,
we obtain the general result. r

Stability analysis

In this section, we study the stability of quasilinear subdivision schemes, e.g.
properties of the type

15°0" = §%°||1,, < Cllv” = le. (38)

In the linear case, this is a simple consequence of convergence, namely of
|5>°v°|r.. < C|v°|le... In the nonlinear case, it requires a more specific
study.

In our study of stability we need the additional assumption that there
exists a linear left inverse operator of the subdivision operator (called re-
striction or projection operator by Harten). More precisely we assume that
there exists coefficients (7;);;j<p with X<p v = 1 such that

Uiil = Z “Ylvék—za (39)
ll|<P

whenever v/ := Svi~1,

In many interesting case of linear or nonlinear subdivision algorithms,
such an operator exists. In the point-value context v, = do;, and in the
cell-averages context 79 = 71 = 1/2, 7 = 0 otherwise. In the following
we always assume the existence of a restriction operator of the form (39) .
In the next result we obtain the existence of a similar left-inverse for the
subdivision schemes S, associated to the finite differences.

Proposition 3 Let S be a data dependent subdivision rule which reproduces
polynomials of degree N. Then, forn =1,--- N + 1 there exists coefficients
(V) <p with Sy<p i = 2" such that

(A" = >0 (A" )ae, (40)

[l|<P+4n

whenever vJ := Svi~1,
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Proof:
Consider the case n = 1. Assuming (39), we can write

(Avi7h), = Xi<p 7Z(U%k+27l - U%H) .
= Xij<p N((AV )opi1-1 + (Av7)21)
= X j<P+1 N (A7 )2k 1,

with vy} := 9, + 41 which proves the result. The case n > 1 follows by
induction. C

We use the restriction operators for the finite differences through the follow-
ing lemma.

Lemma 1 Let S be a data dependent subdivision rule which reproduces poly-
nomials of degree N. Then there exists a constant D > 0, depending only on
n, such that

1Al < 27| A" Y|y + DA™ ||, 0<n< N, (41)
for all j >0 and v° € (.

Proof:
Since (A™7 1)y = Y jj<pin W (A7 )9y With 35,77 = 2", we also have

(A" e = 22(A™ o+ D0 (A" )ap g — (A" )ar)  (42)

[l|[<P+n

It follows that
(A"07)g; = 27 (A" )+ Y0 (A )gp ], (43)

[l|[<P+n

with ¢; ;= Yi—\ 4%, In a similar way, we obtain

(A" )gpr := 27" [(A™T N+ D d(A" )] (44)
[l|[<P+n
The claim follows with D := 27" max{} ;< p1y, |ct|, Xjj<pin |di] }- r

Remark 1 Note that, since the restriction operator is linear, we also have,
A" =A™ |, < 27" A" T AT |+ DI AT — AT |, (45)

for vi = S NIt and v = S )it

18



The main ingredient for our analysis of the stability of quasilinear subdivision
scheme is the following result.

Lemma 2 Let S be a quasilinear subdivision rule, which reproduces polyno-
mials up to the order N. Assume that S is continuously dependent on the
data. Then forn =20,...,N, and p > ps(Snt1), we have

Jamtty? — AM | < Cp (T AN - AT ), (46)
=0

where C' depends in a continuous non-decreasing way on (max{||vl||goo, 10t 1 =
0...j—1}).

Proof:
It is enough to give the proof for n = 0, since it is similar for larger values of
n. If p > ps(S1), there exists a constant K such that for all initial data 0?,

AV [|e, < Kp'[|A0%,. (47)
Moreover there exists an integer L such that
1AV |le., < p" | AV e, § 2 L (48)
Assuming that j > L, we have

1A = Ao = 1S (071) -+ Sy (0B AW E = Sy (5 - 4 () AT o

< A+ B

where

and
B = ||Si (v ) - Sy () AW T — S () S () AT |,

By (48), we obtain . ' .
AT < LAY — AT, (49)

In order to estimate B’, we define for i > j — L

A RN (s R A G BRCH G
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and
K':= S (0" 1S (0% - S1 (v F) AW =S, (71 S (v 2) - S (v ) AL

L= S (@S (0"7%) - Sy (v ) AV =S (7 S (5) - - - Sy (7R ) A

We thus have . ' . .
B = ||G[e, <K |en + [[L7]]en (50)

Recalling the boundedness and continuous dependency on the data of the
scheme 57, i.e.
151(0)[|es < Bn, (51)

and
151(v) = S1(0)]lee < Cillv — Ve (52)

where C; depends in a continuous non-decreasing way on max{||v||e., [|7]/¢., }+
we can estimate the first term according to

17 ]le, < Cy By o7 = 07l JAT e (53)

oo |

where C depends in a continuous non-decreasing way on max{ ||v’~||,_, |77, },
and the second term by

1Z7]|e < BillIGT e (54)
Therefore, we obtain

1G] ene < CLBY o7 = 07 e AV ™|y + Bil|G7 e

where O} depends in a continuous non-decreasing way on max{||v’ |, |77 ||e. },
Similarly, we have

167 e < GBI 0972 = 07 AT Hro, + BiIG7 e

where C depends in a continuous non-decreasing way on max{ ||v’ =2, |77 72(|s.. },
and therefore

1G7)le, < CLBETH (1077 =0 o [0 2 =072 e NIAT ™ e A BTl
where ('} depends in a continuous non-decreasing way on

max{|[v! e 07 Mlews 1072 oo [177 7%l }-
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By iteration, and since G/~ % := A/ "L — AL = 0, we obtain
. . L . .
BI < CyBY AT o (3 107! = 5l ), (55)
=1

where C depends in a continuous non-decreasing way on max{||v!||,., ||0*|le.; { =
0...7 —1}. Adding (49) and (55), we thus obtain

L
1AW= A, < p" || AvI == ATy +Cy B AT o (3 07 = 507, ).
=1

Combining this estimate with (47) gives
. . . . . L . -
120 = A o, < P A= AT +Cop ™" (3 07 = 77l ), (56)
I=1
with Cy = 2C, K||0°||s,. If j — L > L, we also have

27,
[Av = AT H|,, < pHl|Av2E— AT +Cop (Y 07 = o),
I=L+1

and therefore
. . . . . 2L . .
807 — AP e, < LAV = AP, + Cop H(S e = 997 )
=1

After [£] iterations, we thus obtain

. . . ] B .
1AW — AT |p, < pME) max AW — Al +Cop (X 0 — 5.
=1

0<I<L—1

For the values [ = 0,---,L — 1, as well as in the case 0 < j < L, we simply
use ||Avt — AP ||o. < 2|0t — 3|, it follows that

. . o .
1A — Ay, < Cp/ (30 [0 = 57Jo.). (57)

=1

where
C = 2max{1, p~ "} 1+ KC)||7")|e..., (58)
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depends in a continuous non-decreasing way on max{||v'||,., [|0'||¢; I =0...5—
1}. C

We are now ready to give condition for the stability of the quasilinear subdi-
vision schemes for various norms measuring S®v — S>v. We begin with the
uniform norm.

Theorem 3 Let S be a quasilinear subdivision rule which reproduces con-
stants. Assume that S is continuously dependent on the data and that ps(S1) <
1. Then for all data v° and ©°, we have

[5°° = %I, < Cllo® - "] (59)

where C' depends in a continuous non-decreasing way on max{||v°||o, ||7°(|e. }-
Also for s < —log(peo(S1))/ log2 we have that

1AV = ARl < €207 = 8|, (60)

Proof:
It suffices to prove that for all 7 > 0

07 = ¥ le, < Ofl0" = e (61)
with C' independent of 7, since we then have
17 = Pl < Cllo® =, (62)

and therefore (59) by letting j go to +o0.

Let p be such that py(S1) < p < 1. Let us denote o/ := ||v/ — 07|, and
B9 := ||Av/ — AW ||,,. By Remark 1 and Lemma 2, these sequences satisfy
the following inequalities

ol <o/t + DB,
Bl < Cpl(a?~t+ -+ a),

where C' depends in a continuous non-decreasing way on max{||v||,., [|0[|e; | =
0...7 —1}. However, we remark that since p,(S;) < 1, we have ||S7v]|,,, <
K||v||e,, with K a constant independent of j and v, and therefore we have
that C' depends in a continuous non-decreasing way on max{||v°||,., [|7°||¢. }-
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If we now consider the positives non-decreasing sequences al and 37 de-
fined by a’ = o, 8° = 3% and satisfying

{ ol =alt+ D,

Bi = Cp(ai—t +---+a0), (63)

we clearly have o/ < &’ and 3/ < 37. Using the last equality from (63) and
the fact that o/ is increasing, we get

pr<Cjpa’ (64)
Combining this with the first equality in (63) , we obtain
al < (1+CDjph)a’ !, (65)
and therefore _
&l = f[ (1 +CDIp"a’. (66)

1=0
Clearly the product [[7°, (1 + C'DIp') is convergent, and by taking its loga-
rithm, one easily check that its limit is bounded by C’Dﬁ. Therefore, we
obtain

vi = ¥l = o < CD—L—a" = CD—L—[o® = ||, (67)

(1-p)? (1—-p)
which proves our first claim since the constant C' of Lemma 2 depends in

a continuous non-decreasing way on max{|[v%||s.,[|?°]|c. }. For the second
claim we note that

B < B <Cipa ™ < DG I = e € O P

(1
with the last constant C' depends in a continuous non-decreasing way on
max{[|v® e, [7°]le }- r

We next address the stability in Holder norm C” for 0 < s < 1.

Theorem 4 Under the assumptions of Theorem 3, we have
15%0° = §%8°| s < Cv° = 0°e, (68)

for all s > 0 such that s < —%, where C' depends in a continuous

non-decreasing way on max{||v°||o, ||7°||e.}-

23



Proof:

Let p be such that s < —j%gg < —%, ie. BOO(SI) <p<27 <l
Let us define f = S*0°, f = S>%% and F = f — f. We also recall f7 and
f7 defined by the interpolation of v/ and 7 according to (11), and we define

FJ = fi — fi_ As in the proof of Theorem 1, we can write

[F7HE = FI[|, < Ol|Av" — A . (69)
From Theorem 3, we thus obtain

[F7HE = F||,, < O279|[0° = 8., (70)

where C' depends in a continuous non-decreasing way on max{||v°(|,__, [|7°||e.. }-
It follows that
I = F7||z,, < C27[0° = °l (71)
For |z — y| < 1 and j such that 2777 < |x — y| < 277,
|F(x) = F(y)| < |F(z) = F/()|+|F(y) = F(y)| + [F(z) = F(y)|

<2 F = FL, + [F7(x) — F7(y)|

< C2790° = 86 + 279 (F7) (|1

< C279([0° = 00lg, + || AT — AV,

< 270" = 0%,

< Clz = yPllv® = 2°lew.,

up to a multiplicative change in C'. This concludes the proof. L
Finally, we address stability in the Hélder norm C*® for s > 1.

Theorem 5 Let S be a quasilinear subdivision rule which reproduces polyno-
mials up to degree N. Assume that S is continuously dependent of the data,
and that ps(Spt1) < 27" for some n € {0,---,N}. We then have

15°4° = %8| < Clo® = ]l (72)

for all s > 0 such that s < —W, where C depends in a continuous

non-decreasing way on max{||v°||o., |7°||e.}-

Proof:
We shall use induction on n in a similar way as in the proof of Theorem 2.
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For n = 0, the result is proved by Theorem 4. For n = 1, we assume that
p(S3) < 1/2. We define f, f, F, f7, fi and FV as in the proof of Theorem
4. We recall the sequences w’ := 2/Av’/ and @’ := 2/ A7, and the functions
9 = Yher wip(2' - —k) and §7 = 3 cq W P(27 - —F). , ,

We already know from the proof of Theorem 2 that ¢/ and ¢’ uniformly
converge to ¢ = f' and § = f'. Therefore G/ := ¢/ — §/ converges to G = F".
Since 5 < — 0B(pea(52)

log 2
Theorem 3 that

, we obtain by similar arguments as in the proof of

1AW — Awle,, < C2|u® — @l (73)

Note that, we use the fact that, according to Remark 1, we also have the
inequality

lw? = @||e, < JJw? ™ =@ + Dl AW = AW, (74)

with constant 1 for the first term. We then use the same type of arguments
as in the proof of Theorem 4 to derive that

G(2) = G| < Cla — yI"Hw® = @°|le, < 2C)2 =y~ [v" — %l

which gives the desired result. Iterating this argument for n > 1, we obtain
the general result. !

Application

In this section we apply the results of the previous section to quasilinear
subdivision schemes based on ENO and WENO interpolation techniques in
the point values setting as described in Example 1 of Section 2. Remark that
the smoothness of the limit functions based on ENO interpolation techniques
is inherently limited in the following sense: if the data v} are such that the
stencil selection always avoids a singularity point on the coarse grid, then the
limit function will not be differentiable at this point. Similarly, we cannot
expect continuity in the ENO cell-average setting.

We treat here the particular case of 4 point interpolation, i.e. M = 4.
The associated scheme S is defined by a rule of the type

(Sl(U)AUJ)k = Z bk,l(v)Awl, (75)

lk—21|<4
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where by, , are the coefficients associated to the interval I := [(k—1)277, (k—
[+1)277]. In the particular case of four point ENO interpolation, the differ-
ences are calculated with one of the following rules:

AU%ZIZ = — Avk 2+ lAvk 1 + Avk,

obtained respectively from each case of (2) . By symmetry, we can also write
the rule for the odd differences

j+1 o L 1AL 1AL

Av2k+1 0o = Avk AUIH—I Avk+2v
J+1 o 1

AU%J{I L = Avk L+ Avk + Aka, (77)
i+ ._ 2 ] 11 ]

AUQHLQ = Avk_Q A 1 —|— A

These rules allow us to estimate the joint spectral radius of S;, according to
the following result.

Lemma 3 In the case of ENO four point subdivision scheme, one has

sup [|S1(u)S1(w)|le, <1 (78)

U, WELoo
and therefore py(S1) <1

Proof:
Notice first that the £, norm of the operator defined in (76) and (77) satisfies

11 1 1

S = b =44 =1 79
112w, = 500 32 ae)] = 5 + 1+ 5 (79)

For fixed u, w € ((ZZ), we have that

(Sl( )S1 )kl = > (S1(u)kp (S1(w))w- (80)

k'€

and therefore ||S;(u)S1(w)]|e, is estimated by

supy, 2o [(S1(uw)S1(w))kal < supy 32 Yo [(S1(w)) ke [ (S1(w)) |
< SUPy, Xpres(k) (|bk,k’ (w)| 20 [ i (w)|),
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where S(k) is the selected stencils for k. Since S(k) includes three consecutive
integers, it always include a pair (2m,2m + 1). From (76) and (77) , we
notice that either Y2, |byy (w)| = 5/8 or ¥ [bam+1(w)| = 5/8. Therefore,
there exist ky € S(k) such that

Z |bro, i (w)| = 5/8. (81)
Since ko € S(k), we also have |byx, (u)| > 7. It follows that

S 1ok () 2 by o (w)]) §|bk,ko(u)| + Xhrko [beyer ()| 2y b g (w)]

< §|bk,kg(u)| + Ykrtho Ok (1)
<1+ ggl— 1)1|£?§ ko (1)
<1- 816 — 128 < L.

A more precise estimation of ||.S;(u)S;(w)|,, can be obtained by an ex-
plicit computation for each different stencil combinations. This leads to the
sharper bound

polS1) < sup 1SSy} = 11V (82)

U, WELoo
As a consequence of Theorem 1 and (82) , we obtain the following smooth-

ness result of the limit function, in the particular case of four point ENO
interpolation. subdivision.

Theorem 6 In the case of ENO four point interpolation, the limit func-
tion of the subdivision scheme is bounded and belongs to C* for all s <

9
_%ﬁ ~ 0.6601499.

We finally turn to WENO interpolation defined in Section 1. The scheme
S is defined by a rule of the type

(Sl (U)All))k = Z bkl Awl (83)
k—21|<6
The rule for the differences has the form of a convex combination of the rules
(76) , namely
Av), = —% Avl~h + %O‘HO“AU,C_ Hoot80y+5ap Avl !
+ 4% = Avk+1 + 9 A'Uk+127

(84)
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By symmetry, we can also write the rule for the odd differences

J e j—1 —dar—a j—1 1las+8ai+5ag Jj—1
Avgpyy = A, + =2 Av ) + 16 Ay,

daotar A, J—1 _ a0 A,dL (85)
+=0 Ay — (R Avy .

Note that in both formulas, oy, a; and «ay vary with k. We then have the
following result for the joint spectral radius of Sj.

Lemma 4 In the case of WENO interpolation, one has

sup [|S1(u)S1(w)|le, <1 (86)

U, WELoo

and therefore py(S1) < 1.

Proof:
From (84) and (85) we have that
5
Z |b2k,l(v)| S oo + g(al + OZQ) S 1, (87)
1
and .
Z |bok11,(v)] < g + g(Oq + o) <1, (88)

!
and therefore ||S1(v),, < 1. For fixed u, w € o (ZZ), we have that

(Sl(u)Sl(w))kl = ) (S1 () g (S1(w)) - (89)

’ k' €X.

We recall that ||S1(u)S(w)]|e, is estimated by

supg Xop |(S1(w)S1(w))ral - < supy 3y X [(S1(w)) k|1 (S1(w) e
< SUDPE 2ok st |2k <6 ( b ()| 24 |bk',z(w)|),

We remark that the set {£" s.t |k—2k'| < 6} includes five consecutive integers,
and then it always include a quadruplet (2m,2m + 1,2m + 2,2m + 3). We
then again remark that one of the rules (84) or (85) for the differences is
contractive, since we have

13
Z |b2k’l('U)| + Z |b2k+171(1})| = -y + g(ag + C¥2) S § < 2. (90)
l l



Consequently, there exists p and ¢ in {0, 1} such that >3, |boppi(w)| < 12 < 1
and Y |bomi2+qi(w)| < % < 1. We also derive from the rules (84) or (85)
that we always have

min{ |be 2m-+p (1], [0k 2m42+4(u)|} = 1/16. (91)

Therefore, there exist ko such that >, |bgy(w)] < 12 and |by kg, (u)| > 1/16.
It follows that

(O 1)

T2 r o (W) 4 X i i (1) | 22 b (w)]
B2 |bk oo (W) | 4 ks 1O (w)]

L+ (35 = Dbrko (u)]
31 _ 253

VANIVARVAN

A more precise estimation of ||S;(u)Si(w)||e,, can be obtained by an ex-
plicit computation for each different stencil combinations. This leads to the
same sharper bound as in ENO case

polS1) < sup 1SS (w2 = 11V (92)

U, WELoo

As a consequence of Theorem 1 and (92) , we obtain the following smooth-
ness result of the limit function of the subdivision process, based on WENO
interpolation:

Theorem 7 In the case of WENO interpolation, the limit function of the
log(£v2)
log 2 ~

subdivision scheme is bounded and belongs to C* for all s < —
0.6601499.

Although they are bounded, the nonlinear operators based on ENO tech-
niques are unstable. The ENO techniques use a numerical criterion in the
selection process of the stencil. If the two terms in the numerical criterion
are close to zero, then a small change at the round off level would change the
direction in the numerical criterion and hence the stencil. In this situation,
there is no hope to have stability. In contrast, WENO interpolation based
on the weights introduced in [7] is stable.
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Proposition 4 In the case of WENO interpolation, the subdivision operator
given in (2) with the weights defined in (7) is continuous with respect to the
data.

Proof:
Let u,u € {x(7Z). From the definition of the subdivision operator operator
we have

15(u) = S(@)lle, = sup > laka(u) — ar(@)]. (93)
!
In the particular case of WENO interpolation we obtain
1S(u) = S(@)[les <l = Q0| + o1 — | + |z — .

where o, aq, ag, g, iy,  Tepresent the weights of the left and of the right
stencil for u and @. From the definition of the weights in § 2, we have

a; a4

|a7, - a?l| = |a0+al/j_a2 - 040+(11+0,2 |
_ G704 1
|a0(jrlal(ia2 | + |al(ao+al+a2 o ao+ai+az )|

VANRPAN

m[2|az a;| + Eg;éz |aj - 6j|],

and therefore

15 (w) = S(@)lle, < Zlaz—azl

ap + a1 + as

From (7) we have that |b;| < Co||ul|7_ where Cy > 0, constant independent
on v and w. It follows that

G+ a1+ az = <e+bo>2 * 5;+bl>2 + (e+b2> (94)

> —
Yo T, = o

Using straightforward computations we also obtain

26+b+b |b —b|

|a; — ai] letbi)? (e br)? (95)
< 2%1b; — b.
From (7) , we obtain
b = B < Cillu+ e 1o = il (96)
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where C; > 0, constant independent on v and u, and therefore

N 6C, . .
> lai =@l < = ([ullew + lEllec) 1w = Ul (97)

2

Combining (94) and (97) , we therefore obtain

15 (u) = S(@)lle. < [i—?(“ullzm +|[alle) (e + CollullZ ) w — @lle, (98)

which concludes the proof.

We can thus apply the results of § 4 to derive the following result.

Theorem 8 In the case of WENO four point interpolatory techniques, de-
fined in (2) , with the weights satisfying (7) , the subdivision scheme is Ly
stable and C? stable for all s < — loglpo(51) ~, ) 6601499.

log 2

Appendix

We shall briefly sketch some smoothness and stability results in the spaces
L, and B; , which generalize those obtained in § 3 and § 4. The Besov spaces
B, , roughly represent the functions with s derivatives in L,. They can be
defined through the n-th order L, modulus of of f,

wn(fs D), = sup | AL f|z,, (99)
hI<t

where A} f is the usual n—th order finite difference operator
Apf =3 (=" () (- + hm).
m=0

For p,q > 1,s > 0, the Besov spaces B, , consists of the functions f € L,
such that

(2Sjwn(f, 2_j)Lp)

Here n is an integer strictly larger than s. A natural norm for such a space
is then given by

1 llss, = I1F e, + (29w (f,277)s, )

€ (. (100)

j=0

jZOHZq'
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Remark 2 For ¢ = oo, (100) simply means that |A}f||, < Ch*. In
particular, one has C* = B, ., when s is not an integer. More generally,
one has W*P = B} if s is not an integer and H® = We? = B3 5 for all s.

We can study the convergence of quasilinear subdivision schemes in L,
according to the following natural definition.

Definition 7 A subdivision scheme is called L, convergent if, for every finite
set of initial control points vy € £,(ZZ), there ezists a function f € L, called
the limit function, such that

lim [|f/ — fl, =0, (101)

=00
where f7 is the function defined in (11) .
One easily check that we have
£, < 279l (102)

Therefore, similar convergence and smoothness results can be obtained, based
on the £, study of the S,,. We assume boundedness of S in the £, sense which
means that for all v € ¢,(7Z),

1S@)|le, < B, (103)

where [|All,, :=sup{||Aw||s, ; |[w||e, = 1}, and we define the ¢, joint spectral
radius

1
J

pp(S) = limsup sup 1S (=), ., SOz,
§=00 (Ui (b (Z))

(104)

=

It can easily be checked that Proposition 2 extends to the £, joint spectral
radius, i.e. p,(Snt1) > pp(Sn)/2. Note that convergence of the subdivision
scheme implies p,(S) > 2/7 since otherwise S*®v° = 0 for all initial data v°
in view of (102) . Therefore, the above result shows that we always have

pp(Sn) > 277, (105)

With such definitions, we have the following results, similar to Theorem
1 and Theorem 2

32



Theorem 9 Let S be a quasilinear subdivision rule which reproduces con-
1
stants. If p,(S1) < 2¢ then S is L,-convergent. Moreover, the limit function

f belong to By, for all s < —% + 1/p.

Proof:
By similar arguments as in the proof of Theorem 1, we establish that

LF7H = F e, < C2IP( AV |lg, < CpP279/7]| A4, (106)

for p such that p,(S)) < p < 2%, from which we obtain the L, convergence of
f7 tosome f € LP. If |h| < 1 and j is such that 27771 < |h| < 277, we have

0= £G4+ M, <205 = Fll, + 157 = P+ D,
< Cp2 | Aly, + 27| (f) I,
< C(p2I| AP, + 2777 At
< Cp2-ilr| A,

< Clhl*| A,
with s = —}%g—’z’ + 1/p. Therefore f € By  for all s < —% + 1/p.
Since B}, C Bj, when t > s, it follows that we also have f € B for all
s < —lonlnton) 7y )

Theorem 10 Let S be a quasilinear subdivision rule which reproduces poly-
nomials up to the order N. If p,(Sni1) < 95" for some n < N, the limit
function f is in By, for all s < —W + 1/p.

Proof:

We use exactly the same arguments as those used in the proof of Theorem
2. For n = 0, the result is proved by Theorem 9. For n = 1, we recall the
sequence w’ := 2/Av7 and the function ¢/ 1= Yyez wl (27 - —k). We get that

g := S®Av® belongs to Bs, for s < —% + 1/p and satisfies f' = g.

Therefore f € By, for all s < —w. Iterating this argument for n > 1,
) og 2
we obtain the general result. L
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We finally want to generalize the stability results given in Theorem 3 and
Theorem 4 to the L, norm and B, ., norm. A first possibility is to proceed
in a similar way as in the proof of these results, replacing the assumptions
on the spectral radius of S; or S, in /. by assumptions of their spectral
radius in ¢, similar to those in theorems 9 and 10, and to assume continuous
dependency with respect to the data in the sense where

1S@7) = S@)e, < ClIF7 = P, = C277 |0 = s,

However this last assumption is too restrictive in view of the factor 279/7. In
particular, it is not fulfilled by the WENO point value subdivision scheme.
In the following, we show that L, (resp. B, ) stability can be obtained by
combining the L, (resp. C?) stability with the fact that the subdivision
scheme is local.

Theorem 11 Let S be a quasilinear subdivision scheme which reproduces
constants and which is continuously dependent on the data in the sense of
(14) . Assume that ps(S1) < 1. Then we have

%00 — $=5),, < Clled — ], (107)
where C' depends in a continuous non-decreasing way on max{|[v°||o_, |7°]|e. }-

Proof:
For all 7 > 0, we have

177 = Pz, <2700 =7l =277 3 10 = Pl ey (108)
kEZ

We also have

27|l - ~]||§z)p(zm[2jk,2j(k+1))) <l = ~]||§W(Zﬁ[2jk,2i(k+1)))‘ (109)

Using the L., stability result established in Theorem 3, together with the
fact that our scheme is local, we obtain that

107 = 0|l @i 2y < Cllv” = 0l @nic—2nt o (110)

where C' depends in a continuous non-decreasing way on max{||v°||s, [|7°|]c.. }-
Elevating this last estimate to the power p and summing on k, we thus obtain
from (108) that B

1F7 = Fllz, < Cl® =%, (111)
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where C' depends in a continuous non-decreasing way on max{||v°(|,__, [|7°||e.. }-
The claim follows by letting 7 tend to +o0o in the above inequality. C

We finally give a stability result in Besov norms.

Theorem 12 Let S be a quasilinear subdivision rule which reproduces poly-
nomaials up to the order N, which is continuously dependent of the data in
the sense of (14). Assume that ps(S1) < 1 and that for some n < N,
Pp(Sni1) < 2YP7". Then we have

1500 — 50| 5 . < C|lo® = s, (112)

for all s < % + 1/p, where C' depends in a continuous non-

decreasing way on max{||vo||zoo, 12°]ec }-

Proof:
For n = 0, we proceed as in the proof of Theorem 4. Let p be such that

s < -l 1/p < BB L p e p,(S)) < p < 2YP < 29U,

Recalling F7 := f7 — fi and its L, limit F = f — f, we first establish
I+ = P, < c2 A — AT, (113)

where C' depends in a continuous non-decreasing way on max{||v°||s, [|7°||e.. },
by the same technique as in the proof of Theorem 1, In order to estimate
the right hand side, we use the same localization technique as in the proof
of Theorem 10, i.e.

27| A0 — AT} =27 Ypen ||'AUj AT} i 2igery)
< Ykez ||AU‘7‘ - AU]H@ (ZN[2ik, 25 (k+1)))
< Ykez |1AV — AW ||eoo(zm 20k, 2 (k+1)))

< Cgex 27P|0° = D7 czmp—2m kv on)
< C27P9 |00 — 170||1gp.

In the third inequality, we have used the local version of the estimate ||Av’ —
AW ||p, < 27%)|0° — 09|, used in the proof of Theorem 4. It follows that

|F— P, < €27 = %, (114)
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where C' depends in a continuous non-decreasing way on max{||v°(|,__, [|7°||e.. }-
For |h| <1 and j such that 27771 < |h| < 277, we then write

[ALF L, < A4F — F/|, + [|AnF7 |,
< C2799 |00 — %], + 277 [|(F7) ||,
< 0279900 = 0|, 4+ 2797 Av? — Ay,
< C27%9||v0 — 50||gp
< ClhPl[v® =g,

which proves the result for ¢ = oo and therefore for all ¢ since Bf,,OO C B,,
when ¢t > s. For n > 0 we use exactly the same argument as in Theorem 5.
C

The results of this Appendix can be applied to the L, analysis of ENO
and WENO subdivision schemes in a similar way as in Section 5. We end this
Appendix with a smoothness result in the cell averages setting. We consider
the prediction operator defined in Example 2 of Section 1. An estimation
of ||S1(u)S1(v)S1(w)|ls, can be obtained by an explicit computation for each
different stencil combinations. This leads to the same bound for ENO and
WENO interpolation:

pr(S) < sup |15y (w)Sy(v)Sy(w)]);”* = 1.2365. (115)

u,v,WELL
As a consequence of Theorem 9, the following result holds:

Theorem 13 In the case of three cell averages ENO interpolation and in
the case of three cell averages WENQO interpolation the quasilinear subdivision
operator S is Ly-convergent. Moreover, in both situations, the limit function,

belong to Bi , for all s < —% + 1~ 0.69371.

References

[1] Arandiga, F. and R. Donat (1999) A class of nonlinear multiscale de-
composition, preprint, University of Valencia, submitted to Numerical
Algorithms.

36



2]

3]

[10]

[11]

[12]

Amat, S., F. Arandiga, A. Cohen and R. Donat (1999) Tensor prod-
uct multiresolution analysis with error control, preprint, University of
Valencia, to appear in Signal Processing.

Amat, S., F. Arandiga, A. Cohen, R. Donat, G. Garcia, and M. Von
Oehsen (1999) Data compression with ENO Schemes: a case study ,
preprint, University of Valencia, to appear in Appl. Comp. Harm. Anal.

Candes, E. and D. Donoho (1999), Ridgelets: a key to higher-
dimenstonal intermittency ¢, Phil. Trans. Roy. Soc. to appear.

Candes, E. and D. Donoho (1999), A Surprisingly Effective Nonadap-
tive Representation For Objects with FEdges, To appear in Curves and
Surfaces, L. L. Schumaker et al. (eds), Vanderbilt University Press,
Nashville, TN.

Cavaretta, A.S., W. Dahmen and C.A. Michelli (1991), Stationary Sub-
division, Memoirs of Amer. Math. Soc.,Volume 93.

Chan T., X.-D Liu and S. Osher (1994) Weighted essentially non-
oscillatory schemes, Journal of Comput. Phys., 115:200-212.

Baraniuk, R., R.L. Claypoole, G. Davis, G and W. Sweldens (1997),
Nonlinear Wavelet Transforms for Image Coding, Proc. 31st Asilomar
Conference.

Baraniuk, R., R.L. Claypoole, G. Davis, G and W. Sweldens (1999),
Nonlinear Wavelet Transforms for Image Coding via Lifting scheme,
submitted to IEEE Trans. on Image Processing.

Cohen, A. (1999) Wauvelets in numerical analysis, Handbook of Nu-
merical Analysis, vol. VII, P.G. Ciarlet and J.L. Lions, eds., Elsevier,
Amsterdam.

Cohen, A. and R. Ryan(1995) Wavelets and multiscale signal processing,
Chapman and Hall, London.

Cohen, A.; W. Dahmen, I. Daubechies and R. DeVore (1999) Tree ap-
prozimation and optimal encoding, IGPM report 174, RWTH-Aachen.

37



[13] Daubechies, I. (1992) Ten lectures on wavelets, STAM, Philadelphia.

[14] Daubechies, I. and J. Lagarias (1991)Two Scale differences Equa-
tions: I Ezistence and global regularity of solutions, SIAM J. Math.
Anal.22,1388-1410.

[15] Daubechies, I. and J. Lagarias, (1992) Two Scale differences Equations
II. Local Regularity, infinite products of matrices and fractals, SIAM J.
Math. Anal.23,1031-1079.

[16] Deslaurier, G. and S. Dubuc (1989) Symmetric Iterative Interpolation
Scheme, Constr. Approx. 5:49-68.

[17] Donoho, D. (1993), Unconditional Bases are Optimal Bases for Data
Compression and for Statistical Estimation , Applied and Computa-
tional Harmonical Analysis,1, 100-115.

[18] Donoho, D. (1993), Smooth wavelet decompositions with blocky coeffi-
cients kernels, Recent Advances in Wavelet Analysis, L.L. Schumaker
and G. Webb (eds), Boston: Academic Press, 259-308.

[19] Dyn, N.(1992) Subdivision Schemes in computer aided geometric design,
Advances in Numerical Analysis II., Subdivision algorithms and radial
functions, W.A. Light (ed.), Oxford University Press,36-104.

[20] Dyn, N., J. Gregory, and D. Levin (1991) Analysis of uniform binary
subdivision schemes for curve design, Constr. Approx. 7:127-147.

[21] Falzon, F. and S. Mallat(1998) Analysis of low bit rate image transform
coding, IEEE Trans.Signal Processing,4.

[22] Han, B. and R. Jia (1998), Multivariate refinement equations and con-
vergence of subdivision schemes STAM J. Math. Anal.29, 1177-1199.

[23] Harten, A.(1993) Discrete multiresolution analysis and generalized
wavelets, Journal of Applied Numerical Mathematics,12:153-193.

[24] Harten, A., B. Enquist, S. Osher and S. Chakravarthy (1987). Uniformly
high order accurate essentially non-oscillatory schemes III, Journal of
Comput. Phys., 71:231-303.

38



[25] Jiang G. and C.-W. Shu (1996) Efficient implementation of weighted
ENO schemes, Journal of Comput. Phys., 126:202-228.

[26] Mallat, S. (1998). A wavelet tour of signal processing, Academic Press,
New York.

39



