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1 Introduction

The first work on a subdivision scheme was by de Rahm [20]. He showed that the
scheme he presented produces limit functions with a first derivative everywhere and
a second derivative nowhere. The pioneer work of Chaikin [5] introduced subdivision
as a practical algorithm for curve design. His algorithm served as a starting point
for generalizations into subdivision algorithms generating any spline functions. The
importance of subdivision to applications in computer aided geometric design became
clear with the generalizations of the tensor product spline rules to control nets of ar-
bitrary topology. This important step has been introduced in two papers by Doo and
Sabin [27] and by Catmull and Clark [3]. The surfaces generated by their subdivision
schemes are no longer restricted to representing bivariate functions, and they can
easily represent surfaces of arbitrary topology.

In recent years the subject of subdivision gained popularity due to many new ap-
plications, such as 3D computer graphics, and due to the close relation of subdivision
analysis to wavelets analysis. Subdivision algorithms are ideally suited for computer
applications; they are simple to apprehend, easy to implement, highly flexible and
very attractive to users and to researchers. In free form surface design applications,
such as in the 3D animation industry, subdivision methods are already in extensive
use, and the next venture is to introduce these methods to the more conservative,
and more demanding world of geometric modeling in the industry.

Important steps in subdivision analysis has been made in the last two decades,
and the subject expanded into new directions due to various generalizations and ap-
plications. This review does not claim to cover all the knowledge about subdivision



schemes, their analysis and their application. It is rather a personal view of the au-
thors on the subject. For example, the convergence analysis is not presented in its
most generality and is restricted to uniform convergence which is relevant to geomet-
ric modeling. On the other hand, the review deals with the analysis and applications
of non-stationary subdivision scheme, which the authors view as important for future
developments. While most of the review deals with convergence, regularity and ap-
proximation order, it also relates the results to practical issues such as attaining the
optimal approximation and computing limit values.

The presentation starts with the basic notions of non-stationary subdivision, def-
initions of limit functions and basic limit functions and the refinement relations they
satisfy. Different forms of representation of subdivision schemes and the basic con-
volution property of subdivision schemes are also presented in Section 2. These are
later used throughout the review for presenting and proving the main results. Next we
present a gallery of examples of different types of subdivision schemes, interpolatory
and non-interpolatory, linear and non-linear, stationary and non-stationary, matrix
subdivision and Hermite-type subdivision and bivariate subdivision on regular and
non-regular nets. In the same section we overview some extensions of subdivision
schemes which are not studied in this review. The material in sections §2 and §3
is intended to provide a broad map of the subdivision area for tourists and for new
potential users.

In §4, the analysis of convergence of a univariate and bivariate subdivision pro-
cesses and the smoothness of the limit functions are presented via the related differ-
ence schemes for stationary schemes. It is presented also for non-stationary schemes,
relating the results to the analysis of stationary subdivision and using smoothing fac-
tors and convolutions as main tools. The central results are presented some with full
proofs and some with only sketches of proofs. The special analysis of convergence
and smoothness at extraordinary points, for subdivision schemes for nets of general
topology, is reviewed in §6. In §7 we discuss two practical issues in the practical
application of subdivision schemes. One is the computation of exact limit values of
the function (surface) and the limit derivatives at diadic points. The other is the
approximation power of subdivision and how to attain the theoretical approximation
power.

2 Basic notions

This review presents subdivision schemes mainly as a tool for geometric modeling,
starting from the general point of view of non-stationary schemes.

2.1 Non-stationary schemes

A subdivision scheme is defined as a set of refinement rules relative to a set of nested
meshes of isolated points (nets),

{Nk : k‘GZ+}, Ny C Niy1 N, € R° .



Each refinement rule maps real values defined on a level k net, Nj, to real values
defined on a refined net Nj,;. The subdivision scheme is the repeated refinement of
initial data defined on Ny, by the set of refinement rules.

Let us first consider the regular grid case, namely the net Ny = Z° for s € Z,\0
and its binary refinements, namely the refined nets Ny = 27%Z° k € Z,\0. Let £F
be the values attached to the net N, = 27*Z°,

ff = {fk.a ez} (2.1)

with f* attached to 2 *a.
The refinement rule at refinement level k is of the form

A =3"dk ufh aen, (2.2)
BeLs

which we write formally as
A — RfF (2.3)

The set of coefficients a* = {a¥ : o € Z*} determines the refinement rule at level &
and is termed the &’th level mask. Let o(a*) = {y | a¥ # 0} be the support of the
mask a¥. Here we restrict the discussion to the case that the origin is in the convex
hull of o(a*), and that o(a*) are finite sets, for k € Z,. A more general form of
refinement, corresponding to a dilation matrix M, is

> ab sl (2.4)

k+1
fall =
pezs

where M is an s X s matrix of integers with |det(M)| > 1 (see e.g. [13], [54]). In
this case the refined nets are M *Z*, k € Z,. We restrict our discussion to binary
refinements corresponding to M = 21, with [ the s x s identity matrix, namely to
(2.2).

If the masks {a*} are independent of the refinement level, namely if a* = a, k €
Z ., the subdivision scheme is termed stationary, and is denoted by S,. In the non-
stationary case, the subdivision scheme is determined by {a* : k € Z.}, and is
denoted as a collection of refinement rules { R, }, or by the shortened notation Syury.

2.2 Notions of convergence

A continuous function f € C(R®) is termed the limit function of the subdivision
scheme Sp,ey, from the initial data £°, and is denoted by Sgk}fo, if

lim max |f¥— f(27%a)| =0, (2.5)

k—o0 a€ZSNK

where f* is defined recursively by (2.2), and K is any compact set in R®.



This is equivalent [4] to f being the uniform limit on compact sets of R® of the
sequence {Fy : k € Z,} of s-linear spline functions interpolating the data at each
refinement level, namely

Fk(2_k&) = fk

a Fk‘Z—k(a-l—[O,l}S) en, a€l’, (2.6)

where 7! is the tensor product space of the spaces of linear polynomials in each of
the variables.
From this equivalence we get,

Jim [ £(2) = F(0)lloo,e = 0 - (2.7)

If we do not insist on the continuity of f in (2.5) or on the L,-norm in (2.7), we
get weaker notions of convergence, e.g. L,-convergence, by requiring the existence of
f € L,(R®) satisfing limy_,o || f(t) — Fi(t)||, = 0 [97],[57]. The case p = 2 is important
in the theory of wavelets [14]. In this paper we consider mainly the notion of uniform
convergent, corresponding to (2.7), which is relevant to geometric modeling. We also
mention here the weakest notion of convergence [22], termed ”weak convergence”
or "distributional convergence”. A subdivision scheme Sg,x), generating the values
¥ = Raf*1 for k € Z, k> 0, converges weakly to an integrable function f, if for
any g € C§° (infinitely smooth and of compact support),

lim 2+ Y g2 4a) 8 = [ f@)g(ods

k—o0
a€Zs

Definition 2.1 A subdivision scheme is termed uniformly convergent, if for any ini-
tial data there exists a limit function in the sense of (2.7), (or equivalently, if for
any initial data there exists a continuous limit function in the sense of (2.5)) and if
the limit function is non-trivial for at least one initial data. A uniformly convergent
subdivision scheme is termed C™, or C™-convergent, if for any initial data the limit
function has continuous derivatives up to order m.

In the following we use the term convergence for uniform convergence, since this
notion of convergence is central to this review.

An important initial datais f* = § = {fJ = da0 : @ € Z°}. If Sgary is convergent,
then there exists a non-trivial limit function starting from this initial data,

By the uniformity of the refinement rules, (each refinement rule operates in the
same way at all locations) and by their linearity,

Steyf’ = Y fadgan( —a) (2.8)

Q€EZS

for any initial data f°. Thus if ¢« € C™(R?) for some m > 0, so is any limit function
generated by S,x, and the scheme is C"™.



When the initial data consists of a sequence of vectors
P’ ={P’cR? : acZ'} € ({,(Z%))*,

the limit of the subdivision, given by (2.8) with f replaced by P?, is a parametric
representation of a manifold in R?. In geometric modeling s = 1 corresponds to
curves in R? for d = 2,3 and s = 2,d = 3 to surfaces in R*. The set of refined points
P*, for k € Z, is termed ”the control points at level k.

2.3 The refinement equations

The function ¢y = Sgk}é , termed the ”basic limit function” of the subdivision
scheme Si,ky, is the first in the family of functions {¢, : ¢ € Z,}, defined by

¢ = S;°0 (2.9)

where Sy = {Rax : k > {, k € Z,} . Each function in this family is a basic limit
function of a subdivision scheme defined in terms of a subset of the masks {a*}. If
So = S{ary is convergent so is any S for £ € Z, [41] (see §4.1). Thus all the functions
{p¢ : £ €Z,} are well defined, if Sy is convergent. Moreover, by (2.9)

S =) (- — o) . (2.10)

Q€EZS

The support of ¢, can be determined by the the supports of the masks {a*}.
Recalling that o(a”*) denotes the support of the mask a*, which is a finite set of
points in Z*, then by the refinement rules (2.2) and by (2.9), the support o(¢;) of ¢,
is given by

o(pe) =) 20F1o(ak) | (2.11)

where the sum above is the Minkowski sum of sets. In the stationary case and in the
univariate case (2.11) can be further elaborated.

In the univariate case, s = 1, let [(*, u*] =< o(a*) >, be the convex hull of o(a*),
and let

= 22'“3'*15]' , Up = Z ok=i—1yd
j=k =k
Then
o(dr) C [lr, ug] - (2.12)

In the stationary case [4], (2.11) yields

o(ha) C< o(a) > . (2.13)



The functions {¢, : k € Z,} are related by a system of functional equations,
termed refinement equations. To see this, observe that (Rad), = af, o € Z*, and
by the linearity of the refinement rules,

or = abop(2-—0a), k€L, . (2.14)

(07

In the stationary case, namely when a* = a, k € Z., this system of equations reduces
to a single functional equation

$a =) ata(2—0) . (2.15)

with a = {a, : a € Z%}, and ¢, = S9.

The refinement equation (2.15) is the key to the generation of multiresolution
analysis and wavelets [14, 76]. In case the scheme S, converges, the unique com-
pactly supported solution of the refinement equation (2.15) coincides with S2°d. The
refinement equation (2.15) suggests another way to compute its unique compactly
supported solution. This method is termed the ”cascade algorithm”, see e.g. [16]. It
involves the repeated use of the operator

Tag =) aa9(2-—a).

defined on continuous compactly supported functions. The cascade algorithm:

1. Choose a continuous compactly supported function, vy, as a "good” initial
guess (e.g. H as in (2.20)).

2. iterate 1 = Tatg.
It is easy to verify that the operator T, is the adjoint of the refinement rule R,, in
the following sense; for any ¢ continuous and of compact support, [4]

Z(Raf)a¢(2 ’ _a) = Z fa(Ta’QZ})(' - a) (2'16)

[0}

Note that while the refinement rule R, is defined on sequences, the operator T, is
defined on functions. A similar operator to T,, defined on sequences is

(Taf)a =Y asfras = O Grafy . (2.17)

B Y

This operator is the adjoint of the operator R, on the space of sequences defined on
Z*. The operator T, in (2.17) is termed the "transfer operator” [14], and plays a
major role in the analysis of the solutions of refinement equations of the form (2.15)
(see e.g. [58, 53, 54, 60].



2.4 Representations of subdivision schemes

The notions introduced above regard a subdivision scheme Sp,xy = { Rt} as a set of
operators defined on sequences in /. (Z?®). Each refinement rule can be represented
as a bi-infinite matrix with each element indexed by two index vectors from Z°*,

=N "Akgfh, aen, (2.18)
BEZ®

where the bi-infinite matrix A* has elements
Al g=ab_ 5. (2.19)

Finite sections of these matrices are used in the analysis of the subdivision scheme
Stary (see §5).

One may also regard a subdivision scheme as a set of operators {R, : k € Z.}
defined on a function space [41], if one considers the functions {F}} introduced in
(2.6). The set of operators { Ry} has the property that Ry maps Fj into Fy;. More
specifically, let H be defined by

H(a) =80, H] @iy €T @ €L (2.20)
Define the operators {R;} on C(R®) as
Reg=Y H@"'-—a)) af ,5002"B), ke Ly, (2.21)

a€EZs Bezs

for any g € C(R?). Then the subdivision scheme Sy,x; is related to the set of operators
{Rg}, in several ways, e.g

(}zkg)‘2—k—lzs ::I%ak(g‘2—kzs)7
and the more significant relation

szk}fo = klilglo RyRy—1--- Rog (2.22)

where g € C'(R®) is any interpolant to f° on Z*, namely

gla)=f2, acZ.

In particular g can be

g= Y H(-—a)fy.

a€LS

Another important relation is

1Bkl = [ Ratlloc = max{ D _ lag, 55!} . (2.23)
s Bezs



where Ej is the set of extreme points of [0,1]*. The representation of subdivision
schemes in terms of sequences of operators on C(R®), facilitates the application of
standard operator-theory tools to the analysis of subdivision schemes, e.g. to deduce
convergence properties of non-stationary schemes from those of related stationary
ones [41] (see §4.1).

A representation of the refinement rule (2.2), which is a central tool in the con-
vergence and smoothness analysis of stationary schemes, is in terms of z-transforms
(Laurent series). Let the symbol of the mask a* be defined as the Laurent polynomial

a*(z) = Z ak 2 . (2.24)

Q€EZS

Here we use the multi index notation 2" = 2" --- 20 for 2 € R*, n € Z*, and
2" =z{ -2, for z € R, n € Z. Obviously, a subdivision scheme S,y is identified
with the set of its symbols {a*(2)}. In our notations we exchange freely between the
mask and its symbol, e.g. @qr(,); denotes the basic limit function of Sygr(,) = Stary-

Let the z-transform of the sequence f = {f, : a € Z*} be denoted by L(f; 2),

namely
L(f;2) = ) fa2™.

QEZS

Then the refinement rule (2.2) can be written in the form
L(fF*h: 2) = a*(2) L(f%; 22) | (2.25)

with the formal meaning of the equality above being that corresponding powers of z
on both sides of the equality have equal coefficients. Iterating the relation (2.25), we
obtain

Y4

L4 2) = a1 (2)ab 2 (2%) - (22 (R ) (2.26)

Thus, the (-iterated symbol from level k to level k£ + ¢ is

V4
a"(z) = 3" albsflze = TTab (27 ) . (2.27)
j=1

a€Zs

In the stationary case we denote the (-iterated symbol by al’

l
a(z) = [ a(z*") (2.28)
j=1
2.5 The convolution property.

Here we present an important property of schemes, which is easily expressed in terms
of the Laurent polynomial representation. This property is presented in three different
forms, depending on the notion of convergence used.



1. Let Sgary and Sppey be two (uniformly) convergent schemes with corresponding
basic limit functions ¢a¢y and ¢gpry. Then, the scheme Sicry defined by the
symbols

(2) = 27%a"(2)0F(2) , (2.29)
is also convergent and its basic limit function is

¢{ck} = ¢{ak} * ¢{bk} . (230)
Here the symbol * stands for the s-dimensional convolution [4], [41].

The convolution property which is repeatedly used in this paper for s > 1, is of a
different form:

2. Let Sgpxy be a convergent s-variate subdivision scheme, and let Sya¢y be a uni-
variate scheme, which is convergent in the sense of (2.5) to integrable limit
functions. Then the symbols

F(2) = 27 (M) (2) (2.31)

with A € Z*, define a convergent scheme Sy.xy. Morover
¢{ck}($) = ¢{ak} *)\ ¢{bk}(l‘) = / ¢{ak}(l‘ - )\t)(]s{bk}(t)dt . (232)
R

The convolution property is also valid in case of weak convergence of S,. This property
is used only for one example in the paper.

3. Let Sgpry be an s-variate subdivision scheme convergent in the sense of (2.5),
with ¢pry continuous in its support, and let Syary be a weakly convergent s-
variate scheme, with ¢,y continuous in its support. Then the scheme Syux,
defined by the symbols in (2.29) is convergent, and ¢« is given by (2.30).

Here we indicate how to verify the convolution property 2 ((2.31), (2.32)). The
verification of the convolution property in its other two forms is based on the same
reasoning. Observe that for f¥ = Ri-1 - - - Ryod, we have L(f¥;z) = al®(2), and
that in polynomial multiplication the coefficients are computed by convolutions of
the coefficients of the factors. Thus, the relations (2.31) and (2.27) yield

C[O,l}(z) — 27éa[0,£](z)\)b[0,é}(z) ,
or equivalently
L(g'z) = 2 'L(f; 2") L(h"; 2) (2.33)

with g/ = Re-1 - - - Reod, and hf = Ry—1 - - - Rpod.

Now, (2.32) can be concluded, by equating coefficients of equal powers of z on
both sides of (2.33), taking into account the convergence of {f*},c7, and of {h*};c7,
to the compactly supported limit functions ¢gary, and @,k respectively.

10



3 The variety of subdivision schemes

Subdivision schemes have been first known as a tool for generating spline functions
[5, 91, 11]. The renewed interest in this subject in geometric modeling has evolved
as subdivision processes were extended to general topologies [3, 27]. In recent years
interesting applications emerged, such as wavelets theory, and some very challenging
theoretical issues arose. In the following we overview the major different types of
subdivision schemes, most of them relevant to geometric modeling.

e B-splines and Box-splines schemes.

e The up-function.

e Exponential Splines and Box-splines schemes.

e Interpolatory schemes.

e Shape preserving schemes.

e General matrix schemes.

e Hermite-type and moment interpolatory schemes.
e Tensor product schemes.

e Different topologies for surface subdivision.

While assessing the various types we incorporate the notions of local support
and support size, smoothness and approximation order. These issues will be further
developed and investigated in the next sections. Here we take the liberty of using
these properties in a heuristic manner.

3.1 Elementary schemes and their convolutions

The simplest elementary univariate uniform stationary scheme is the scheme with the
symbol

() =a(z)=1+2. (3.1)
The corresponding basic limit function is the characteristic function of [0, 1],
P14z = Bo(*) = x[0,1] - (3.2)
By the convolution property 1,
Pa-m(14mymt1 = Bo(+) * By(+) * ... ¥ Bo(+) = By (") - (3.3)

Thus, the scheme with symbol a(z) = 27™(1 4+ 2z)™*! has as a basic limit function
the uniform mth-degree B-spline function with integer knots, supported in [0, m + 1],

11



original iteration #1

iteration #2 iteration #3

Figure 1: The Chaikin algorithm

which is in C™ }(R). As shown in §4.2.4, the symbol of a C™ univariate uniform
stationary binary scheme, under an additional mild condition, must contain the factor
(14 2)™*L. The earliest example of a spline subdivision is the Chaikin’s algorithm [5]
1 1
éﬁi—i_l = Zfzk + Z z']fl»l ) féﬂz—i-}——ll = Zfzk +Z z']fl»l ) (34)
which converges to a quadratic B-spline curve Y f? By(-—i). The Chaikin’s algorithm
is also the basic example of a 'corner cutting’ algorithm, which served as a starting
point to various generalizations, e.g., in [18, 49]. The application of three iterations
on a simple control polygon (the polygonal line joining the control points) is presented
in figure 1.
Another interesting scheme which is constructed by convolutions of the elementary
scheme is defined by:

af(z) = 27" (1 + 2)F . (3.5)

The corresponding basic limit function is the Rvachev’s up-function [94, 22] which is
in C°°(R) and is supported in [0, 2] (see Example 4.18). The spaces V}, = span{¢ (2~ -
—a) : «a € L}, k € Z, with {¢,} defined as (2.9) with respect to the symbols at
(3.5) provide spectral approximation order [47].

Products of the elementary univariate factors in directions in Z° generate Box-
splines in R* as basis limit functions. Let A = {\, ..., \;} C Z*%, and define the

12



stationary scheme with the symbol
¢
a(z) =2 T +2Y) . (3.6)
7=1

This scheme is related to the box-spline with directions A [19], [12]. Convergence is
guaranteed if there is a subset of s directions {\; A\, , ..., A;, } € A such that det(\;; Ay, -
- A\i,) = 1. Furthermore, if any subset of £ — m — 1 directions span R®, then ¢, is in
c™ [19].
An important example here is the scheme generating the C? quartic three-directional
box-spline, namely, the scheme with the symbol

a(z) = 2741 + 2021 4 2OD)2(1 D)2 (3.7)

It is easy to check that the above conditions are satisfied with m = 2, and thus the
basic limit function is a box-spline in C?.

The uniform non-stationary elementary scheme is again a scheme define by sym-
bols which are linear polynomials in z, namely,

af(z) =141z . (3.8)

The parameters {ry }rcz, are free parameters which determine the convergence of the
subdivision process and the regularity of the limit function [41]. To examine these
issues we write the scheme explicitly as

sth=oF, pBti=nff, L i€l (3.9)

Starting the subdivision with initial data f° = &, the limit at a diadic point
=" d27€0,1), d; € {0,1}, is determined at level k of the subdivision. It is
easy to verify that the value of the basic limit function ¢ at such z is

o(z) = Hrgﬁl . (3.10)

=1

Let us define ¢(x) at non-diadic points by

p(x)=[]rf,., == _d27€0,1), (3.11)
i=1 i=1

and ¢(x) = 0 for all z ¢ [0,1). If we assume that the parameters {ry} satisfy
zkeZ+ |1 — 7| < oo, then all the above infinite products converge, and we find out
that ¢ is continuous at all non-diadic points. At diadic points in [0,1) ¢ is right-
continuous, hence, it is integrable. As proved in [41], ¢ is also left-continuous at all
diadic points in (0,1) if and only if r, = e " for some constant c.

Exponential B-splines. The univariate elementary non-stationary scheme de-
fined by

() =1+e¢>""2, ke, (3.12)

13



generates the exponential B-spline

Prary () = X0, (2) . (3.13)

Consequently, by the convolution property 1, the scheme generating the mth-order
exponential B-spline with exponents cy, ..., ¢, is

b (z) =2 [[(1+ e 2) (3.14)

J=1

Similarly, one can derive symbols of schemes generating exponential box-splines and
exponential up-function [41].

Generating circumscribed circle. A special example of a scheme which is
obtained by convolution of elementary schemes is given by the symbol

1 . .
H(z) = 1 1+ e z) (1 4 e~ =27kt keZ,.
a (Z) 2(1+COS(C¥k))( +Z)( +e Z)( +e Z) y Ok Qp , € Ly
(3.15)

This is a C' ”corner cutting” scheme which reproduces constants and also sin(az)
and cos(apz). If the initial control polygon is a regular n-gon and oy = 27”, then the
limit curve is the circle circumscribed in the n-gon. The tensor product of the above
scheme with any other stationary scheme generates surfaces of revolution [79]. Note
that a circle cannot be generated by a stationary scheme.

3.2 Interpolatory schemes

A class of subdivision schemes with many specific features is that of ”interpolatory
subdivision schemes” [40]. The schemes in this class generate the refined values by
retaining the values at the vertices of the current net, and defining new values at the
new vertices of the refined net.

Among the B-spline schemes, only those generating By, and B; are interpolatory
schemes, namely satisfying,

kaJTFIZfJI'ﬂa ]EZ 7kEZ+7 (316)

together with insertion rules for new points { ff#l}jeZ- The interpolatory refinement
rules on N, = 27%Z* have the form

écojrl = olf ) f']ycjrr21a = Z a§+2ﬁf§7ﬁ Y € ES\O y @€ Z° . (317)
pezs

The masks corresponding to an interpolatory subdivision scheme have the feature

ar, =0n0, €L, k€L, .
It is easy to realize that in case of a convergent scheme, all the points

2%, %, acZ®, keZ,,

14



are on the graph of the limit function. In this setting there is (uniform) convergence
if the values generated at the diadic points {f¥ : « € Z*, k € Z}, are continuous.
The basic limit functions {¢, : k € Z*} satisfy,

or(q) =0np, a€Z°, k€L, ,

thus their integer shifts {¢x(- — @) : « € Z°} , are linearly independent for any
keZ,.

The 4-point scheme. In the class of stationary interpolatory schemes one looks
for maximal smoothness and minimal support. The first attempts in this direction
were the 4-point schemes presented in [28] and [33]. The 4-point scheme is the uni-
variate scheme defined by (3.16) and the insertion rule

1
+w)ff jr1— W f+27 (3.18)

L)t (5

f2kjtll = wf]kfl + (2

for j € Z, and k € Z, where w is a shape parameter of the scheme. The symbol of
the 4-point scheme is

() = 2—12(,2 +1)2(1 + wh(2)) (3.19)
where
b(z) = =22 (2 — 1)*(2* + 1) . (3.20)

For w = 0 the limit is the piecewise linear interpolant to the data. As w increases
the limit function is less tight. The symbol contains the elementary factor (2 + 1)?
necessary for C' convergence, and the challenge in [33] was to determine the range
of values of the shape parameter w for which the scheme is C'. The particular value
w = 5 is analyzed also in [28]. In this case the symbol contains the factor (z + 1)*,
which means that the scheme reproduces cubic polynomials (see §4.2.3). Yet, the
limit function is not even C?. Tt is shown in [35] that the 4-point scheme is C'' for any
w € (0, V5 >—), and in [24] that for w = 5 the first derivative is Holder continuous for
any Holder exponent 0 < v < 1, yet the second derivative does not exist at diadic
points [33].

Deslauriers-Dubuc interpolatory schemes The 4-point scheme of [28] has
been generalized to symmetric 2n-point interpolatory schemes by Deslauriers and
Dubuc in [24]. The insertion rule for fkjfl is defined by polynomial interpolation of
degree 2n — 1 at 27%71(2j + 1) interpolating the 2n values ff ., ..., f,,. Let us
denote the resulting symbol by d(2,)(2). These schemes are stud1ed in [24] by Fourier
analysis, and their Convergenceis proved. The smoothness of Sd(zn) grows linearly
but slowly with n [14]. Generalizations to multidimensional interpolatory schemes is
presented in [34, 90].

In analogy to the up-function, it is possible to get C§° interpolatory basic functions
using the symbols of Deslauriers-Dubuc interpolatory schemes. This is achieved in
8] by defining the non-stationary subdivision symbols as a*(z) = d(a)(2).
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Non-linear, stationary, shape preserving 4-point schemes. A significant
drawback of linear interpolatory schemes is the lack of shape preservation properties.
If one is interested in both interpolation and shape preservation, then linearity has
to be given up. A beautiful example of a non-linear, stationary, shape preserving
interpolatory scheme is the following 4-point C'! convexity preserving scheme due to
Kuijt and van Damme [65], where the rule replacing (3.18) is:

fzkjta = (fk + 3+1)

s di=fEL -2+ fE (3.21)

Starting with a strictly convex initial functional data, it is shown in [65] that the limit
function is a strictly convex C* function. Kuijt and van Damme have also developed
non-linear schemes preserving monotonicity [66]. It is also possible to use the linear
4-point scheme and to generate a convex limit function from an initial strictly convex
data, by choosing w € (0,w*), where w* depends on the initial data [39].

3.3 Matrix schemes and Hermite-type schemes

While interpolatory schemes preserve the function data at the points of the previous
level, it is sometimes desirable to preserve other quantities. Two related families of
schemes of this kind are the Hermite-type schemes and the moment interpolating
schemes. We may view interpolatory schemes as schemes generating limit functions
with specified values at the integers. Hermite-type schemes generate limit functions
with specified function values and certain derivatives’ values at the integers. Moment
interpolating schemes produce limit functions with specified moments on the intervals
[i,i+1], ¢ € Z. In both cases, the data attached to the vertices of the nets is a vector
of values, and the subdivision operator is defined by a mask with matrix elements.

A univariate uniform stationary matrix subdivision scheme, operating on se-
quences of vectors in R", is defined by a set of real n x n matrix coefficients {A; : j €
Z}, with a finite number of non-zero A,’s, generating sequences of control points in
R*, v* = {vf € R* :j €Z} k>0, recursively by

=N A0k el (3.22)
JEZ

As an example of such a scheme, we consider the scheme generating the double-knot
cubic spline. The matrix mask is defined by its matrix symbol,

L [ 2+462+2% 2z+522 B ;
Alz) = 16< 5+ 22 1+6z+222>_%AiZ' (3.23)

Here there are two basic sets of initial data, namely, v** = (1,0)'d and v*° = (0,1)'4.
The two basic limit vector functions are

Savi? = (o1, 01)", STV = (69, 02)" (3.24)
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where ¢; and ¢ are the two different cubic B-splines spanning the space of cubic
splines with double knots at the integers [85].

Let us now return to the Hermite-type and moment interpolating schemes. In the
Hermite case we start with Hermite-type data, {v] = (f7, 97)'}jez where the values
{g;-)} represent derivative data. We now consider the scheme

k+1 ko k1 k) |k
Vi =y UZ:H = E :A§32jvi+j , k>0, (3.25)
or, equivalently,

k
o =N AB Wk k>0, (3.26)
J

where {Agk)} are 2 X 2 matrices, possibly depending upon the refinement level £k,
and Ag;) = 0;0l2x2. The Hermite-type scheme recursively defines values {v;€ =

(f]’?,gf)t}jez attached respectively to the diadic points {j27%};cz. We say that the
scheme is C" if there exists a function f € C"(R) such that

o = (fE. g5 = (FG2H). F G279 €T, ke L,y (3.27)

The first interesting example, presented in [77], is an extension of the interpolatory
Hermite-cubic rule. The non-zero matrices of its mask are

A('“):< p O‘2k>, A’“):<% _O‘2k>. 3.28
1 _6219 % -1 ok % ( )
This scheme with @ = 1/8 and 8 = 3/2 produces the piecewise Hermite-cubic in-
terpolant to the given initial data, and thus it is a C' scheme. We note that the
matrices depend upon k, and they are even unbounded as £k — oo. However, as
shown in [42], if we consider in this case the scheme for transforming the vector of
values uf = (gf, df]k)t, with df]k = 2’“(}2’-‘C - ffl), this scheme becomes stationary, i.e.,
with a constant matrix mask. Here, if the original scheme is C!, then both elements
of {u}} should converge to the same limit function f'.

The moment interpolation problem for m moments is defined as follows: Let
b (z) = m= gl (1 — g)m i - X[0,1] denotes the /-th Bernstein polynomial of degree

L(m—1-¢)!
m — 1 for the interval [0, 1], truncated to [0, 1]. Define

bi(x) = b'(x — j),

the translate of b that “lives” on [4, j + 1] and has L;-norm 1.
Given the local moments of a function f,

B; = (f,b;) JEZ, 0<i<m, (3.29)

the problem is to construct a “smooth” function f matching those moments. A
solution of this problem by a subdivision process is presented in [25]. Also shown
there is the close relation between the moment interpolating subdivision schemes and
the Hermite interpolatory subdivision schemes. In the sections on the analysis of
subdivision schemes, we consider only schemes with scalar masks. The analysis of

schemes with a matrix mask is not reviewed here. The interested reader may consult
[85, 7,9, 78, 43].
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3.4 Tensor product schemes and related ones

The simplest subdivision schemes on Z? are the stationary tensor product schemes,
obtained by applying one stationary univariate scheme in the z-direction and then a
second (or the same) stationary univariate scheme in the y-direction. Let us denote
the symbols of the stationary univariate schemes by z(z) and y(z) respectively, then
the symbol of the tensor product scheme S; is t(z1, z2) = x(z1)y(z2). Obviously, the
tensor product subdivision scheme inherits the convergence and smoothness prop-
erties of the univariate schemes. Tensor products of univariate spline schemes are
special cases of box-splines, using only two directions in (3.6). For example, the mask
generating the biquadratic and the bicubic B-spline functions are respectively defined
by the symbols

a(z1,2) = 27 (1 4+ 21)* (1 + 2)° . (3.30)

a(z1,29) = 2781+ 20) (1 + 2)* . (3.31)

Yet, tensor product schemes are not ideal with respect to the size of the support of
the mask per given smoothness. In the case of splines, the same smoothness may be
achieved by using more directions in (3.6), and less linear factors (see §4.3.1).

Considering the case of interpolatory schemes, the tensor product of two 4-point
schemes (3.18), has the mask t,,(z1.22) = ay(21)aw(22), with support size of 4 x 4 =
16 points. Yet, as shown in [38], a schemes of a smaller support size (12 points),
interpolatory, and with the same polynomial precision and smoothness exists. The
suggested scheme is obtained by removing all the w? terms in t,. The resulting
symbol is

Cw(z1,22) = i(l +21)2(1 + 20)% 2 P2y (1 — wlb(21) + b(22)]) 5 (3.32)

where b is given in (3.20).
The stencils (see §3.5) of the insertion rule of this truncated tensor-product scheme
are shown in Figure 2.

The scheme S, reproduces cubic polynomials for w = %, and it reduces to the
4-point scheme in one direction, when the data is constant along the other direction
[38]. An interpolatory subdivision on quadrilateral nets (see §3.5) with arbitrary

topology based on the 4-point scheme, is proposed by Kobbelt in [62].

3.5 Subdivision on nets

A control net for surfaces, consists of control points in R* with topological relations
between them. The refinement rules are defined with respect to a control net, and
generate a refined control net with new control points. The topological relations in the
refined net are determined by the type of net, while the control points are determined
by the subdivision scheme as weighted averages of topologically neighboring control
points.
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Figure 2: The two stencils of the truncated tensor-product scheme S,
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Figure 3: A net.

In this section we present subdivision schemes that are defined over nets of arbi-
trary topology in 3D space. Such nets are valuable for the task of free surface design.
The surfaces generated by subdivision schemes on such nets are no longer restricted
to representing bivariate functions, and they can represent surfaces of arbitrary topol-
ogy. We describe three types of nets - triangular, Catmull-Clark type (primal type)
and Doo-Sabin type (dual type), which are the most commonly used.

In addition to the above types of nets, there are hexagonal nets. Very few sub-
division schemes with respect to hexagonal nets are available, see e.g. [44], [46], and
they are not considered here.

3.5.1 Nets of general topology

A net N(V, E, F), as shown in figure 3. is a configuration of a finite set V' of points
in R?® called vertices, with two sets of topological relations between them E and F,
called edges and faces (A similar description of nets can be found in [64]).

An edge denotes a connection between two vertices. A face is a cyclic list of
vertices where every pair of consecutive vertices share an edge. The wvalency of a
vertex or a face is the number of edges that share that vertex or that face. While
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Figure 4: A stencil.

edges can always be represented by straight line segments, the vertices of a face are
not necessarily co-planar, therefore a face is not associated with any geometric shape
(in contrast to the faces of a polyhedron, which are planar pieces).

An edge e is called a boundary edge of N(V, E, F') if it is not shared by two faces.
A vertex v is called a boundary vertex if it belongs to a boundary edge.

We restrict our attention to nets N(V, E, F') that satisfy the following properties:

1. Every pair of vertices share at most one edge.

2. The valency of each vertex is at least 2.

3. The valency of each face is at least 3.

4. Every boundary edge belongs to exactly one face.

5. Three boundary edges cannot share a vertex.

N(V, E, F) is said to be closed if it has no boundary edges. Otherwise, N(V, E, F))
is an open net. A triangular net is a net whose faces all have valency 3. A closed
triangular net is termed regular, or a regular triangulation, if the valency of each
vertex is 6. A regular triangular net is locally topologically equivalent to a portion
of the three directional grid, namely the grid Z? with edges connecting (i,7) with
(i+1,7), (i, 1) and (i £ 1,7 £ 1), for (4,7) € Z®. A quad-mesh is a net whose
faces all have valency 4. A quad-mesh (quadrilateral net) is termed regular, if it is
topologically equivalent to Z2, namely, the valency of each vertex is 4.

The subdivision process transforms the net N(V, E, F') into a refined net N (V' E', F"),
where each new vertex in V' is associated with an element or a configuration ¢ of el-
ements from N(V, E, F). The method for calculating a new vertex v' € V' can be
described as a weighted average (with possibly negative weights) of vertices of V. The
weight given to every vertex v € V' depends only on its topological relation to c¢. The
set of weights, together with their topological location in V' relative to ¢, constitute
the stencil which is determined by the subdivision scheme. There are different stencils
for different topological configurations.

For example, suppose that a vertex v’ is associated with a face f € F' that has
valency 5. The stencil in figure 4 represents the rule: v’ is the average of the vertices of
f. The set of vertices with non-zero weights, the support of the stencil, is topologically
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Figure 5: Triangular subdivision

related to ¢, but not necessarily coincide with c as it does in the last example. Together
with the definition of V', there is a proper definition of the new edges E’ and faces
F’, and these are described later for the different types of nets.

Let S denote a subdivision operator for nets. Let Ny = N(V, E, F) be a given
initial net. A sequence of finer nets Ny = N (V*, E¥, F¥) is defined for k = 1,2,...
by

Nipi =SNg, k=0,1,.... (3.33)

Ideally, the convergence of the sequence of nets {N, : k € Z.} to a limit surface
X should be defined independently of any parametrization of the surface. In the
following definition, a surface X is considered as a closed subset of R3. We say that
X is the limit surface of the subdivision scheme (3.33) if

lim dist (V*,X) = 0. (3.34)
k—o00
where dist(X,Y") denoted the Euclidean Hausdorff distance between two closed sub-
sets X, Y C R3. In case a limit surface X exists we denote it by S*N, = X.
In practice, however, the convergence is studied with respect to appropriate local
parametrizations of the limit surface.

3.5.2 Triangular subdivision

Triangular subdivision schemes are defined over triangular nets, i.e. nets whose faces
all have valency 3 and therefore can be regarded as planar triangles. The new vertices
are divided to v-vertices, and e-vertices. Each wv-vertex in V' is associated with a
vertex in V. Every e-vertex in V' is associated with an edge in E. For each type
of vertex there is a different stencil. The new edges E' are defined between a new
v-vertex and all the e-vertices such that their "parents” in E share the parent of
the v-vertex in V', and between any two e-vertices such that their parent edges share
a face in F'. Thus every triangle in the original net N(V, E, F') is replaced by four
triangles in the new net N(V', E', F'). The topology of the new triangular net is
shown in figure 5.
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Figure 6: Loop scheme
Stencils for e-vertex (left) and for v vertex (rigth)

A regular vertex in a triangular net, is a vertex with valency 6. In a closed net,
every new e-vertex has valency 6, and every new v-vertex inherits the valency of its
parent vertex. Therefore, the number of irregular vertices in a net remains constant,
and most of the net is a regular triangular net.

One of the commonly used triangular subdivision schemes is the Loop subdivision
scheme [74] defined for closed triangular nets. The stencils for the new e-vertices and
v-vertices are depicted in figure 6.

The weight w, given to the original vertex, in the stencil for its corresponding
new v-vertex depends on the valency K of that vertex. It is given by the following
formula:

B 64K
" 40— (3+2c0s (&)

~ K, K=34,.... (3.35)

Loop scheme generalizes the three-directional box-spline scheme (3.7), in the sense
that it coincides with it in the regular parts of the net. This implies that the limit
surface is C? almost everywhere, and this is achieved with stencils of very small
support. Near irregular vertices of the original net, the surface is C' [74]. Another
important property for geometric modeling of this scheme is shape preservation which
is due to the positivity of the weights in the stencils of Loop scheme.

An interpolatory triangular subdivision scheme with stencil of small support is
the Butterfly scheme [34]. This scheme is defined over closed triangular nets. It
has improved stencils in the vicinity of irregular vertices [101] which produce better
looking and smoother surfaces in the presence of irregular vertices.

As an interpolatory scheme, the new v-vertices inherit their location from their
parent vertices. Figure 7 shows the stencils for new e-vertices. The Butterfly stencil
is used to calculate new e-vertices whose parent edge is "regular”, namely, has two
regular vertices. A different stencil is used when the parent edge is ”iregular, namely,
has one vertex which is regular and one which has valency K # 6. The weights
{sj}j=0,.. k=1 depend on the valency of the irregular vertex, and are given by

= g (heos (5) 4 deos () =00 K- L
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Figure 7: Modified Butterfly scheme
Stencils corresponding to a "regular” edge (left) and an ”irregular’ edge (right)

The case where both of the vertices of the parent edge are irregular can occur only
in the initial net. In such a case, in the first refinement step the calculation of the
new e-vertex may be done in any reasonable way. The limit surfaces generated by
the butterfly scheme are C'! continuous everywhere, a property valuable for computer
graphics applications [101]. An extended butterfly interpolatory subdivision scheme
for the generation of C? surfaces (except for extraordinary vertices) is presented in
[68].

3.5.3 Subdivision on an arbitrary net

The two types of refinements of nets of arbitrary topological structure are the Catmull-
Clark type, also called 'primal’, and the Doo-Sabin type, also called ’dual’.

In the primal type refinement, every face of valency n in the original net
N(V, E, F) is replaced by n quadrilateral faces in the new net N'(V', E’, F'), as shown
in figure 8.

The new vertices are divided to v-vertices, e-vertices and f-vertices. Each v-vertex
in V' is associated with a vertex in V. Each e-vertex in V' is associated with an edge
in £. Each f-vertex in V' is associated with a face in F'.

Figure 8 indicates the topological relations in N(V', E', F'), with the points v, e,
and f indicating v-vertices, e-vertices and f-vertices respectively. The new edges are
marked by line segments and the faces by the quadrilaterals formed.

A regular vertex in this setting is a vertex with valency 4, and a regular face is
also of valency 4, namely, a quadrilateral face. Vertices or faces with valency # 4
are termed ”irregular” or ”extraordinary”. In a closed net, every new e-vertex has
valency 4. Every new v-vertex inherits the valency of its parent vertex, and every new
f-vertex inherits the valency of its parent face. Therefore, the number of irregularities
in a net remains constant throughout the subdivision process. Note that after one
subdivision iteration, all the faces are quadrilateral. The actual locations in R? of the
vertices V' are determined by the stencils of the subdivision scheme.

Catmull-Clark scheme. The first example of a primal type scheme is the
Catmull-Clark scheme [3, 27], defined as an extension of the bicubic B-spline scheme
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Figure 9: Catmull-Clark scheme
f-stencil (left), e-stencil (middle) and v-stencil (right)

(3.31) to closed nets of arbitrary topology. Its stencils are depicted in figure 9.

The stencils for the new e-vertices and v-vertices involve the neighboring new f-
vertices (depicted as empty circles). The weight Wi in the stencil for the new v-vertex
depends on the valency K of that vertex. Different formulae for Wy produce different
behavior of the limit surface near irregular vertices. A commonly used formula for

WKiS
Wi =KK-2), K=34,....

As long as W, = 8, the limit surfaces of this scheme are C? away from irregular
points. Different variants of this scheme were investigated by Ball and Storry [2, 1].
It is observed there that for every choice of Wi, the surface curvature near an irregular
point either tends to zero, or is unbounded. Applications of Catmull-Clark scheme
can be found in [23, 51].

Here we present an example (see figure 10) of two surfaces generated from an
initial triangulation, one by Loop scheme and the other by Catmull-Clark scheme
which regards the triangulation as a general net. Note that in the later case, most of
the initial control points are irregular.

The dual type refinement is depicted in figure 11. Every new vertex in v’ € V'
corresponds to a pair (v € V,f € F) such that v is a vertex of f in the original
net N. It is considered a dual scheme, since vertices and edges in the original net
N = N(V,E, F) correspond to faces in the new net N' = N(V' E'  F'). A regular
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Figure 10: Head - initial contol net (left),
two iterations with Loop scheme (middle) and with Catmull-Clark scheme (right)

Figure 11: Dual type refinement

vertex in this setting is a vertex with valency 4, and a regular face is a quadrilateral
face.

Doo-Sabin scheme The dual scheme due to Doo and Sabin generalizes the
biquadratic B-spline scheme to subdivision of closed nets of arbitrary topological
type.

The vertex v’ is calculated by a weighted average of the vertices of f, with the
stencils shown in figure 12. The weights {S;},-o,.. x—1 depend on the valency K of
the face in the original net, and are given by

K +5 ._3+2c05(%)
Sy N K

j=1,... K—1.

Almost everywhere the new nets are regular quadrilateral nets and the scheme reduces
to the scheme defined by the symbol (3.30) giving the C* biquadratic spline surface.

In both examples, of the Catmull-Clark scheme and of the Doo-Sabin scheme, the
mask parameters near an extraordinary vertex are so chosen to achieve an overall
C'! limit surface. In §6 we describe the main results on the analysis of smoothness of
stationary subdivision schemes near irregular vertices. Another dual type subdivision

25



Figure 12: Doo-Sabin scheme - stencil for an f vertex

scheme is ’the simplest scheme for smoothing polyhedra’ presented in [83]. In this
scheme, given a polyhedron, a new polyhedron is constructed by connecting every
edge-midpoint to its four neighboring edge-midpoints. The limit surface is piecewise
quadratic C'!' surface except at some extraordinary vertices. For additional material
about subdivision schemes on general nets and their applications in computer graphics
see [56, 101, 102, 103].

3.6 Further extensions

The inspiring iterative refinement idea which is the basic concept in subdivision and in
wavelets, motivated many new research directions. In this section we briefly mention
several extensions and generalizations of the uniform binary subdivision which are
not discussed in this review. These include extensions to

e Non-uniform schemes.

Quasi-uniform and Combined subdivision.

Lie group valued subdivision.

Set-valued subdivision.

Polyscale subdivision.

Variational subdivision.

e (Quasi-linear subdivision.

Non-uniform schemes. In many applications the data may be given on an
irregular mesh and a scheme for iterative refinement of such data should be different
from the standard uniform subdivision schemes. Also, convergence and smoothness
analysis cannot be performed using the standard tools such as z-transform or Fourier
transform. The tools that are being used for subdivision schemes over irregular grids
are generalizations of the local matrix analysis (§5) and of the divided defference
schemes (§4.2). See, e.g., [98], [50] and [15]. Another type of non-uniform schemes is
still on uniform grids, but the subdivision refinement rules may differ from one point
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to the other. Here again it seems that the divided difference tools are the only way
to analyse convergence and smoothness, as is done by Gregory and Qu for general
corner cutting schemes [49]. A systematic method for deriving the difference schemes,
using a variation of the z-transform method, is presented in [73]. A general analysis
of shape preserving schemes for non-uniform data is done in [67].

Quasi-uniform and Combined subdivision. The analysis presented in this
review is restricted to the case of closed nets, i.e., there are no boundary edges. In
real applications, there are boundaries of surface patches and boundaries may occur
inside a patch if the patch should pass through a curve or a system of curves. For a
subdivision scheme, a boundary treatment requires the definition of special rules in
the vicinity of the boundary, and consequently, a special smoothness analysis. A sub-
division scheme, together with special boundary rules, is termed in [71, 70] a combined
subdivision scheme. In these works, analysis tools for combined subdivision schemes
are developed, and combined schemes, based on some of the most ”popular” bivariate
schemes, are designed. The problem of matching boundary conditions or curve inter-
polation by subdivision surfaces is also treated in [82, 81, 72]. A boundary may also
be the border between two regions, or two patches, where in each patch a different
uniform subdivision scheme is applied. This is termed quasi-uniform or piecewise
uniform, and here also a special smoothness analysis is required, as presented in [36]
for the univariate case and in [69, 71, 100] for surfaces.

Lie group valued subdivision. In some applications the data is restricted to a
manifold W in R?, and the limit function is also expected to be a function from R*
into W. The usual subdivision schemes are defined via linear averaging refinement
rules that not necessarily give points in W. In a recent work [26] the general case of
Lie group valued data is considered. The main approach is based on the fact that
each Lie group has its associated Lie algebra, related through the exponential map,
and the subdivision operation are performed in the Lie algebra and are translated
back to the group by the exponential map.

Set-valued subdivision. For these schemes the initial data and the refined data
generated by the scheme, are sequences of sets in R?, and the limit function is a set-
valued function. This is motivated by the problem of the reconstruction of 3D objects
from their 2D cross sections. The given data is a sequence of cross sections and the
set-valued function describes a 3D object. Subdivision schemes for set-valued data
require the definition of operations on sets and the study of notions of convergence
and smoothness of set-valued functions. These issues, for convex sets using Minkowski
averages, and for general compact sets using the "metric average”, are studied in [29],
[30], [31].

Polyscale subdivision. A subdivision scheme is a two-scale process, using data
at one refinement level to compute the values at the next refinement level. In [21] poly-
scale subdivision schemes are introduced. Such schemes compute the next refinement
level from several previous levels, using several masks. This new idea is related also to
the notion of poly-scale refinable functions, and opens up new theoretical convergence
and smoothness issues. These issues, several interesting examples, and the relation of
poly-scale subdivision schemes to matrix subdivision schemes, are presented in [21].
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Variational subdivision. A variational approach to interpolatory subdivision
is presented in [63]. The resulting schemes are global, i.e., every new point depends
on all the points of the control polygon to be refined. The refinement is defined
by minimizing a quadratic "energy” functional, resulting in a highly smooth limit
surface.

Quasi-linear subdivision. Quasi-linear schemes are non-linear binary interpo-
latory schemes defined on a regular grid, with linear insertion rules which are data
dependent. In [10] a specific class based upon the ENO and weighted-ENO interpo-
lation techniques is analysed.

4 Convergence and smoothness analysis on regular
grids

In this section, analysis of the (uniform) convergence of subdivision schemes on regular
grids is presented, together with analysis of the smoothness of the limit functions.

First we present a method which relates the convergence and smoothness of non-
stationary schemes to the convergence and smoothness of related stationary schemes
[41], then we present a method for the analysis of stationary schemes, based on
difference schemes (see [32] and references therein). This method is also applied
directly to certain non-stationary schemes.

The main other approaches to the convergence and smoothness analysis are in
terms of Fourier transforms, and in terms of the joint spectral radius of a finite set
of finite dimentional matrices. The later approach is briefly reviewed in §5.2. The

Fourier analysis approach is not surveyed here. The interested reader may consult
6, 24, 14, 16].

4.1 Analysis of non-stationary schemes via relations to sta-
tionary schemes

The analysis of the convergence of non-stationary schemes presented here, relies on
the representation of a subdivision scheme Sk, in terms of a sequence of operators
{Rr : k € Z,} as in(2.22), where each Ry is defined by (2.21).

The main results are based on several observations on sequences of bounded linear
operators in a Banach space. From now on all operators considered are bounded and
linear. A sequence of operators {A;, : k € Z,} in a Banach space {X,]| - ||}
defines the iterated process .1 = Agxg, k € Z,, with o € X. Such a sequence
is termed convergent if for any m € Z, and any x € X, limy_,o T, i exists, where
Tmge = Amak - Amy1Amx. The sequence {Ay} is termed stable if

Two sequences of bounded operators { Ay} and {By} are called asymptotically equiv-
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alent if there exists L € Z, such that

o0

S [ Aps - Byl < oo (4.2)

k=max{0,—L}

Proposition 4.1 Let {Ax} and {By} be asymptotically equivalent. Then {Ax} is
stable if and only if { By} is stable.

The proof of this proposition [41] introduces the {A}-norms

||"L.||m :SllipHAm-I—ka ,Ame'H, m € Z+ y

which are equivalent to the norm of the Banach space, when {A;} is stable. It also
introduces the Banach spaces X,,, = {X, || - ||}. The key observation is that A,,
as an operator from X,, to X,,,1, is bounded in norm by 1. From this observation
follows Proposition 4.1. By a similar reasoning one gets

Proposition 4.2 Let {A;} and {By} be asymptotically equivalent. Then {Ax} is
stable and convergent if and only if so is { By}.

This analysis of sequences of operators in a Banach space, leads to the important
notion ”asymptotic equivalence” between two subdivision schemes. Here we use the
representation of subdivision schemes as operators on X = C'(R?), with the maximum
norm. Two schemes Sgry, Sipry are defined to be “asymptotically equivalent” if for
some fixed L € Z,

o0

Z |a¥*+t — b < oo, (4.3)

k=max{0,— L}

where [|a" — b || = maxacms D57 [0k 95 — b£72ﬁ|.
A scheme Siary is termed “stable” if there exists M > 0, such that for all k, j € Z

[Rjsk -+ Rja Rl < M, (4.4)

with { R;} the operators corresponding to Sp,«y as in (2.21). It is easy to conclude from
(2.10) that a convergent scheme Sy, is stable, iff the functions ®;, =} or(-—a)|
are uniformly bounded for k € Z .

Two stable asymptotically equivalent schemes have similar convergence properties.
This is easily concluded from Proposition 4.2.

QEZS

Theorem 4.3 Let Si.ry and Syry be asymptotically equivalent. Then Sgry is stable
and convergent iff Sgwy is stable and convergent.

If Sipry = Sp is stationary, namely b* =b for k € Z_, and Sy, is convergent then
by (2.8) Sp is stable. Thus

Corollary 4.4 Let Sgary and Sy be asymptotically equivalent. If Sy is convergent
then Siary 1s stable and convergent.
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Example 4.5 As an example of convergence implied by Corollary 4.4, we consider
the non-stationary subdivision scheme with symbols

Uiy k
k 2
=21 =(1+€" keZ 4.5
@) =2 ][50+, kez., (45)
with 7y, ..., n, distinct complex constants.
It is easy to verify that Sg,ey is asymptotically equivalent to Sp with symbol
b(z) =271+ 2)™ . (4.6)

Sp is a convergent stationary subdivision scheme with a basic limit function the
polynomial B-spline of order m (degree m — 1) with integer knots and support [0, m]
(see §3.1).

Thus the non-stationary scheme (4.5) is convergent. In fact its basic limit function
is the exponential B-spline in span {e%‘” : 1 <i < m} with integer knots and support
[0,m]. (For more about exponential B-splines, see e.g. [95]).

One way to analyze the smoothness of the basic limit function of a non-stationary
scheme S,ry (and therefore all limit functions generated by Sy, as implied by
(2.8)), is in terms of smoothing factors [41].

Theorem 4.6 Let the symbols of Sgary be of the form
1
a(z) = 5(1 + 2k (2), k>K€eZ,, (4.7)

with A € Z°, where Sp,ky is a stable and convergent subdivision scheme with ¢y of
compact support and in C™(R®). If
o
=" (1), Y |el2f < oo, (4.8)
k=K

then ¢rary and Oxgary are in C™(R?)

The factors £(1 4 r2*) in (4.7) are termed ”"smoothing factors”, and for e, = 0

in (4.8), are related to the univariate elementary non-stationary scheme of (3.12),
Sketch of the proof: The key to the proof is the convolution property 2, which in
this case has the form

Plak} = /R¢{bk}(' — AP p14r,23 (E)dE

Since ¢f14r,.) is supported on [0, 1] and is integrable (as discussed in §3.1), ¢ary €
C™. The result Ox¢(qy € C™ follows from the general observation that for a univari-
ate integrable function h with o(h) = [0,1], and for a bounded continuous function
g € C(R),
@wm@:/ g()h(z — )t € C'(R) .
z—1

Since for a multivariate function the conditions 0\ f € C™ for A € A, with A a
set of s linearly independent directions in R*, imply that f € C™(R?), we conclude
from Theorem 4.6 and the convolution property 2,
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Corollary 4.7 Let

71
a*(z) = H 5(1 +rip? ) (2), k> KeZ,

=1

where Sqry satisfies the conditions of Theorem 4.6.
If fori=1,... ,m,

oo

rig =€ (14 £p), Z BT PARC
k=K
and if \i,...,As € Z° are linearly independent, then ¢.ry € cmtl,

A good example where smoothness is concluded with the help of Theorem 4.6,
is provided by the non-stationary, univariate interpolatory schemes which reproduce
finite dimensional spaces of exponential polynomials [45].

Example 4.8 Consider finite dimensional spaces of univariate exponential polyno-
mials of the form

V"/:Fl = Span{xje,ntaj = 07 cee g M1, = 17 s 71/}

where v = {71,...,7,} are the roots with multiplicities o = {p1,... , .} of a real
polynomial of degree Y. | p;.

A scheme Spaiy is termed a reproducing scheme of Vy ,,, if for any k£ € Z, and
t = {ff = f(27%)) : j € Z}, with f € V,,,

S, fF = frHt

It is proved in [45] that an interpolatory scheme Sy,xy with support o(a*) fixed for
k € Z. which reproduces V,, ,, and does not reproduce any bigger space of exponential
polynomials containing Vi, ,, has the property that its symbols {a*(z) : k € Z} are
Laurent polynomials of degree 2n satisfying

dzrak(ZS) = 260, @ak(—zﬁ) =0, r=0,1,...,00—1, n=1,...,v, (49)
where 2F = exp(2=*t1y,)), n=1,...,v, k€ Z,.

For the case n = 2/, it can be concluded from (4.9) that the masks {a* : k €

Z.,} with o(a*) = [-n,n], tend as k — oo to the mask a with o(a) = [-n,n] of

the interpolatory scheme, introduced in [24], which reproduces the space 7, ; of all
polynomials of degree not exceeding n — 1 (see §3.2). More specifically

|a* —allee <27%¥B, 0<B<oo,

and a(z) is divisible by (1 + z)" as follows from (4.9). Thus S,k is asymptoti-
cally equivalent to S,, and since S, is convergent [24] so is S{ary. To conclude the
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smoothness of ¢y = ¢ary from the smoothness of ¢, Theorem 4.6 is invoked. As-
sume ¢, € C™. Then by the theory of smoothness of stationary schemes (see §4.2.4)
m < n. Consider for each k € Z,, the m linear factors of a*(2), [T, (1 + (2} ) '2),
where ny,...n,, are fixed integers in {1,... , v}, such that #{n; : n; = j} < p;. The
existence of these factors is guaranteed by (4.9). Each of the m factors divided by 2

is a smoothing factor. Now, the symbols {c*(2) : k € Z,} given by

ak(z)2m
[T, (04 (=) '2)

define a scheme S{cxy which is asymptotically equivalent to the scheme S. with symbol

F(z) = kelZ,,

a(z)2m
(142)™ "

c(z) =

Since ¢, € C™, it follows from the analysis of stationary schemes (see §4.2.4) that
Se is convergent. Thus Siery is convergent, and by Theorem 4.6 and Corollary 4.7,
¢{ak} eCm.

Next we consider a similar example but in the multivariate setting, with general
smoothing factors.

Example 4.9 Given are the symbols
e . .
a*(z) = 25_51_[ (1+ r,(c])z)‘m), keZy,
7j=1

with directions A = {A(, ... AO} c z*. It v for j = 1,... £ satisfy (4.8) and if
the set A contains a subset of s directions with determinant +1, and any subset of
¢ —m — 1 directions span R®, then ¢4y is in C™.

To see this, observe that under the conditions of the example, S,y is asymptot-
ically equivalent to S, with

az)=2° [ 1 +2")/2.

A eA

By the conditions on A, S, is convergent and ¢, is the polynomial box-spline with
directions A, which is C"™ (see the previous Section). Let Ay C A be the smallest
subset of A for which Sy, with b(z) = 2° [[\4)en, (1 + 27)/2is C°. The scheme Stbky
with b%(2) = 2° [T 4)ea, (1 +7229) /2 is asymptotically equivalent to Sp,. Hence, by
Corrolary 4.4, it follows that ¢y € C(R). The maximal m for which S, is C™ is
determined by repeated convolutions with respect to appropriate directions in A\ Ay.

The same procedure of adding directions, in view of Theorem 4.6, proves that Sg.x)
is also C'"™.
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4.2 Analysis of univariate schemes via difference schemes

The case s = 1 is the simpler to analyze, and the theory for the stationary case
is almost complete. This theory provides a method of analysis, based on necessary
and sufficient conditions for convergence, and in the most interesting cases also for
smoothness.

The method presented here is general in the sense that it also applies to non-
stationary schemes with symbols that are all divisible by the elementary factor (1+ z)
and its powers, as in the stationary case. Yet, in the stationary case this divisibility
is necessary and sufficient, while in the non-stationary case it is only sufficient.

A necessary condition for convergence (for any s € Z,\0) [4, 32], which is the key
to this analysis in the univariate case, is easily derived from the stationary refinement
step

fht = Z aa,Qﬁféﬂ, a€Z’.
BeLS
Considering large k such that |fJ — (S f°)(277a)| < ¢, j = k, k+1 for ¢ small enough,
and taking into account that o(a) is finite, so that 27%3 in the above sum is close to
27k, we conclude

Theorem 4.10 If S, is (uniformly) convergent then

Y Oaip=1, a€E", (4.10)
BEZLS

where E* are the extreme points of [0, 1]°.

4.2.1 Analysis of univariate stationary schemes

In the univariate case (s = 1) conditions (4.10) imply that a(—1) = 0, a(1) = 2. Thus
a(z) is divisible by (1 + z), the elementary univariate factor of (3.1). As will become
clear in the sequel (1 + 2)/2 is the stationary univariate smoothing factor.

Let the mask a satisfy (4.10). Then, a(z) = (1 + 2)b(2), with S}, a scheme related
to S, by

SuAf = A(Suf) (4.11)

where Af = {(Af); = f; — fj_1 : j € Z}. The verification of (4.11) is easily done in
terms of the z-transform representation of subdivision schemes (2.25). Since

L(Af;2) = (Af); 2/ = (1 - 2)L(f; 2)

jez
it follows from (2.25) and from the factorization of a(z), that
L(AF* 2) = (1 = 2)a(2) L(£*; 2%) = b(2) (1 — 2*) L(£*; 2) = b(z) L(Af*; %)

which proves (4.11).
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From now on we consider only masks that satisfy (4.10). It is clear that if S, is
convergent, then limy_,q sup;ez |AfF| = 0 with ¥ = SE?, or Af¥ = SEAF®. Thus
if S, is convergent, Sy, maps any initial data to zero, or shortly, is contractive. The
inverse of this relation also holds.

Theorem 4.11 Let a(z) = (14 2)b(2). Sa is convergent if and only if Sy, is contrac-
tive.

Proof: It remains to prove that if Sy, is contractive then S, is convergent. Consider
the sequence {F}(t)}rez, defined by (2.6). To show convergence of S, it is sufficient
to show that {F}(t) }rez, is a Cauchy sequence with respect to the sup-norm. Now by
definition, and by the observation that a piecewise linear function attains its extreme
values at its breakpoints

sup | Fii1(t) — Fi(t)| = max {| sup | f5t' — g5, sup | frth — gai } , (412
teR i€Z i€Z
where
1
ggiﬂ = fzk and 95;;11 = §(f7,k + z‘lil) . (4-13)

It is easy to verify that (4.13) is represented in terms of the z-transform, by

L(g2) =4 ;FZZVL(f'“;ZQ) :
Thus
L)~ L) = () - S L)

1+ 2
2z

= (1+2)(b(2) -

with d(z) = b(z) — 4. Since by (4.10) a(1) = 2, d(1) = b(1) —1 = 0 and hence

d(z) = (1 — 2)e(2).
This leads finally to

JL(E%; 22) = (1 + 2)d(2) L(£"; 2%)

LT = g"h2) = e(2)(1 = 2%)L(£"; 2%) = e(2) L(AF*; %) . (4.14)

Recalling that by (4.12) [[Fyy1 — Filleo = sup;ez |f]'.’”rl — g;-“+1| = ||fF+! — g+l ., and
that by (4.14) and (4.11)

fk+1 o gk+1 — SeAfk — SeSI};AfO ’
we finally get

1Fs1 = Filloo = £ = 8" loo < [1Selloo 1S5 A oo - (4.15)
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Now, if S}, is contractive, namely if SFf tends to zero for all f, then there exists
M € Z\0 such that ||SM||, = p < 1. Thus (4.15) leads to

|Firs = Filloo = IF = 854 < ISelloon®™ max [AF] < O, (4.16)
0<j<M

where n = (u)ﬁ < 1 and C is a generic constant. Thus {Fy : k € Z,} is uniformly
convergent.

With the analysis presented, we can design an algorithm for checking the conver-
gence of S, given the mask a. Consider the iterated scheme Sf, transforming data at
level k to data at level £+ k. Recall that the symbol of Sf, can be computed by (2.28)
as blfl(z) = H§:1 b(z¥ "), and thus to check the contractivity of S, the norms of S,
¢ =1,2,..., have to be evaluated in terms of bl(z) = zjeZ bg-l]zk, according to

15800 = max { Z |b£€]2[j| 0<i< QZ} ) (4.17)

JEL

The norm in (4.17) reflects the fact that there are 2¢ different rules in the iterated
scheme Sf:
g = Sigh e g = Y, i,
jEZ

Schemes for which S, is contractive, but ||Sf|lc > 1 for large £ (¢ > 5), are of
no practical value, since a large number of iterations is required to observe conver-
gence (small ||Af¥||,,). Thus the algorithm has an input parameter My, such that if
15| s > 1, the scheme is declared to be practically “not convergent”. A reasonable
choice of M, is in the range 5 < M, < 10.

An algorithm for verifying convergence, given the symbol a(z) of the
scheme.

1. If a(—1) # 0, or a(1) # 2, the scheme does not converge. Stop!
1 _ _ (1] _j

2. Compute bl'(2) = a(2)/(1+ 2) = > b

3. For ¢/ = ]_, ,M().

4. Compute Ny = maXocjcat Y ey, |b£{}2gj|.

5. If Ny < 1, the scheme is convergent. Stop!

6. If Ny > 1 compute b™'(z) = p(2)bl9(z%) = 3., bg“l]zj.
7. End loop.
8. Sp, is not contractive after M, iterations. Stop!

The parameters u, M from the proof of Theorem 4.11 corresponding to a mask a,
determine also the Holder exponent of ¢, (or any S°f°), and the rate of convergence
of the subdivision scheme.
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Theorem 4.12 Let a,u, M,n, be as in the proof of Theorem 4.11, and define v =
—(logy 1) /M. Then

|0a(y) — da(z)| < Clo—y[”.

Moreover, the rate of convergence of the sequence {F(t)}rez, defined in (2.6) is
|Fu(t) = STt < O

Here C' is a generic constant.

Proof: Both claims of the theorem follow from (4.16). The second directly with the
aid of the observation

(S~ F)(@)| = fim [Fo@) = Fu(o)| < Y Fya (@) = )]

To verify the first claim, we use the second claim in the bound

|0a(®) = daly)] < |a(e) = Fi(2)] + [da(y) — Fr(y)| + [Fr(2) — Fi(y)] ,

and the obvious bound
|Fr(z) — Fr(y)] < 2| A |

both holding for any k. The first claim now follows by estimating Af¥ = SFA§ in
terms of ||SM||s < p, and by the observation that for 27% < |z — y| < 27F+1

u[%} < C,u% =027 < Clz —y|” .

The tools for the analysis of smoothness are similar to the tools for convergence
analysis. The analysis of smoothness is based on the observation that in the stationary
case (1 + z)/2 is a smoothing factor.

Theorem 4.13 Let a(z) = H2q(2). If Sq is convergent and C*, then S, is convergent
and C*1L.

Sketch of the proof: By the convolution property 2 and by (3.2), S, is convergent,
and

ba(z) = / ml bo(t)dt (4.18)
Thus

Pa(r) = dq(r) — Pg(z — 1) . (4.19)

Theorem 4.13 supplies a sufficient condition for smoothness. A repeated use of
Theorem 4.13 together with Theorem 4.11, leads to
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Corollary 4.14 Let a(z) = (H;)nmﬂb(z) with Sy contractive. Then ¢, € C™(R).

Moreover

O = S e AE, £=0,1,...,m

a(z)(1+z

where A* = AN is defined recursively.

Sa(z)2t-1(142)-¢ is contractive, it is suggested in [92] for a scheme with symbol a(z) =
27™(1 + 2)™*1b(2), to compute the numbers ||S{||oo = pe and vy = —(logy j1e) /L. If
m—uvy > 0, then ¢, € C™ ¥, Defining v = Supysy Ve, if m—v > 0, then ¢, € clm=vl,

and ¢V has Hélder exponent n — € for any € > 0 with n = m — v — [m — v].

Example 4.15 Consider the stationary interpolatory 4-point scheme with symbol
(3.19)

1
aw(2) = — (1 + 2)*[1 — 2wz %(1 — 2)*(z* + 1)] .
z
By Theorem 4.11, the range of w for which S, is convergent is the range for which

Sp,, with symbol

b(2) = i(l + )1 = 2we2(1 — 222 +1)]

is contractive. The condition ||Sp, || < 1 yields the range —2 < w < _1+T‘/T3, while

the condition ||SE_|| < 1 yields the range —3 < w < 7_12\57

which Sa,, is convergent is —3 < w < *HT‘M = 0.39 [35].
By Corollary 4.14, it is sufficient to show that S, with symbol

. Thus a range of w for

cu(2) = %[1 w2z — 12(2 4 1)]

is contractive, in order to prove that S, is C'. Now,||Rc, || > 1, while |RZ || <1

for 0 <w < */58_1, as is shown in [35].

The fact that ¢a, & C*(R), can be deduced from necessary conditions that are
violated (see subsection 5.2). In [16] it is shown, by methods as in subsection 5.2,
that ¢, is differentiable except at all the diadic points in its support.

After deriving similar results to the above for a class of non-stationary schemes,
we return to the stationary case, and show that if ¢, € C™(R) then necessarily the
symbol a(z) is divisible by (1+2)™! in most interesting cases. In this sense the form
of a(z) in Corollary 4.14 is necessary for S, with C™ limit functions. This result holds
if ¢, is Leo-stable, namely if for any bounded bi-infinite sequence f = {f; : i € Z}

Cosup | < || sl —)|| | < Cusupl (4:20)

1EL

with 0 < Cy < (] < oo. For most interesting schemes the basic limit function is
L..-stable, e.g. for interpolatory schemes and for spline schemes. We also study the
related property, that for S, with ¢, € C™ and L..-stable, the space of limit functions
of S,, contains 7, — the space of polynomials of degree < m.
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4.2.2 Analysis of non-stationary schemes with symbols devisible by sta-
tionary smoothing factors

In this section the tools of analysis of §4.2.1 are extended to a class of non-stationary
schemes. Theorem 4.13 holds also in case of a non-stationary scheme with symbols

1
a*(z) = (;Liz)qk(z), keZ,, k>K

with K some positive integer, and such that Syqxy is convergent. A version of Theorem
4.11 holds also in the non-statinary case. It supplies only a sufficient condition for
convergence.

Theorem 4.16 Let a non-stationary scheme be given by the symbols
a"(z) = (1+2)b5(2), ke€Z, k>KecZ,.
If Sgpry is contractive then Siary is convergent.

This theorem holds since R,+ and Ry defined by (2.2) and (2.3) are related by
ARpwf = RipAf, keZ,, k>K, (4.21)

and therefore by the same arguments, as in the stationary case, the contractivity of
Sipr) implies the convergence of Suxy. A simple sufficient condition for the contrac-
tiVity of S{bk} is

[Rpilloe = max ( D [bF ;| : i€{0,1})<p<l, keZy k>K, (422)
jez
since then for gf = Rpr-1 Ryi—s - - Rpog? we have ||g"]|oo < 11%]|€°|o-

From Theorem4.16 and the remark above it, we conclude

Corollary 4.17 Let a non-stationary scheme be given by the symbols

1 m—+1
a*(z) = %bk(z), keZ, k>KeZ,.

If Sqpey is contractive then Sgary is C™.

Example 4.18 In this example we study properties of the up-function introduced in
§3.1, by applying the analysis tools of this section.
Let a non-stationary scheme be given by the symbols as in (3.5)

(1+ 2)*
ak(z):W, k€Z+ .

To show that ¢gary € C*(R), we show that for any m € Z, ¢gary € C™(R).
Now for k > m + 2
(142" Q427!

k —
a (Z) o om ) 2k—m—1 ’
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and by Corollary 4.17, ¢ary € C™ if Squry s contractive, with

1+ z)k=m=t
bk(Z):(Qk%, kEZ+, k2m+2

But || Ryt||oe = § for k € Zy, k > m + 2, which proves that Sipky is contractive.
Next we show that o(¢ary) = [0,2]. Using (2.11) we get from (3.5)

0 (Praky) = 2291 (a?) 22710]—1-1] [0,2] .

4.2.3 Polynomials generated by univariate stationary schemes

For stationary interpolatory schemes in R® it is easy to show [40] that ¢, € C™ implies
that 7, is reproduced by the scheme, namely

Raplzs = p(3)

VAR
p € mm(R®) (4.23)

Plzs =D .

For a subdivision scheme with a stable basic limit function, the proof is more
involved. It was first proved in [4]. Here we present a proof for s = 1, which is
extendable to univariate matrix subdivison schemes [43] and to multivariate schemes.

The proof is based on the important observation in [98]:

Theorem 4.19 Let S, be a C™ convergent univariate, stationary subdivision scheme.
Let B denote the set of bi-infinite sequences, and let v .= {v; : j € Z} € B be an
eigenvector of R, with eigenvalue A

R,v = \v . (4.24)
Then
1. If A\ > 2™ either SPv = 0 or SPv = ¢ for some 0 < i < m, and A = 27"
Also A = 27%, 0 < i < m, cannot have a generalized eigenvector u € B,
satisfying
R.u=\u+v. (4.25)

2. If |\| < 27™ then (S2v)D(0) =0, £=0,... ,m

8. IfN#£2710<i<m, and u is a corresponding generalized eigenvector satis-
fying (4.25), then (SPu)D(0) =0, £=0,...,m

The proof of Theorem 4.19 is based on the relations

(Sav)(x) = A(SZTV)(22),  (SZw)(x) = A(SZ%w)(22) + (S7v)(22)

for v, u satisfying (4.24) and (4.25) respectively, and on the continuity at x = 0 of
the derivatives of order up to m of Su, S;°v.

A direct consequence of Theorem 4.19 deals with polynomials generated by a
univariate stationary subdivision scheme with smooth limit functions [37].
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Theorem 4.20 Let S, be a C™ subdivision scheme. Then there exist vl € B, i =
0,...,m, such that

Rav[i] = 2ivm, S;ov[i] = xi, 1=0,...,m. (4-26)

The argument leading to (4.26) is that 27° must be an eigenvalue of R, for i =
0,...,m otherwise there exists £ € {0,1,...,m} such that 2% is not an eigenvalue of
R,, implying that qﬁ;(f ) = 0, in view of Theorem 4.19. But ¢, is of compact support,
¢ Z 0, which contradicts quf) = 0. Next we show that vl in Theorem 4.20 is of the
form vl = 2| 4 p;|z with p; € m_y, i = 0,... ,m (here py = 0). For this proof the
L.-stability of ¢, is needed. We term a scheme L.-stable if its basic limit function
is Lo-stable.

Theorem 4.21 Let S, be C™ and Ly.-stable. Then there exist polynomials p; € m;_1,
1=0,...,m, with pp = 0, such that

S®(rt +p)lz =2, i=0,...,m. (4.27)

Sketch of the proof: The case i = 0 follows directly from (4.10), because R, maps
the constant sequence 1 =u = {u; =1:j € Z} on itself.

In the following we indicate the proof for ¢ = 1. For ¢« = 2,... ,m, the proof is
similar. Let v = vl! satisfy S2°v =z, and for r € Z,\0 let Av = {v;,, —v;: j €
Z}. Then the linearity and uniformity of S, leads to SPAMNv =z +1 -2 =1 or

S®(AVy —1)=0. (4.28)

If AWy —1 € B is bounded, then by the L.-stability of ¢,, AMv = 1, which is
equivalent to v = x|z + ¢l for some ¢ € R. Thus the claim of the theorem for i =1
follows. To show the boundedness of A(Mv — 1 we consider (4.28) at the integers,
which in view of (2.8) has the form

D ((ADV); = 1)ga(n—4j) =0, neZ. (4.29)

JEL

Equation (4.29) can be regarded as a finite difference equation for A;v —1, since ¢,z
is finitely supported, and is not identically equal to zero (otherwise ¢, = 0 by (2.15)).
As a solution of (4.29) AWMy — 1 either vanishes or grows at least polynomially but
not linearly, as 7 — oo or 7 — —oo. But the later possibility is eliminated, since

) 1 1 1,
(RaA( )V)a — j%%aa—%(vj—l—r - Ur) — §Ua+2r - §Ua = §(A(2 )V)a y

from which it is concluded, in view of (4.28), that SPAMv = limy_, 2 {A)y =1,
or that vyo = vy & 2° + o(1), which is in contradiction to faster than linear growth.
As a direct consequence of Theorem 4.21 we get,
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Corollary 4.22 Let S, be C™ and Ly -stable. Then my,|z is invariant under R,, and
forpem, 0<i1<m

Raplz = (1<§> |z ,
with ¢ € m; and p — q € m;_1, while p = q for i = 0.

In the following subsection we derive the factorization of the symbol of a scheme
satisfying the requirements of Corollary 4.22.

4.2.4 Factorization of symbols of stationary, smooth, L.-stable schemes,
and related necessary conditions

First we show that if S, is C™ and L-stable, then its symbol has the factor (142)™*!.
Latter we show that necessarily Symq(.)(142.)-m-1 is contractive. A similar result holds
for L,-stability and convergence in the L,-norm, 1 < p < oo [57]. Thess results are

important in the analysis of smoothness of univariate stationary schemes (see section
4.2.1).

Theorem 4.23 Let S, be C™ and L. -stable. Then
a(z) = (1 +2)™"b(2) (4.30)

with b(z) a Laurent polynomial.

Proof: The proof is by a recursive construction of “divided difference” schemes with
symbols . . .
al(z) =2 (z + 1)"fa(z), i=0,1,...,m+1.

If all(2) is a Laurent polynomial, then in view of (4.11), S, is related to S, by

Sa[i]ditf = ;;:+158f7 feB )

where dif = (2F)'A’f is the sequence of divided differences of order i on refinement
level k. Since by Corollary 4.22 R, maps 1 € B to itself, Y. ., a% = > ..y a2i41 = 1
and a(z) is divisible by (1 + 2). This guarantees that al!! exists. Now, R, maps
vV = 2|z, to Rav = x|z + ¢l for some ¢ € R, so R,n maps 1 € B into itself. Thus
al'l(z) is divisible by (1 + z), and al exists. The general argument is similar.

By applying (2%)!A'f to f = z%|; we get a constant sequence. This sequence is
mapped by R,m to (2871)?A’R,f which is the same constant sequence. This is the
case, since Rof = (5)"+¢(3) with ¢ € m;_; by Corollary 4.22, and A’q(5) = 0. Again,
if R, maps the constant sequence on itself then al’(z) is divisible by (1 + 2).

Using this argument for ¢ = 0,1,...,m we conclude that al! exists for i =
1,...,m+1, and thus (4.30) holds.

Example 4.24 Consider the symbol

1 1
a(z) = 1(1 +2)(1+ 2%)? = Z(l + 24222 +22° + 21+ %) . (4.31)
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It is easy to see that (4.10) holds, since a(l) = 2, a(—1) = 0. To verify that S,
is convergent, we show that S, with b(z) = (1 + 2%)? is contractive. Now, b(z) =
2(1+ 222 + 2*) and therefore ||Sp||c = 1. Yet from (2.28) and (4.17), we get

b2 () = 1_16(1 + 2921 4 22)? = 1_16(1 + 222 + 324 + 425 + 32° + 2210 + 212)
and therefore [|SE[le = 3.

Since the symbol ¢(z) = 1 + 2% satisfies ¢(1) = 2, S. converges weakly [22]. It is
easy to verify that S°d = % X[o,1] in the sense of weak convergence. By the convolution
property 3

Pa = iX[o,u * X[0,1] * X[0,1] -

Thus ¢, € C', while a(z) is not divisible by (1 + z)?. This indicates, in view of
Theorem 4.23, that ¢, is not L..-stable. Indeed, consider the sequence u = {u; =
(=1)" : i € Z}. Clearly u is bounded. Now in view of (4.31) |[R,u = 0 € B, and
therefore Su =3, ,(—1)"¢a(- — i) =0, and ¢, is not Le-stable.

Once we have the factorization of the symbol of a stationary C™, L..-stable

scheme,
a(z) = (1 + 2)™b(2)

we can show that % is the symbol of a contractive scheme. For that we need

two results, which are of importance beyond their current use.

Theorem 4.25 Let ¢ be a solution of the functional equation

o(z) = Z aad(2x — @) (4.32)

€L

with a mask a satisfying (4.10). If ¢ is compactly supported, continuous and Lo.-
stable, then S, 1s convergent.

This theorem was first proved in [4]. Here we give a sketch of a different proof
[43].
Sketch of the proof: Recalling the relation in (2.16), we observe that since ¢ = T, ¢,
and a = R0,

$(r) = Y (Rad)p(2x — ) = > (RE§)$(2°z — a) | (4.33)
and that for all k € Z
Y dlw—a)=> (RE1)ap(2'r —a) =D ¢(2*z—a). (4.34)

The continuity and L.-stability of ¢ together with (4.34) leads, after proper normal-
ization, to

Y sl—a)=1. (4.35)

€L
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Combining (4.33) and (4.35) we get
0="> 62"z —a)[(RE6)a — ¢(x)]
Q€Z

which together with the continuity, compact support and L-stability of ¢ yields
lim sup |(RES)a —¢(27Fa)[ =0,

k=00 qcznK

for any compact set K C R. This is the convergence of S, in the sense of (2.5), to a
continuous limit function ¢, hence uniform convergence.
The second theorem is taken from [43], where it is proved for matrix masks.

Theorem 4.26 Let a(z) = 2q(z), with Sa, Leo-stable and C*. Then
p=> dul(-—
a€Z
15 a continuous, Lo, -stable solution of

p(x) = Typ(z) =D qap(22 — ) . (4.36)

Q€L

Sketch of the proof: The function ¢ is well defined, continuous and of compact
support. It is related to ¢, by

u(a) = [ olt)it = xxm (437

Suppose @ is not L..-stable, then there exists a bounded non-zero sequence u € B
such that ), uap(- —a) = 0. By integrating this relation from z —1 to x we obtain
Y oz Ua®a(® — ) = 0. This last relation contradicts the Lo-stability of ¢,. Thus ¢
is also L.-stable. To verify that ¢ = Ty, we observe that ¢, = T,¢a, after taking
Fourier transform, is equivalent to

- 1. /w\- fw
¢a(w) = 5 (5)¢a(§) (438)
with a(w) = Y oy aee” " Now by (4.37) ¢(w )1—2:1'"1 = ¢a(w). Multiplying (4.38)
by === we obtain
oy 1o2a(g) qwy 1wy qw
p) =5 7 wel5) = 50(3)4(3)

proving (4.36).
From Theorems 4.25, 4.26, 4.23 and 4.11 we conclude

Corollary 4.27 Let S, be C' and Ly.-stable. Then q(z) = (f‘fj))z is a Laurent poly-
nomial and Sq s contractive.

This Corollary together with Corollary 4.14 implies

Corollary 4.28 Let S, be convergent and Lo -stable. Then the contractivity of Sym )
18 necessary and sufficient for S, to be C™.
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4.3 Analysis of bivariate stationary schemes via difference
schemes

The analysis of convergence and smoothness of subdivision schemes defined on regular
grids, which is of interest to geometric modeling in R?, is in the case s = 2. Thus for
the sake of simplicity of presentation, we limit the discussion to this case. The results
are easily extended to s > 2. Here we present similar analysis tools to those in the
univariate, stationary case for bivariate, stationary subdivision schemes defined on
regular quad-meshes and on regular triangulations. When the symbol is factorizable
to enough linear factors, (each a univariate smoothing factor in some direction in Z?),
the analysis is almost as simple as in the univariate case [4, 32]. This factorization is
not the result of (4.10) or of the smoothness of the limit functions, as in the univariate
case, but is an additional assumption, which holds for many of the schemes in use. In
fact the same factorization of non-stationary symbols, leads to similar results, also for
non-stationary schemes. When the symbol is not factorizable to univariate smoothing
factors, (4.10) leads to non-unique matrix difference schemes, and the theory of the
univariate case can be extended to this case [4, 32, 55| (see §4.3.2).

4.3.1 Analysis of schemes with factorizable symbols

The necessary condition for the convergence of a bivariate scheme S, defined on Z2,
which is obtained from (4.10), is

 aaas =1, a€{(0,0),(0,1),(1,0),(1,1)} . (4.39)

BeZ?

These conditions imply
a(l,1) =4, a(-1,1)=0, a(l,-1)=0, a(-1,-1)=0. (4.40)

In contrast to the univariate case (s = 1), in the bivariate case (s = 2), the nec-
essary condition (4.39) and the derived conditions on a(z), (4.40), do not imply a
factorization of the mask to linear factors.

If the factorization

a(z) = (14 21)™(1 + 22)"b(2), z = (21,29) , (4.41)

is imposed, then with m = 1 the convergence can be analyzed almost as in the
univariate case, and similarly the smoothness if m > 1.

Theorem 4.29 Let S, have a symbol of the form (4.41) with m = 1. If the schemes

with the symbols a,(z) = % = (14 22)b(2), az(z) = fJ(r’?Z = (14 z1)b(2) are both

contractive, then S, is convergent. Conversely, if S, is convergent then S,, and S,,
are contractive.

The proof of this theorem is similar to the proof of Theorem 4.11, due to the
observation that for Alf = {fz,] _fz'fl,j . Z,] & Z}, and Azf = {fz,] _fi,jfl . Z,j € Z},

Sa, Aff = AgSuf |, =1,2
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Thus convergence is checked in this case as contractivity of two subdivision schemes
Say, Sa,- For schemes having the symmetry of the square grid (topologically equiva-
lent rules for the computation of vertices corresponding to edges), then a;(z1, 22) =
as(z2, 21), and the contractivity of only one scheme has to be checked. Note that the
factorization in (4.41) has then the symmetry of Z2.

For the smoothness result, we introduce the inductive definition of differences:
Ali] = AIA[FLJ], Al = AQA[M*H, AL — A, ADL = A,

Theorem 4.30 Let a(z) be factorizable as in (4.41). If the schemes with the masks

2% q(z)

i(2) = - . ,7=0,... 4.42
ala](z) (1 +Z1)z(1 +2’2)], 2 07 y ( )
are convergent, then
ai+j 00.£0 00 At AJEO - -
S (ST () = (STAME)) L i =0, m. (4.43)
100

In particular S, is C™.

In geometric modeling the required smoothness of surfaces is at least C'' and at most
C?. To verify that a scheme S, generates C'! limit functions, with the aid of the last
two theorems, we have to assume a symbol of the form

a(z) = (14 20)%(1 4 22)b(2) ,
and to check the contractivity of the three schemes with symbols
201+ 21) (14 29)b(2),  2(1+ 22)°b(2), 2(1 + 21)°b(2) .

This analysis applies also to tensor-product schemes, but is not needed, since
if a(z) = ai(21)az(29) is the symbol of a tensor-product scheme, then ¢,(t1,t2) =
Bay (1) - Pay(t2), and its smoothness properties are derived from those of ¢a,, Pa,.

Similar results hold for schemes defined on regular triangulations. For the topology
of a regular triangulation, we regard the subdivision scheme as operating on the 3-
directional grid. (The vertices of Z? with edges in the directions (1,0), (0,1), (1,1).)

Since the 3-directional grid can be regarded also as Z?, (4.39) and (4.40) hold for
convergent schemes on this grid.

A scheme for regular triangulations treats each edge in the 3-directional grid in
the same way with respect to the topology of the grid. The symbol of such a scheme,
when being factorizable, has the form

a(z) = (14 21)™ (1 + 22)™(1 + 2z129)"b(2) . (4.44)

Example 4.31 The symbol of the butterfly scheme on the three directional grid has
the form [80]

a(z) = %(1 +20) (14 2) (1 + 2129) (1 — we(z1, 22)) (2129) (4.45)
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with
c(z1,20) = 22y 22y P+ 220 Py — day ey —dat — 42t

+ 227 2y + 22025 F 12 — Ay — oy — Aoz + 2202 4+ 22125 . (4.46)

Convergence analysis for schemes with factorizable symbols of the form (4.44) is
similar to that for schemes with symbols of the form (4.41).

Theorem 4.32 Let S, have the symbol
a(z) = (14 21)(1 + 22) (1 + z2122)b(2) . (4.47)

Sa is convergent if and only if the schemes with symbols

a(z) a(z)

:]_—|—Zl’ :1+22,

as(z) = 212 (4.48)

- ]_+le2

a1(z) as(z)
are contractive. If any two of these schemes are contractive then the third is also
contractive.

Note that
Sa3A3f = Agsaf y

with (Asf);; = fij— fi—1,;—1. Thusif two of the schemes S,,, i = 1, 2, 3 are contractive
then the differences in two linearly independent directions tend to zero as k& — oo,
which implies as in the proof of Theorem 4.11, the uniform convergence of the bi-linear
interpolants to the data {f¥}ez, .

The smoothness analysis for a scheme with a symbol (4.47) is different from that
for schemes with symbols as in (4.41).

Theorem 4.33 Let S, have the symbol (4.47), and let a;(z), i = 1,2,3 be as in
(4.48). Then S, generates C' limit functions, if the schemes with the symbols 2a;(z),
1t =1,2,3, are convergent. If any two of these schemes are convergent then the third
18 also convergent. Moreover,

0 |, roed . 0 :_
a7 (STE)() = (Saa YD), i=1,2
(ai,:1 + a%)(si"f())(t) = (S2a; Asf)(1) -

The verification, based on Theorems 4.32 and 4.33, that the scheme S, with symbol
(4.47) is C', requires to check the contractivity of the three schemes with symbols,

2(1+ 21)b(2), 2(1+ 22)b(2), 2(1+ z129)b(2) .

If these three schemes are contractive, then S, generates C'! limit functions. For a(z)
with the symmetries of the 3-directional grid, it is sufficient to check the contractivity
of only one of the three schemes, as is easily observed in the next example.
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Example 4.34 To verify that the butterfly scheme generates C! limit functions, we
use the fact that the symbol a(z) of the butterfly scheme, given in (4.45), is of the
form (4.47). In view of the observation following Theorem 4.33, we have to check the
contractivity of the three schemes with symbols

gi(z) =1+ zz)(l — wc(zl,ZQ))(zlzg)’l , 1=1,2
g3(2) = (1 + 2122) (1 — we(z1, 22)) (2122) ™
Noting that
(21, 29) = (20, 21) = c(z129, 27") |

and that the factor (2,2,)~" in a symbol does not affect the norm of the corresponding
subdivision operator, it is sufficient to verify the contractivity of S;, where

r(z) = (14 21) (1 — we(z1, 22)) Z ra2®

a€Z?

Now

1Se]|o0 = e,;g%)},i} ( Z |7"k+2i,e+2j|> )

i,jET
and since

D Iraiasl = 1 — 8w| + 8w
i,jE€Z
|Sr||oo > 1 for all values of w.

Next, we show that for w > 0 small enough [|5?||, < 1 [80]. Ignoring coeifficients
of r?(z) which are not O(1), and computing the others up to order O(w), we get

T[Q}(z) =r()r(z?) = (14+z+22+ zio’)(l —wc(z1, 2) — we(zl, 25) + O(w ))

_ 2: 2] i j

1,JEL

Thus for j # 0, 7"1[2; = O(w) while 7“1[0 =140(w), i =0,1,2,3. From this we conclude
that it is sufficient to show that for small enough w

Z ‘Tﬁzli,z;j‘ <1, ¢(=0,1,2,3.

i,j€Z

In case ¢ = 0, all the non-zero coeflicients {TZ}A]-} are

Hence for w > 0 small enough

37 |ridy| = 11— 16w] + 12Jw] + O(w?) < 1.

ijEL
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In case ¢ = 1, the relevant coefficients are

and for w > 0 small enough,

Z |T1+4i,4j| = |]_ — ]_2'UJ| + 8|'UJ| + O(wz) <1.
1,JEZL

The cases ¢ = 2 and ¢ = 3 are similar to the cases / = 1 and ¢ = 0, respectively.
Thus for w > 0 small enough the limit surfaces/functions generated by the butterfly
scheme on regular triangulations are C.

An explicit value of wy, such that for w € (0,wp) the butterfly scheme generates
C' limit functions on regular triangulations is computed in [48]. The computation
shows that wy > %. The value w = 1—16 is of special importance, since for this value the
butterfly scheme on Z? reproduces cubic polynomials, while for w # % the scheme
reproduces only linear polynomials. These properties are related to the approximation

properties of the scheme (see §7).

4.3.2 Analysis of general bivariate schemes defined on Z?

The necessary conditions in the bivariate case (4.39) imply four conditions on the
symbol (4.40).

These four conditions, lead to a subdivision scheme with a matrix mask, for the
vector of first differences

Ay fij — fimj o
Afi-:<< >f> :<‘7 1) (i, 5) € 72
(Af)y Do) )y \Jij — fij— (3,J)
Contrary to the univariate case, this matrix mask is not uniquely determined. The
matrix mask can be derived with the help of the following lemma,

Af = (4.49)

Lemma 4.35 Let p(z) = p(21, 22) be a Laurent polynomial, satisfying
p(l,l) :p(_lal) :p(la_l) :p(_la_l) =0. (450)

Then there exist Laurent polynomials, pi, ps, such that

p(z) = (1= 20)pi(2) + (1 = 23)p2(2) - (4.51)

The “factorization” in (4.51) is not unique, since (1—22)(1—22)q(z), with ¢ a Laurent
polynomial, can be added to the first term on the right-hand side of (4.51) and
subtracted from the second.

The proof of the lemma follows from two observations: (a) The Laurent polynomial

P(z) = S [(1+ z2)p(21, 1) + (1 = 22)p(21, —1)]

NN

48



coincides with p(z) for zo = 1 and for z5 = —1, and therefore there exists a Laurent
polynomial r(z) such that

p(z) = P(2) = (1 - 2)r(2) .

(b) P(z) is a Laurent polynomial, which is divisible by (1 — 2?), since P(£1,2) = 0,
in view of (4.50).
The last lemma leads to the “factorization” in (4.52).

Theorem 4.36 Let a(z) = a(z1, z2) satisfy (4.40), and let

(1= 21)a(z) = b (2)(1 — 27) + bia(2)(1 — 23)

(1 - 22)a(2) = ba ()1 = 2) + ()1~ 23) 452)
with {b;;, 1,7 = 1,2} Laurent polynomials. Then
AR.f = RpAf | (4.53)
where Ry is the refinement rule
(RBV)a = Y Ba_spvs, o€ L’ (4.54)

BeL?
with the matriz symbol
bn(Z) b12(2)>
B(z) = B,z% = 4.55
=2 b () 459

and with v a sequence of vectors in R?,

v="{vy:v, ER* a€Z} .
Sketch of the proof: The formalism of z-transforms is the tool for proving the
theorem. Observing that

]_—Zl

L(Af;2) = ( )L(f; 2)

and recalling the basic relation in (2.25)
L(R.f; 2) = a(2)L(f; 2?) ,
we obtain from (4.52),
1—2 v (b)) bia(2)) (1— 22 2
(1 _ Z2> L(Raf’ Z) - (le(Z) b22(z) 1 _ Z; L(f’z ) )
which is equivalent to (4.53), (4.54). In the following we denote by Sp the stationary

scheme with the refinement rule Rg in (4.54). Theorem 4.36 leads, as in the univariate
case, to
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Corollary 4.37 Let S, be a bivariate subdivision scheme satisfying (4.39). Then S,
s convergent if and only if S is contractive for all initial data of the form Af.

A sufficient condition for convergence, is thus, the contractivity of the scheme Sg.
This can be verified by considering the numbers ||Sg'|| for M =1,2,.... Here again
the formalism of z-transforms leads to the symbol of S¥ as

BM(z) = B(z) BM-U(2%) = B(2)B(z%) - -- B(z*" ) |

where the order of the factors in the matrix product is significant. The norm of S&
is given by [55, 32],

158 [lso = max S B,
BeL? o
where |A| denotes a matrix with elements which are the absolute values of the corre-
sponding elements in the matrix A, where ||A||s denotes the L-norm of the matrix
A, and where B} = {a = (a1,a2) : 0 < ag < 2M,0 < ap < 2} . Thus a sim-
ilar algorithm to the one given in the univariate case (see §4.2.1), applies also in
the bivariate case, although it is based only on a sufficient condition and on a non
unique “factorization”. It is possible to use optimization techniques to find among
all possible “factorization” the one that minimizes min{||S&/ || : 1 < M < My} with
2 < My <10 [61].
The C! analysis is based on the result,

Theorem 4.38 Let S, be a convergent subdivision scheme. If %SB with B given by
(4.55), (4.52) is convergent for initial data of the form Af, then S, is C'.

This result is analogous to Theorem 4.13 in the univariate case. Similarly to the
univariate case

1 2 0 _ (01 coogo
(553) Af = (@) Sof0 (4.56)
Equation (4.56) holds, only if
Z B’yf2a = IZ><27 AS {(07 0)7 (07 1)7 (17 0)7 (17 1)} (457)
Q€72

which follows from the linear independence of the two components of (358)*Af =
(0192°F, 0,52°F)" for generic f. From (4.57) and Lemma 4.35 follows the existence of
a matrix subdivision scheme Sc, for the vectors 27 A%f*

with C a mask of matrices of order 4 x 4 with symbol (2338 2328 ) . Here C09)(2)

is a matrix of order 2 x 2 defined by the “factorization”

L=2\1, (L7
(121 =cim(; 2 )

If Sc is contractive then S%B is convergent and S, is C'. The same ideas can be
further extended to deal with higher orders of smoothness [55, 32].
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5 Analysis by local matrix operators

Given masks {a*} of the same finite support, the corresponding refinement rules (2.2)
and their representations in matrix form (2.18) are local. For the subdivision scheme
S{aty, this locality is also expressed by the compact supports of the corresponding
basic limit functions {¢y : k € Z.}, and the representations (2.10) of the limit
functions Sef°.

5.1 The local matrix operators in the univariate setting

To simplify the presentation we deal here with the case s = 1. The results extend to
s> 1.

The locality of R,+ can be more pronouncely expressed in terms of two finite
dimensional matrices, which are both sections of the bi-infinite matrix A* in (2.18).
First we obtain the two finite dimensional matrices. Consider

St = Syt =3 f200( — ) = 3 fhon(2F - —a) (5.1)

Q€EZ €l

and its restriction to a unit interval. Due to the finite support of ¢q, there exists a
finite set I C Z, such that

00 0
Cratd

o > Jado(- —a). (5.2)
a—jel

Thus the vector {f: o —j € I'} determines completely the limit function in [7, 7 +1].
By the same reasoning, and since by the assumption on the supports of the masks
o(¢r) = ol(gg), k € Zy, we get in view of (5.1), that the vector {f¥ : a« —j € I}
with f¥ = Rai 1 -+ Rao f° determines the limit function in [j, 5 + 1]27%. Again, by
the linearity of {Ra+ : k € Z,}, there exists a linear map from {ff1 : a € I}
to {f¥ : a € I}, which is a square matrix of dimension |I|. We denote it by Af.
Similarly there is a linear transformation from {f*':a € I} to {f¥: a—1 € I}
which is denoted by A¥. Note that by the uniformity of R.x, A* maps the vector
{fftra—-jel}to{ff:a—j—eel}, e=0,1. Tt is easy to conclude from the
definition of A¥, A% as linear operators, that the matrices Af, A¥ are finite sections of
the bi-infinite matrix A* in (2.19),

(Alg)aﬁ = algz—z,ﬁa a,pel,

(5.3)
(Allc)aﬁ = a’]occ+172ﬁ7 a,Bel.

In the following we show how to get the value (Sgryf°)(x) for z € R in terms of
the matrices {AF, A¥ : k € Z,}. Tt is enough to consider the interval [0, 1).

For z € [0,1), we use the diadic representation x = > >° d;27", d; € {0,1}, and
obtain [4],

di41

(Sfik}fo) (z) = klggo A AZ,:I o 'Aglf[%,u (5.4)
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with the vector fiy ) = {f{ : @ € I}. Note that the finite product A ---Aj £f ) is
a vector which determines the limit function in an interval of the form [j, j + 1]27%~1
containing x. Thus the convergence and smoothness of the limit function generated

by Stary can be deduced from the set of finite dimensional matrices
{AF AY kb eZ,) (5.5)

and their infinite products of the form appearing in (5.4). In the stationary case there
are only two matrices Ay, A;, and all possible infinite products of them have to be
considered.

5.2 Convergence and smoothness of univariate stationary schemes
in terms of finite matrices
In the stationary case the value (Sg°f°)(z) for o = 3772, d;277 € [0,1), d; € {0,1} is
given by
(S2f%) (x) = lim Ag, -- -Adlf[%,l) (5.6)

k— 00

with f[%,1) ={f2:ael}
Note that S, is contractive if and only if the joint spectral radius of Ay, Ay,
Poo(Ap, A1), is less than 1, where

==

poo(Ao, A1) = sup  (sup {||A-, A, - Al e €{0,1},i=1,... k})

kEZ+\0

(5.7)

Thus the conditions for convergence and smoothness of a stationary scheme given in
section 4.2.1, which can be expressed as the contractivity of a related scheme, can
be formulated in terms of the joint spectral radius of two finite matrices. (see e.g.
[17]). It is easy to conclude that p (Ao, A1) > max{p(Ag), p(A41)}, where p(A) is
the spectral radius of the matrix A. From this inequality and from the necessity
of the contractivity condition, we obtain necessary conditions for convergence and
smoothness (for the later only in case of L.-stability), which are easy to check.

Such necessary conditions are important in the design of new schemes, in the sense
that “bad” schemes can be easily excluded. For example, if a(z) = %b(z), and S,
is an interpolatory scheme, then p(By) < 1, and p(By) < 1 (with By and B; the local
matrix operators corresponding to Sp) are necessary for S, to be C1.

Here we formulate an open problem; What are the conditions for the contractivity

of Siary in terms of the matrices {Af, A¥ - k € Z,}7?

5.3 L,-convergence and p-smoothness of univariate station-
ary schemes, in terms of finite matrices

There is a vast literature (See e.g. [97, 57, 59, 93, 52, 54, 53|, and references therein)
on the convergence in the L,-norm of subdivision schemes, and on the p-smoothness
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of refinable functions. One central method of analysis, is in terms of the p-norm joint
spectral radius of two operators restricted to a finite dimensional space.
Let Ap, A1, be matrices of order n x n. Their p-norm joint spectral radius is
1
2\ F
pp(Ag, A1) = sup Z ||A6k---AEI||g>p , 1<p< .

k€Z4\0 €150, €{0,1}
For ¢ € L,(R) of compact support, the p-smoothness exponent is defined as
vp(¢) = sup{v > 0: |Ao|l, < Ch°}

for some constant C' > 0 and for large enough n, where A, ¢ = ¢ — ¢(- — h) and
AR = Ay AR

Here we bring one result from [57], which is in some sense an extension of Theorem
4.12 in section 4.2.1.

Theorem 5.1 Let a be a finitely supported mask such that )., a; = 2. Let ¢, be a
non-trivial solution of the refinement equation ¢ = Y .., 0;i¢a(2 - —i). If there exists

C > 0 such that ||ARZS||p < 2t for0 < p<1andl<p< oo, then vy(¢a) = i

Since [|ARMS||5 = py(Aoly, As]y) with V = {u € RII : Y., u; = 0} [57], the
condition of the above theorem can be formulated in terms of two finite dimensional
matrices, which are the restrictions of two operators to a finite dimentional subspace.
In [53] an algorithm is presented for computing v, (,) efficiently, for ¢, a multivariate
refinable function corresponding to a dilation matrix M and a mask a both with the
same symmetries. For symmetric interpolatory masks there is also an algorithm for
the computation of v (¢a). The situation in the multivariate case is much more
complex; there are |detM| operators, and the finite dimensional subspace to which
these operators are restricted, is quite complicated.

6 Extraordinary point analysis

For all the types of subdivision schemes that are defined over nets of arbitrary topol-
ogy, as describes in section 3.5, the refined nets are regular nets, excluding a fixed
number of extraordinary (irregular) points of valency # 6, in the case of triangular
nets, and of valency # 4, in the case of quadrilateral nets. The smoothness analysis
of subdivision schemes over nets of arbitrary topology is thus decomposed into two
stages. First, the analysis over the regular part is completed, using the tools described
in §4 and in §5. After verifying the smoothness over the regular part, we are left with
a finite number of isolated points of unknown regularity. The regularity analysis at
the extraordinary points has been studied by several authors, starting with the pio-
neering eigenvalue analysis work by Doo and Sabin [27], through the works by Ball
and Storey [2, 1], and completed by Prautzsch [86], Reif [88] and Zorin [99]. It is
based on the observation that the regularity of the surface is known over a ring of
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Figure 13: Three rings of patches.

patches QF encircling the extraordinary point, and there is a linear transformation 7'
mapping the patches Q¥ onto a refined ring of patches, Q**'. Figure 13 displays a
graphical description of three rings of patches around a vertex of valency five. The
rings, each composed of 15 quadrilaterals, are self similar, of reducing sizes.

The closure of the union of these rings defines an extraordinary patch covering
a ’hole’ in the regular part of the surface, and the smoothness of such a patch is
completely characterized by the transformation 7. In the following we present the
key ingredients of the smoothness analysis of such patches and the main results.

Let us denote the basic limit function of the subdivision on a regular net by ¢.
The ring of patches Q* may be expressed in terms of the control points P* influencing
this ring. Let P* = {PF PF ..., PX} C R® be the control points generating Q*, and
let the transformation T be the square matrix such that P¥*t! = T P*.

Each patch in the ring Q¥ € Q* is a parametric patch, triangular or quadrilateral,
which is a linear combination of translations of ¢(2*-) multiplying control points
{P¥},er, C PF. Le.,

QF=Jar, (6.1)
where

QY = {qf (u,v) = ZPf(/)@ku — i, 280 — 5,) | (u,v) € QY. (6.2)

relp

Q= {(u,v) | 0 <u,v <1} for quad-meshes and Q = {(u,v) |0 <wu,v A u+v <1}
for triangular meshes.

Since the regularity of ¢ is assume to be already known, it is clear that the
behavior at the extraordinary vertex is completely characterized by the matrix 7. It
is important to note that the conditions for regularity at the extraordinary vertex do
not require the knowledge of the explicit formula of ¢. Using a proper ordering of
the points P¥ [27], the matrix T is a block circulant matrix. The eigenvalues analysis
of this matrix plays a crucial role in the smoothness analysis, as described in [27],
[88], [99], [86]. The results include necessary and sufficient conditions for geometric
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continuity, i.e., existence of continuous limit normal at the extraordinary vertex and
necessary and sufficient conditions for C"-continuity at an extraordinary vertex -
under some assumptions.

Let the eigenvalues Ag, ..., Ay_1 of T be ordered by modulus,

Xo| > |A1] > > A=), (6.3)

and denote by Vj, Vi, ..., Va_1 € RY the corresponding generalized real eigenvectors,
assuming they exist.

As first shown in [27], a necessary condition for the continuity of the normal at
an extraordinary point is:

A=1> |>\1| = |)\2| > |>\3| , Vo= {]_,]_, ,]_} . (64)

Assuming (6.4) holds, let us consider the particular initial data P° = {P?, P?, ..., P%}
with

P]Q = (VLJ" VZ,J’? O)t ) (6'5)

and let us examine the corresponding rings of patches defined by (6.2).
Injectivity and regularity assumption: We assume that each mapping ¢j in
(6.2) is regular and injective, and that

(int{Q)} =0 . (6.6)

14

In [88], the collection of mappings {¢?} is termed as ’the characteristic map’
and the above assumption is thus referred to as the regularity and injectivity of
the characteristic map. The importance of this map is that it defines the natural
parametric domain for analyzing the smoothness of the surface at the extraordinary
vertex. For a discussion and analysis of the characteristic map see [84]. Under the
above assumption the following results hold:

Theorem 6.1 [88] Let (6.3) hold with \y = Xy being a real eigenvalue of T with
geometric multiplicity 2, and let the characteristic map be reqular and injective. Then
the limit surface of the subdivision is a reqular C' manifold in a neighborhood of the
extraordinary vertex for almost any initial data.

The necessary and sufficient conditions for C™-continuity at an extraordinary
vertex were derived independently by Prautzch [86] and Zorin [99]. These result is
equivalent to the polynomial reproduction result for uniform stationary C™ schemes
on regular meshes.

Theorem 6.2 (C™ conditions) Let the conditions of Theorem 6.1 hold, Then the
limit surface of the subdivision is a reqular C™ manifold in a neighborhood of the
extraordinary verter for almost any initial data, if and only if the following condition
holds:

For any eigenvalue \ of T satisfying |\| > AT,
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a. |\ = AL for some integer 0 < i < m,

b. For the initial data P° = {P}, P9, ..., PY} with
P} = (Vi;, V2, Vi) €R (6.7)

and V an eigenvector coresponding to \, all the patches QY defined by (6.2) lie on a
polynomial surface z = p(x,y) in R®, where p is a homogeneous polynomial of total
degree 1.

Theorem 6.2 does not give explicit constructive conditions that can help us to build
C™ scheme. The translation of the conditions in Theorem 6.2 into algebraic conditions
on the mask coefficients is rather complicated, and even in the C? case is not fully
resolved. The partial results in this direction include the construction of schemes
with bounded curvatures in [75], and the special patch construction by Prautzch and
Umlauf [87]. For some applications it is enough to have curvature integrability of
the subdivision surface. Reif and Schréder show in [89] that Catmull-Clark and Loop
schemes (among many others) have square integrable principal curvatures.

7 Limit values and approximation order

In this section we discuss two practical issues in the implementation of subdivision
algorithms in geometric modeling. One issue is the computation of limit values and
limit derivatives of the subdivision process at the diadic points at any refinement level.
The other important issue, though not widely attended yet, is how to actually attain
the optimal approximation order which is theoretically possible for a given scheme.
Namely, how to choose the initial control points so that the limit curve/surface will
approximate a desired curve/surface with the highest possible approximation power.

7.1 Limit values and derivative values

We consider here only the stationary case, namely when a¥ = a, k € Z_, and assume
that the basic limit function ¢ = ¢, is C™. The support of ¢ is contained in the
convex hull of the support of the mask, o(a), by (2.11). Furthermore, by (2.10) we
can express the limit function of S, as

f=520 =) fao(—a). (7.1)
a€Zs
Thus, the limit values at the integer points [ € Z*® are given by
f(B) = fa6(B~a). (7.2)
Q€EZS

By (7.2), the knowledge of the values of ¢ at the integer points gives one the possibility
of computing the limit values of the subdivision process on the integer grid Z*, using
only the initial control points f°. Similarly, the limit values on the diadic grid 2-*Z?
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are defined by the control points f* at level k. In the same way we note that the
values of a derivative of f at the integers are linear combinations of the values of
the same derivative of ¢ at the integers. The vector of values of ¢, or of one of its
derivatives, at the integer points may be computed each as the eigenvector of a finite
matrix.

To see this we recall that ¢ satisfies the refinement equation (2.15), and thus,

oap =2 0,062+ —a) (7.3)

where A € Z5, [A| = Y7, A; < m. At integer points § € Z* we have the linear
relations

0A0(B) =2 " a,00p(28 — ) =2 " a5, 0ne(7) - (7.4)

Now, since ¢ is of compact support, there is only a finite number N, of grid points
where ¢ is non-zero. Let Q = Z*("o(¢), then Ny = #€Q. The system of equations
(7.4), with 8 € Q is a square Ny x Ny eigensystem for the values {0\¢()}seq, and
it has a unique solution if we add the side conditions

Y Bod(=B) =L, Y BrOG(=B) =0, uEA, lul=|\. (75

—BeEN —BeEN

These side conditions, in view of (7.2), guaranty that the |A| order derivatives of
S xt|zs are correctly obtained, for || = |A|. For example, in the univariate case, the
vector of values {¢(f)} is an eigenvector of the matrix U with elements U; ; = ag;—;,
corresponding to the eigenvalue 1, and with the normalization > ¢(8) = 1. The
vector of values {¢'(f)} is an eigenvector of U with eigenvalue 2. Implementing this,
the rule for computing the limit derivatives of a curve defined by the 4-point scheme
(3.18) turns to be [33]:

Frh) = 2 [k~ S — w0 (7.

The method for computing limit values is actually applied to non-interpolatory
subdivision surfaces, so that at all refinement levels the rendered points are on the
limit surface. The shading of the surface at each level is done with normals which
are the actual normals of the limit surface. A detailed example of computing limit
normals at regular points and at extraordinary points is given in [96, ?] for the case
of the butterfly scheme.

7.2 Attaining the optimal approximation order

The term approximation order of a subdivision scheme S, refers to the rate by which
the limit functions generated by Sy, from initial data sampled from a smooth enough
function f, get closer to f. Namely, the largest exponent r such that

If = S flnzslloo < ch” .
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Yet, this order may be improved (for non-interpolatory schemes) by replacing the
initial data f|zs by Qf|nzs with @ a Teoplitz operator of finite support. Our aim is
to find the operator () which yields the largest approximation rate.

Let us start with an example.

Example 7.1 Let us consider the case of univariate cubic B-splines with integer
knots. It is known that the integer shifts of this cubic B-spline, Bz, span w3, and
this implies that the space generated by the integer shifts of the cubic B-spline has
potential approvimation order 4. If f € C*(R), then the use of function values as
control points gives a second order approximation, by the corresponding subdivision
scheme

@) =D FGRBs(5 = )| < eah® (7.7)

JET

However, using as control points the values

fy= @) = —2f (G = DR +50GR) - fG+DR) . (78)
yields the optimal fourth order approximation,
HOE > [iBs(5 = )| < eah® (7.9)

This special choice of Qy, is made so that the approzimation scheme in (7.9) reproduces
all polynomials in m3(R), namely, > (Qup)(jh)Bs(§ — j) = p(x) for any p € m3(R).
Therefore, to approzimate a curve c(t) by a cubic spline subdivision, given a sequence
of points {P;} ordered on it, then it is better to start the subdivision process with the
control points

~ 1 4 1

Pj:_é j—1+§Pj_6Pj+1 : (7.10)

The above idea is extended for general subdivision schemes in [71].

For a given uniform stationary scheme S, we identify the maximal m such that 7, (R?)
is invariant under S, in the sense that Sp|zs € 7, (R®) for any p € 7, (R*). Then,
the potential approximation order is m + 1. To achieve this approximation power we
look for a Teoplitz operator (), of minimal support X, of the form

(QF)a=> a.f2, . (7.11)

ocEY

such that

S3Q(p

7:) =p, Vp€mu(R’). (7.12)
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Namely, @ is the inverse of S3° on 7, (R*). If @) exists then it commutes with S°
on 7,,. Therefore, we look for @ such that QS°p|zs =p, Vp € 7m,(R®). Using the
results of §7.1 we can define the polynomials

2} =Y d)(—a) |, y€Z, |y <m,

Q€EZS

ry = Sgo{z”

which constitute a basis of m,,. Now we look for an operator () such that on 7, it is
the inverse of S2°, namely,

Qryo=2", vye€Z®’ , |y|<m. (7.13)

This can be formulated as a system of linear equations in the finite dimensional space
ﬂ-ma

qurv(x —o)=z", |y <m. (7.14)

oEY

In the above example of the cubic B-splines, the operator ) may be chosen also
as Qf = f — /" or as the difference operator given in (7.8). The two options act in
the same way on 73, yet, for the purpose of applying ) on the given data points we
need the discrete form (7.8). For further examples and applications see [71].
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