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Abstract— Today, the state-of-the art image coding al-

gorithms are transform-based coders. A good example

is Taubman’s EBCOT wavelet coding algorithm, which

is the basis of the JPEG2000 standard which provides

excellent results in terms of rate-distortion performance.

However, there is a significant research activity of ‘geomet-

ric’ multiscale sparse representation and coding methods,

i.e., methods that try to exploit the geometry of the edge

singularities in an image (if exist).

In this work, we depart from transform-based methods

and, in some sense, from the multi-scale framework and

choose to draw on recent developments in the theory

of approximation with adaptive multivariate piecewise

polynomials. We give details of a surprisingly simple image

coding algorithm and show examples where our algorithm

of Geometric Piecewise Polynomials (GPP) outperforms the

state-of-the-art wavelet coding in the low bit-rate range.

Employing piecewise polynomials for image coding is not a

new idea, in the past such algorithms were known as Second

generation coding. To the best of our knowledge, those

methods did not report competitive compression results.

In this work we will highlight some new key ideas that

allowed us to improve upon these results.
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I. INTRODUCTION

From the mid 80s, there have been many attempts

to design ‘Second Generation’ image coding techniques

that exploit the geometry of edge singularities of an

image. The reader may consult the survey [21]. To this

day, almost all of the proposed ‘Second Generation’ al-

gorithms are not competitive with state of the art (dyadic)

wavelet coding [22], [23], [27]. In one of the outstanding

’Second Generation’ methods [14], Froment and Mallat

constructed multi-scale wavelet-like edge detectors and

showed how to reconstruct a function from the responses

of a sparse collection of these detectors. They reported

good coding results at low bit-rates. There are coding

algorithms that are geometric enhancements of exist-

ing wavelet transformed-based methods, where wavelet

coefficients are coded using geometric context mod-

elling [28]. In a recent work [23], the authors enhance

classical wavelet coding by detecting and coding the

strong edges separately and then using wavelets to code

a residual image. Candès and Donoho [1] constructed

Curvelets, a bivariate transform designed to capture local

multi-scale directional information. Do and Vetterli’s

construction of Contourlets [12], is similar but is a purely

discrete construction. Cohen and Matei [4] also showed a

discrete construction of an edge-adapted transform that is

closely related to nonlinear Lifting [3]. All of these con-
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structions are redundant, i.e., the output of the discrete

transform implementations produces more coefficients

than the original input data. The possibility to use these

new transforms to outperform wavelet coding is still an

on-going research. LePennec and Mallat [18] recently

applied their ‘Bandelets’ algorithm to image coding,

where a warped-wavelet transform is computed to align

with the geometric flow in the image and the edge

singularities are coded using one-dimensional wavelet-

type approximations. Previous work that we find to be

the closest to ours are the papers by Shukla, Dragotti, Do

and Vetterli [24] (see also [20]), Dekel and Leviatan [6],

and Demaret, Dyn and Iske [8]. The authors in [24] show

how to encode a very geometrically adaptive piecewise

polynomial approximation on the one hand while using

a nested dyadic square data-structure to avoid significant

over-head in bit allocation of the ‘side information’

required to encode such highly adaptive data.

Our approach departs from the framework of harmonic

analysis, which is the theoretical basis for transform

based methods and even from the more general frame-

work of multi-scale geometric processing, and is based

on the Geometric Piecewise Polynomials(GPP) method

introduced in [17]. Our prototype approximation scheme

is the conceptually simpler piecewise polynomial ap-

proximation. For f ∈ Lp([0, 1]d), the degree of piece-

wise polynomials approximation is

σn,r(f)p = inf
S∈

∑
n,r

‖f − S‖Lp([0,1]d), (1)

where
∑

n,r is the collection

n∑

k=1

1∆k
Pk, (2)

and ∆k are simplices (segments for d = 1, triangles for

d = 2, etc.) with disjoint interiors, such that
⋃n

k=1 ∆k =

[0, 1]d, and Pk, 1 ≤ k ≤ n, are polynomials of total

degree r − 1. There are computational variants of the

prototype where the domains are polytopes and may

satisfy an inclusion relation (see e.g. [6]).

It is known that in the univariate case, wavelets

and piecewise polynomials have the same (theoretical)

performance since their corresponding approximation

spaces are identical [11]. However, in the multivariate

case this is no longer true and at least theoretically,

piecewise polynomials outperform wavelets whenever

the approximated function has some ‘structure’, i.e.,

edge singularities that are smooth in some weak sense

[7], [16]. Indeed, in any dimension d, an n-term sum

of compactly supported spline-wavelets can be thought

of as a special case of (2), where the simplices {∆k}
triangulate the ‘dyadic ring’ structure of the supports of

the spline-wavelets in the sum (see [7] for details in

the bivariate case. The case of arbitrary dimension is

similar).

We now highlight three key concepts of our GPP algo-

rithm. First, we model an image as a piecewise smooth

bivariate function with curve singularities of weak type

smoothness. We apply a segmentation algorithm derived

from the K̃-functional of [7].We then approximate the

detected edge singularities, where the distortion is re-

solved with bands (Section III-D). Finally, we address

the inefficiency of polynomial approximation of smooth

functions over nonconvex domains (Section III-B).

II. OUTLINE OF THE GPP ALGORITHM

The steps in our coding algorithm are derived from the

theory detailed in [7]. Given an image we first apply the

segmentation algorithm of Section III-A that captures the

significant edges in the images. Given a target bit-rate,

the edges are then pruned using the K̃-functional model.

The pruned edges are then encoded using the lossy adap-

tive algorithm of Section III-C, which is closely related

to adaptive polygonal curve approximation. To better fit
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the K̃-functional model, we apply further partitioning of

the segmentation domains. This step, detailed in Section

III-B, is almost a ‘pure-geometric’ domain recursive

algorithm, that the decoder can apply without requiring

too much information from the encoder. In Section III-D

we describe how the segmentation curves are allocated

some width, so that they become ‘bands’. In Section III-

E we give details of the last step of the algorithm where

polynomial approximation, quantization and coding is

performed over each of the remaining subdomains. Fi-

nally, in Section III-G we provide experimental results

and compare performance of the GPP algorithm with

Kakadu implementation [26] of the EBCOT algorithm

[25].

III. GPP ALGORITHM

A. Segmentation into subdomains of smoothness

The first step of the GPP algorithm is a segmentation

procedure whose goal is to approximate the solution of

the K̃-functional introduced in [7].

For the sake of completeness we recall a simple form

of the K̃-functional. Let f ∈ L2([0, 1]2) and t > 0.

Take any segmentation Λ of [0, 1]2, as in Figure 1(b),

defined by continuous curves bj : [0, 1] → [0, 1]2, 1 ≤
j ≤ nE(Λ), each of finite length, denoted by len(bj).

The curves may intersect only at endpoints and a subset

of the curves should compose the boundary of [0, 1]2.

Thus, the curves partition [0, 1]2 into open domains, Ωk

, 1 ≤ k ≤ nF (Λ).

We now attach to each curve bj a weight tj and we

say that the partition Λ is in Λ(t) if
∑nE(Λ)

j=1 t−1
j < t−1.

The K̃-functional of order r ∈ N is defined as

K̃r(f, t)2 := inf
Λ∈Λ(t)

{
nE(Λ)∑

j=1

len(bj)K2(bj , t
2
j )∞,1

+
nF (Λ)∑

k=1

Kr(f, Ωk)22}1/2 , (3)

where

Kr(b, t)∞,1 = inf
g∈C2[0,1]

‖b− g‖∞ + t‖g′′‖L1 ,

measures the (weak-type) smoothness of curves, and

Kr(f, Ω)2 = inf
g∈Hr(Ω)

‖f − g‖L2(Ω) + diam(Ω)r|g|Hr(Ω) ,

(4)

measures the (weak-type) smoothness of a surface piece,

where Hr(Ω) is the Sobolev space equipped with the

seminorm

|g|Hr(Ω) =
∑

|α|=r

‖Dαg‖L2(Ω) (5)

For a curve b : [0, 1] → [0, 1]2, the quantity

K2(bj , ·)∞,1 is small if the curve is smooth, for example,

if the L1-norm of its second derivative is small. It is

also small if the curve is only piecewise smooth, with

a ‘small’ number of pieces and it is identically zero

for a line segment. The quantity Kr(f, Ω)2 ([10]) is

small if f is smooth in Ω and is identically zero if

the function is a bivariate polynomial of degree < r in

Ω. The reader should have in mind the case where for

a sufficiently small t, the curves bj , of a near-optimal

partition Λ ∈ Λ(t), align on the curve singularities of the

function, and where over the segmentation domains, Ωk,

the function is smooth. The novelty of the K̃-functional

is the way it combines the smoothness gauges of the

curve and surface to give a geometric generalization of

the classical K-functional. More importantly, in [7] it is

shown that, roughly speaking, the quantity K̃r(f, n−1)2

is equivalent to the approximation error σn,r(f)2 defined

in (1). Lastly, it is also important to note the close

relationship between the K̃-functional and the well-

known Mumford-Shah functional [7].

Therefore, since a segmentation which is a near-

minimizer of (3), leads to a construction of a good

piecewise polynomial approximation, we may conclude

that designing an algorithm that tries to find such a
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segmentation is the key to good performance of our

coding algorithm. This task is still an on-going research

project, however, for the purpose of low-bit rate coding,

we found out that the following simple and heuristic

algorithm works sufficiently well. First we apply the well

known Gaussian zero-crossing segmentation algorithm,

also known as the ‘Laplacian-Gaussian‘ (LoG), with a

relatively small width, εG, of the Gaussian kernel (see

e.g. [15], Section 9.4). The idea here is to pick out

the edge singularities of the image that are not noise

or high-frequency texture, which indeed, the Gaussian

kernel, smoothes out sufficiently well. One of the main

properties of the zero-crossing algorithm is connectivity,

i.e., the segmentation pixels combine to form contin-

uous segmentation curves. Observe, that in correlation

with the K̃-functional the LoG segmentation produces

smooth segmentation curves that approximate wiggly

edge singularities. In Figure 1(b), we see the segmen-

tation produced at this initial step.

With the minimization of the K̃-functional (3) in

mind, we now prune the collection of segmentation

curves. First we prune away the curves where the norm

of the image gradient is below some threshold, since

these are curves that do not represent significant edges

of the image. Then, we sort the remaining curves based

on their smoothness, using the following formula

len (b) ‖b′′‖1 ,

which is a simplification of a ‘curve smoothness’ term

appearing in (3). Thus, we prune away the curves

whose relative higher curvature impact the K̃-functional

the most and equivalently, whose encoding requires a

higher bit allocation budget. In Figure 1(b) we see the

initial segmentation of the Cameraman image and in

Figure 1(c) the pruned segmentation.

Obviously, the amount of pruning relates to the target

bit-rate we wish to achieve in our coding algorithm.

The pruned segmentation can serve as a good basis for

coding of geometric images, for example, graphic-art

images that are simple piecewise constant with spline

edge singularities. Until now we have not fully taken

into account the ‘surface smoothness’ over the domain.

Further partitioning needs to take place as explained in

the next section.

B. Convex driven binary tree partitioning of the segmen-

tation domains

The purpose of this step is to improve the segmenta-

tion of step III-A by further partitioning of the domains

into ‘almost convex’ subdomains. In principal, this step

complements stage III-A that did not fully take into

account the functional (3).

We now review the basics of the underlying theory

that motivates this step. It is known from the theory that

polynomial approximation over multivariate domains is

determined by both the smoothness of the function and

domain’s geometry. Evidently, it is difficult to approxi-

mate a non-smooth function by low-order polynomials,

but it is also difficult to approximate a smooth function

over highly non-convex domain.

Let Πr−1 = Πr−1(Rd) denote the multivariate poly-

nomials of total degree r−1 (order r). Given a bounded

domain Ω ⊂ Rd, we define the degree of approximation

by piecewise polynomials of a function f ∈ L2(Ω)

Er−1(f, Ω)2 = inf
P∈Πr−1

‖f − P‖L2(Ω). (6)

As the next result shows, polynomial approximation

over convex domains is well characterized by the clas-

sical K-functional (4).

Theorem 3.1: [5] For all convex domains Ω ∈ Rd and

functions f ∈ L2(Ω),

Kr(f, Ω)2 ≤ Er−1(f, Ω)2 ≤ C(r, d)Kr(f, Ω)2 (7)
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(a) Cameraman (b) Overlay of the image gradient and the zero-crossing (c) Pruned segmentation

Fig. 1. Pruning of a small width Gaussian zero-crossing of the Cameraman image

Whenever the domain is not convex, (7) becomes

Kr(f, Ω)2 ≤ Er−1(f, Ω)2 ≤ C(r, d, p, Ω)Kr(f, Ω)2 ,

(8)

where the constant on the right hand side inequality

further depends on the geometry of the domain. Indeed,

in Figure 2(a) we see a function that is very smooth in an

open ring-shaped domain. However, for this domain the

right hand side constant in (8) is large. Indeed, as we see

in Figure 2(b), a quadratic polynomial approximation of

this function is of poor quality. When we partition the

domain into two ‘more-convex’ domains, the approxi-

mation significantly improves (Figure 2(c)). This is well

understood, since polynomials are smooth function over

the entire plane.

Thus, equipped with the understanding that ‘convex

is good’ when the approximation tool at hand are the

classical polynomials, we apply a convex driven binary

partitioning algorithm. The algorithm recursively subdi-

vides the segmentation domains we get from step III-A,

until they are partitioned into ‘more convex’ subdomains

with a satisfactory polynomial approximation.

Since the binary partitions need to be encoded, it

is advantageous that the partitioning algorithm be pure

geometric. Then, once the decoder receives a ‘subdivide’

bit from the encoder, for a given domain, it uses the

decoded approximated segmentation, and applies a pure-

geometric subdivision algorithm without any further

information from the encoder. This is closely related to

the dyadic square partitioning, that is widely used in

many works. For example in [24] once the decoder is

‘informed’ by the encoder that a dyadic square must

be subdivided, it immediately knows that it must be

subdivided into four smaller dyadic squares.

Here is the algorithm description. Given a planar

domain Ω, we denote its convex hull as H and the

complement to the convex hull as C = H − Ω. Notice

that the subset C contains essentially a number of

disjoint connected components, which we denote as Ci:

C =
⋃ Ci. For each connected component let

µi = max
P1,P2∈∂Ci

ρ(P1, P2)
‖P1 − P2‖ , where

ρ(P1, P2) = inf
γ∈C([0,1]→Ω)

{length(γ); γ(0) = P1, γ(1) = P2},
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(a) (b) (c)

Fig. 2. (a) A smooth function over a non-convex domain, (b) best L2 quadratic polynomial approximant (PSNR=21.5dB), (c) approximation

significantly improves after partitioning (PSNR=33dB)

and let P 1
i , P 2

i ∈ ∂Ci be the two points where this

maximum is attained.

The algorithm consists of two steps. First, select the

component Ci having the largest value µi. Secondly,

subdivide the domain Ω by a ray cast from a point Pi

at the boundary ∂Ci such that: ρ(Pi, P
1
i ) = ρ(Pi, P

2
i ).

For each of the two new subdomains, we compute the

polynomial approximation (explained in Section III-C)

and proceed recursively, if the approximation error is

larger than the target error. Notice, that the encoding of

this step takes two bits. In practise we observed that it is

worth to select in the first stage three worst components

Ci. Then we chose such a component that minimizes the

approximation error the most. It takes 4 bits to encode

this version.

C. Approximation and encoding of the segmentation

Once we have computed the pruned segmentation of

step III-A, we need to efficiently encode it. Recall that

the second generation methods [21] did not fully succeed

in solving this problem and therefore were not able

to compete with the more conventional transform-based

image compression algorithms.

First, we approximate the pruned segmentation by

downsampling it. We fix a parameter εC ∈ N as the

maximum error of the approximation in pixel-distance.

Choosing a small εC gives a very good approximation

to the segmentation curves, but leads to a higher bit

budget. We downsample the pruned segmentation at the

rate εC and generate its lower resolution, as shown

at Figure 4(a). Observe that from this downsampled

segmentation, we can reconstruct the original ‘jaggy’

segmentation (see Figure 4(b)) with a maximal error

of εC . After the downsampled segmentation is decoded,

it is upsampled back to the original resolution of the

image and smoothed using cubic spline least squares

approximation (see Figure 4(c)).

The downsampled segmentation polylines are encoded

using a high order chain coding algorithm [15],[19]

where each contour is represented as a starting point

and a sequence of travel directions. In our algorithm,

we encode the location of the next point in the poly-
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line, by encoding one of eight possible directions from

the previous point (see [9] for a simpler lossy ver-

sion). We use arithmetic coding combined with context

modeling, where each context is determined by the

previous four neighbors or equivalently, previous three

travel directions. In some sense, this is equivalent to

predicting the next point by extrapolating a cubic curve

segment that interpolates the previous four points. Our

algorithm achieves, on average, a bit-rate of 0.1-0.3

bit/contour point (compare with [2] where a bit-rate of

1.3 bit/contour point was obtained).

D. Creating the edge bands

The main goal of bands is to deal with the distortion

introduced by the segmentation approximation (down-

sampling). The concept of bands also appears in [29]

and [18], where the authors justify the bands by claiming

that the edges in real-life images are ”...most often ill-

defined...”. Indeed, we fix this by allocating some width

to the edge singularities computed in step III-A thereby

creating edge bands. First, the band’s width size in

pixel distance, εB ∈ N, is computed from two previous

parameters: εG, the Gaussian window width of step III-

A and εC , the curve approximation error of step III-C. If

these two parameters are small, then we allocate small

width to the bands and visa-versa. An example of such

bands can be seen in Figure 5(a).

We then mark each pixel whose distance is εB from a

reconstructed segmentation pixel as a band pixel. In our

algorithm, the values at band pixels are never encoded,

since they are in the vicinity of an edge singularity,

whose exact location is unknown to the decoder. Instead,

the decoder reconstructs the values of band pixels by

interpolating the decoded pixel values of the inner sub-

domains, where we predict the function to be smoother.

E. Polynomial approximation and quantization in the

subdomains of smoothness

In each subdomain Ω created at stage III-B we com-

pute the low-order polynomial approximation PΩ of

the target function using the least-squares technique. To

ensure stability of the quantization of the polynomial’s

coefficients, we first compute a representation of PΩ in

an orthonormal basis of Πr−1

⋂
L2(Ω). For example,

in the case of bivariate linear polynomials, this simply

amounts to transforming the standard polynomial basis

{1, x1, x2} using a Graham-Schmidt process to an

orthonormal basis of Π1

⋂
L2(Ω). The polynomial PΩ

is subsequently quantized and encoded in this stable

basis. Since at the time of decoding the decoder has full

knowledge of the geometry of Ω, the Graham-Schmidt

process is carried out exactly as it is proceeded during

the encoding. At the decoder, the quantized coefficients

of the polynomial are decoded and the polynomial is

reconstructed. This quantized version of PΩ is the final

polynomial representation.

F. Illustration of the algorithm

We have chosen Lena image to illustrate the steps of

the GPP algorithm in Figures 3, 4, 5, and 6.

G. Experimental results

We applied our GPP algorithm to established test

images at low-bit rates and compared the performance of

GPP to the best wavelet image coding algorithm known

to us: Taubman’s Kakadu implementation [26] of the

JPEG2000 standard [27]. It should be noted that not

all JPEG2000 compression algorithms provide the tame

coding performance, and therefore one should take care

and reference the correct JPEG2000 implementation.

We have observed that at the low-bit rates, where we



JOURNAL OF LATEX CLASS FILES, VOL. 1111, NO. 222, NOVEMBER 2006 8

(a) Segmentation of ZeroCross of L o G (b) Pruned segmentation

Fig. 3. (a) Pruning of the initial segmentation of Lena, notice the sorting out of the jagged edges

(a) Downscale before encoding (b) Upscale after decoding (c) Smoothing the decoded segmentation

Fig. 4. (a) 1-D approximation employs downscaling, before lossless encoding (b) shows the ’jaggy’ reconstruction (upscaling) after decoding,

(c) smoothing prediction is subsequently applied to produce smooth curves out of the ‘jaggy’ reconstruction

made our comparisons, the SPIHT algorithm [22] attains

similar results to Kakadu algorithm.

The GPP algorithm efficiently encodes artificial geo-

metric images (Figure 7). In addition, at very low bit-

rate, the GPP algorithm encodes images with relatively

good visual quality, where the main features are pre-

served as can be seen in Figures 9 and 8. Roughly

speaking, the performance of the GPP coding algorithm

depends on the amount of ’geometric structure’ the

image has. For example, our experience is that the

Cameraman image is more geometric than Lena and thus

can be better encoded using the GPP algorithm.
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(a) Bands (b) Initial domains

Fig. 5. (a) Adding bands as to the decoded lossy segmentation of (4(c)), (b) the initial domains of smoothness

Fig. 6. (a) The final partition obtained with the convex-based dyadic partitioning, (b) its corresponding polynomial approximation, (c) the

linear interpolation at the bands
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