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Abstract. Three approximation processes for set-valued functions (multifunctions) with
compact images in R” are investigated. Each process generates a sequence of approximants,
obtained as finite Minkowski averages (convex combinations) of given data of compact sets in
R™. The limit of the sequence exists and and is equal to the limit of the same process, starting
from the convex hulls of the given data. The common phenomenon of convexification of the
approximating sequence is investigated and rates of convergence are obtained. The main
quantitative tool in our analysis is the Pythagorean type estimate of Cassels for the “inner
radius” measure of nonconvexity of a compact set. In particular we prove the convexity of
the images of the limit multifunction of set-valued spline subdivision schemes and provide
error estimates for the approximation of set-valued integrals by Riemann sums of sets and
for Bernstein type approximation to a set-valued function.
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1 Introduction

Three limit processes involving Minkowski averages (Minkowski convex combinations) of
compact (possibly nonconvex) sets, are studied in this work. Each process generates a se-
quence of approximants (sets or set-valued functions), obtained as finite Minkowski averages
of given data of compact sets in R". The limit of the sequence exists and and is equal to
the limit of the same process, starting from the convex hulls of the given data. The common
phenomenon of convexification of the approximating sequence is investigated and rates of
convergence are obtained.

The estimates of the error in the approximation, in terms of the Hausdorff distance
between the limit and the approximants comprise of two elements:
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(a) Convex case estimates — the distance between the convex limit and the approximants
obtained from the convex hulls of the data;

(b) Convexification rates — the distance between the two approximants, one obtained
from the given data, and one from their convex hulls.

The estimates of type (a) are mostly known and are obtained by a reduction of the
problem to the approximation of support functions ([16, 6, 3, 8]). The estimates of type (b)
provide the convexification rate and are obtained by the use of a nonconvexity measure of a
set, p, called the “inner radius” of this set ([15], [1], [17]). A measure of nonconvexity of a
compact set is a nonnegative number which is equal to zero iff the set is convex.

The main tool in our analysis is the Pythagorean type inequality,

p(Y A < | X (A, )

obtained in [4] for a nonconvexity measure which was later proved to be equal to the inner
radius [17].

Another inequality we use to estimate the convexification rate is the following Shapley—
Folkman—Starr type estimate, which is a consequence of (1) (cp. Appendix 2 in [15], Theorem
2 in [4] and Theorem 3.1.6 in [14]):

p(z Aid;) < min{vk, /n} max [Ailp(4:). (2)

The first example of a convexification process is the sequence of Riemann sums of a
Riemann integrable multifunction [12], approximating its Aumann integral [2]. The convexity
of this integral is well-known [2], and here we use the above technique to provide estimates
of the Hausdorff distance between the integral and the Riemannian sums.

The second process is the sequence of positive operators called here Bernstein-type ap-
proximations of a given multifunction. This class of approximants extends the classical
Bernstein operators for multifunctions [16]. We combine estimates of the approximation of
scalar functions and the inequality (2) to obtain pointwise convergence estimates to a set-
valued function with images which are the convex hulls of the images of the approximated
multifunction.

The third process is a spline subdivision scheme for compact sets [8]. Here we establish
the correctness of the conjecture formulated in [8] that the images of the limit multifunction
are convex, and provide error estimates.

Note that for k tending to infinity and max |A;| tending to zero, the bound (2) reconfirms

the well-known claim (see e.g. [14]) that limit processes involving convex Minkowski averages
with an increasing number of summands and vanishing weights, are convexification processes.
This is the case in Bernstein-type approximation and in set-valued numerical integraion for
which (2) is applied. However, in cases of iterative averaging processes of recursive character,
where at each step one constructs a fixed convex combination of a small number of summands,
obtained in the previous step, (2) may not imply reduction in the nonconvexity measure. Yet,
a repeated application of the sharp estimate (1) implies the convergence of the nonconvexity
measure to zero. In particular, (1) is applied to subdivision schemes.



The paper is organized as follows: In the next section we present and compare some
nonconvexity measures and survey their basic properties. The error estimates for set-valued
numerical integration and Bernstein type approximation of multifunctions with compact
images are presented in sections 3 and 4. In Section 5 we analyse the case of set-valued
subdivision schemes.

2 Nonconvexity Measures of a Compact Set

Throughout the paper we consider only compact sets in R”. First we introduce some notions
and notation. K, is the set of all nonempty compact subsets of R”, C, is the set of all convex
elements of IC,,, (-, -) is the inner product in R, |z| is the Euclidean norm of x € R*, B,(x) is
the closed ball with center x and radius r, S, (x) is the sphere with center z and radius r. The
Euclidean distance from a point z € R” to a set A is denoted by dist(z, A).The Hausdorff
distance between the sets A and B is haus(A, B), 0A is the boundary of A, relint(A) is the
relative interior of A, coA denotes the convex hull of A, ext(A) is the set of extremal points
of A (the last two are nonempty, if A is nonempty). A k-dimensional simplex is a convex
polytope of dimension k with k£ + 1 vertices. R, is the set of all nonnegative real numbers.
A linear Minkowski combination of the sets A and B is

MApB={ da+pub : a€ A, be B},

with A,y € R Incase \,u € R, A+ pu =1, M+ puB is termed a convex Minkowski
combination or a Minkowski average. We denote

radA = inf sup |z — al, diamA = sup |z — y|,
CEER" aGA :v,yEA

a segment [c,d] by [¢,d] = {Ac+ (1 —=AN)d : 0 <A< 1}
We use in what follows the identity (see e.g. [14]) for A\, u € R

co(AA + uB) = AcoA + pcoB. (3)

Throughout the paper we study set limits in the sense of the Hausdorff metric. It is well-
known ([14]) that K, is a complete metric space with respect to this metric.

We define a (general) measure of nonconvexity of a set A, based on a local modulus of
nonconvexity.

Definition 2.1 Let A € K,,. The function p(-, A) : coA — R, satisfying
(a) p(x,A) =0 iff x € A,
(b) for D C A and x € coD, p(z,D) > p(z, A),

is called local modulus of nonconvezity of A (p-distance from x € coA to A).

There are many possibilities to define the local modulus of nonconvexity p(x, A). Here we
cite known moduli from the literature:

1. pi(x, Ay =inf { |z —a| : a€ A} [4], [17];

3



k k k
2. pa(x, A) :inf{ ’/_;ai|x—ai|2 ca; €A x= Z:laiai .Z:lai =1, o; € Ry } [4];

3. ps(x, A) =inf {radS : S = {a;}¥, C A, x €coS} [15, 1];
Clearly, all local nonconvexity moduli p;(-, A), 1 < j < 3, satisfy conditions (a), (b).

Remark 2.2 In view of the Caratheodory theorem, the definitions of p;(z,A), j = 2,3
consider only simplices S = {a;}*_, C A of dimension k—1 < n. Moreover, one can prove by
standard compactness arguments that the infimum in every definition of pj(x, A), 1 < j <3,
1S G MINIMUM.

Definition 2.3 The nonconvexity measure of a set A corresponding to the local noncon-
vexity modulus p;(x, A) is defined as

p;(A) = sup{ p;(x, A) : x € cod }. (4)

Note that p;(A) = haus(A, coA). The measure p3(A) is called the “inner radius” of A [15],
[1]. The measure py is introduced and studied in [4]. Other measures of nonconvexity may
be found in [17, 14].

In the rest of the paper we denote by p(A) the inner radius p3(A) and by p(-, A) the
corresponding local modulus. We also denote py(A) = p1(A).
It is known [17] that p2(A) = p(A) . It is easy to see that py(z, A) < po(z, A), therefore

pr(A) < p2(A) = p(A). (5)

In [17] it is shown by an example that pg is not equal to p,. Indeed, the measures py
and p are not topologically equivalent, as is demonstrated by the next example.

Example 2.4 Let A, C R?>, n = 1,2,..., be sets defined by A, = co{ (—1,%),(1,%)} U
{(0,0)} and let A = co{(—1,0),(1,0)}. Then py(A,) <+, and lim haus(4,,A) = 0. Yet,
¢n = (3,55) € cod,, and p(A,) > pleq, An) > 3.

Next we present properties of the measure p(-). First, basic properties following directly
from the definition and then the Pythagorean-type inequality (1) proved in [4] for p,.

Proposition 2.5 Let A € K,,, then
1. p(AA) = |A|p(A) for every A € R.
2. p(A+{b}) = p(A) for everybe R".
3. p(A) <rad(A).

Theorem 2.6 ([4]) Let A; € K,,, i =1,....k. Then



We conjecture that (6) holds also for py.
The following example shows that (6) is sharp.

Example 2.7 Let A = {a1,a:} CR", B ={by,b} CR". Then

p(A+ B) < \/p2(A) + p2(B). (7)
with equality iff (a; — ag, by — by) = 0.

Indeed, for A = {ay,as} with a; # ay, p(A) = @ The parallelogram co(A + B) =
[a1, as] + [b1, be] can be represented as the union of two congruent nonintersecting triangles
Ty, T, each of them with edges of length |a; — as|, |by — be| with an acute (or at most right)
angle between them. Note that p(ext(T1)) = p(ext(T3)) Hence p(A + B) = p(ext(Ty)). If
all the angles of 71 do not exceed 7, then the center of the circumscribed circle of T is in
Ty, and p(ext(Ty)) = R, where R is the radius of the circumscribed circle of 7). In this

case, it is an elementary fact that 2R < ¢, where ¢ = \/|a1 — ag|? + |by — b2|?, and there
is an equality when the angle between the sides is Z. If there is an obtuse angle in T}
(not between the segments [ai,as] and [by, by]), then the maximal side of 77 is of length
d = max{|a; — as|, by — by} and p(ext(T7)) = & < £.

In case of a right angle between the two segments A and B, there is an equality in (7).

Note that the above proof establishes (7) also for pg.

We apply in our analysis the following inequality which follows from (6) and Property 1
of Proposition 2.5.

Corollary 2.8 Let A, € K,, \, R, i =1,....,k. Then

N

P M) < pmax{p(A)},  with pw=13 AL (8)

i=1
Moreover, p < 1 if
k
E>2, Y =1, XN>04i=12 .,k (9)

=1

By (8) and (9), repeated Minkowski averaging with fixed weights produces a sequence of
sets with the measure of nonconvexity p(-), decreasing at least geometrically.
On the other hand, by (2), averaging with an increasing number of summands & and
1

with equal weights (A; = ¢ in (2)), is a convexification process with rate O(3). Indeed, let

us apply (2) to the simple averaging process with one set.
Example 2.9 (cp. [10]) Let A € K,,, and define A, =LY ¥ | A, The inclusion A C A, C
coA, implies coAy = coA, and one easily gets by (5) and (2) for k > n,
_ p(A)
haus(Ay, coA) = haus(Ay, coA;) < p(Ag) < \/ET (10)

Therefore limy,_o Ay = coA. An estimate of the form haus(Ag,coA) = O(3p(A)) with a
larger constant than \/n is obtained in [10]. It is not hard to see that in R? the sharp constant
is not /2, but 1.



3 Set-Valued Numerical Integration

By application of the estimate (2) we obtain estimates of the rate of approximation of the
set-valued integral of a multifunction with compact images by its Riemann sums of sets. We
note that numerical integration and numerical solution of diffrential inclusions for set-valued
functions with convex compact images are studied in [7, 6, 3].

We consider a multifunction F' : [a,b] — K,, which is globally bounded on [a,b]. Recall
that the integral of a set-valued function F : [a,b] — K, is defined as the set of all integrals
of integrable selections of F' [2], namely

I(F):/abF(x) dx:{/abf(x) dr : f(z) € F(z) ae. in (a,b) , fis integrable }. (11)

The Riemann sum of F'is defined in the standard way.
Let A ={x : z; €[a,b, 0<i <N, 2; 1 <x;, 1 <i <N, zg=a,xy =0b} be
a partition of [a,b], h; = x; — x; 1. The Riemann sum of F' relative to this partition is

N
defined as S*(F) = X h;F(c;), where ¢; € [z; 1,z;]. Recall that F is integrable in the sense
i=1

of Riemann if its Riemann sums tend in the Hausdorff metric to I(F'), when the maximal
subinterval length h(A) = max. h; tends to zero (see e.g. [12]). It is well known that I(F)

is convex and compact [2]. In particular,

I(F) = I(coF). (12)

For any Riemann integrable multifunction F': [a,b] — KC,,, I(F) = h(lAign . SA(F). Moreover,
—

F(-) is Riemann integrable if and only if coF'(-) is Riemann integrable [12]. Here we provide
an estimate of the approximation error haus(S®(F'), I(F)) based on the estimate (2), and
on known estimates for haus(S>(coF), I(F)). In particular, if F' is Hélder continuous with
an exponent « (hence, so is coF'), then haus(S®(coF), I(F)) = O(h%) (see e.g. [7, 6, 3]).

Proposition 3.1 If the multifunction F : [a,b] — K,, is globally bounded, then

haus(S2(F), I(F)) < v/nh(A) sup rad(F(t)) 4+ haus(S>(coF), I(coF)). (13)

a<t<b

Proof: In view of (3), S®(coF) = coS®(F). Thus, by the triangle inequality and by (12),
we get

haus(S2(F), I(F)) < haus(S2(F), coS*(F)) + haus(S*(coF), I(coF)). (14)

By (5), (2) and by Property 3 in Proposition 2.5, the first summand in the right-hand side
of (14) is bounded by

haus(S2(F), coS2(F)) < p(SA(F)) < rh(A) sup rad(F(t)). (15)

a<t<b

The proof is completed by combining (14) and (15). ]



4 Bernstein-Type Approximation of Set-Valued Func-
tions

In this section we consider a class of positive linear operators called here Bernstein-type
approximations, applied to set-valued functions. This class of approximations contains the
Bernstein approximation of multifunctions [16].

We consider approximations to a set-valued function with compact images F' : [0, 1] —

Kn, of the form:

An(F0) = 3 G @ (), 2 € 0,1], (16)

where Cy ,,(z) > 0 for any x € [0,1]. We study the convergence of A,,(F,z) to coF(z) as
m — oo. Our basic assumption on (16) is that this approximation sequence converges for
scalar functions.

The most interesting example is the Bernstein approximating polynomial of degree m
of F, B,,(F,-) :[0,1] — K, defined by (16) with the binomial distribution probabilities as
coefficients,

Chom(z) = (2)&(1 — z)mk, (17)

The Bernstein set-valued approximation is studied by Vitale [16].
Another example is the polynomial approximation H'N)(F, z) defined with the hypergeo-
metric distribution probabilities,

Nz\ (N(1-z)
Chol(x) = ()((N’;) (18)

with the parameters N, m, N > m and the real binomial coefficients (%) = Yy=be-(y—k+1)

k! .
First we prove that if F' has convex images, then for each z € [0, 1], Jim An(F,z) = F(z)
in the Hausdorff metric. We also give error estimates. After that we show that if the images
of F' are only compact, then, for a fixed x € (0,1), the limit of A,,(F,z) when m tends to
infinity is the convex hull of F(z). Estimates of haus(coF'(x), A,,(F,x)) are provided.

For F with convex images, we apply the following results for approximations of scalar
functions by linear positive operators. An operator L(f,z) is a linear positive operator if it
is linear with respect to f and if for non-negative f, L(f, x) is non-negative.

Result A ([5], Chapter 9) Let L,,(f,z),m = 1,2,... be a sequence of linear positive
operators on the space of continuous functions defined on [0,1]. Denote

JE— k . _— k .
A = k@o&}foHLm(m v1) = 27 ()loo,f0,1]

Then, for any continuous function f :[0,1] — R,

1FC) = Ln(Fs Msogor) < 1 oot + Cra(f, 1/ Am), (19)

where w(f,-) is the modulus of continuity of f and Cy = 3 if Ly, reproduces constants.



Note that lim A, = 0 for any sequence of positive operators {Ln(f, )}, which
m—0o0

converges to f.
For the Bernstein approximation A, = = and we have for scalar functions [5]:
Result AB Let f:]0,1] = R be a Lipschitz continuous function, then

1
vm’
where the constant C depends on the Lipschitz constant of the function f. Moreover, if f
has a Lipschitz continuous first derivative, then

|f(x) = Bn(f,2)| < C (20)

£(2) ~ Balf,2) <O (1)

For the “hypergeometric” approximation (16), (18), as in the case of Bernstein approxi-
mation, using the mean and the variance of the hypergeometric distribution [11], one may
show that A, = O(%).

Since the technique of support functions is central to the case of convex-valued multi-
functions, we recall the definition of these functions (see e.g. [13]). For a set A € C, its

support function §*(A4,-) : R* — R is defined as follows:
(A1) = rgleajc(l,a% [ e R".

Note that for any fixed [ € R", 0*(A,I) is finite.
The following properties of the support functions §* ([13]) are important for our analysis.
For A, B € C,,

1. 0*(A+ B,-) =6(A,-) +0%(B,-),
2. 0"(AA,-) = X6*(A,-), A >0,
3. haus(A, B) = max [0*(A,l) — ¢*(B,1)|, where S,_; is the unit sphere in R".

l€SH -1

We consider now the set-valued Bernstein-type approximations of a multifunction defined
on [0, 1], with convex images, which is Lipschitz continuous:

haus(F(z), F(y)) < Lz —y|, =x,y €[0,1].
Proposition 4.1 If F : [0,1] — C, is Lipschitz continuous, then
haus(A, (F,z), F(x)) < C\/Am, (22)
where the constant C depends only on the Lipschitz constant of F'.

Proof: For a fixed vector [ € R*, by (16), and by Properties 1, 2 of support functions,
the support function of the set A,,(F,x) is a Bernstein-type approximation of the support
function of F'(-), namely

k

6*(Am(Fa $),l) = in: Ck,mé*(F(E)?l) = Am(5*(F(),l),l‘) (23)
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Since by Property 3 of the support functions, 6*(F'(+), ) is Lipschitz continuous with the same
Lipschitz constant as F', uniformly in [ € S,,_;, we may apply Result A for the approximation
of the scalar function §*(F'(+),[). This gives

A (6°(F(2),1)) = 8" (F(2), )] < CfAms

with C' depending on the Lipschitz constant of F'. Taking the supremum over [ in S,,_;, we
obtain (22), in view of (23) and Property 3 of support functions.

]
Corollary 4.2 For {B,,(F,z)}, and {HM (F, )}, A = O(s), and the rate of approi-
mation is O(ﬁ) Moreover, if the support functions 6*(F(-),1) have first derivatives, which
are uniformly Lipschitz in | € S,,_1, then

haus(B,,(F,z), F(z)) < C m™". (24)

In [16] the convergence of { By, (F, x)}, is proved for a set-valued fuction with convex com-
pact images by reducing the problem to Bernstein approximation of support functions, but
without explicit error estimates of the form (20), (21). Also the shape-preserving properties
and the convexification property of { B, (F, x)},, are studied there.

To study the convergence of {A,,(F,x)},, to coF(z) for F with compact (not necessarily
convex) images, we introduce the quantity Q,(z) = max. Crm ().

Theorem 4.3 If F : [0,1] — K, is Lipschitz continuous, then

haus(A,,(F, ), coF (r)) < C\/E +v/nQ(r) max radF(t), =z € [0,1]. (25)

t€[0,1]

Proof: By (3), A,,(coF,z) = coA,,(F,z). From the triangle inequality, we get
haus(A4,,(F, z),coF (z)) < haus(A,,(F, z),coA,,(F,x)) + haus(A,,(coF, x),coF(x)). (26)

The second term in the right-hand side of (26) is estimated in Proposition 4.1. The first term
in the right-hand side of (26) is estimated in view of (5), by the measure of nonconvexity of
Am(F7 l‘),

haus(A,, (F, ), coA,(F,x)) < p(An(F,x)).

By (2), (16) and Proposition 2.5,
p(An(F, ) < V/nQp(x) max radF'(t).

t€[0,1]
This, together with the estimate (22) applied to the second term in the right-hand side of
(26), completes the proof. n
To obtain the rate of convergence in (25), we need an upper bound of Q,,(z) and of \,,.

In the case of Bernstein approximations the bound of @, (z) is obtained easily from the local
Central Limit Theorem for the binomial distribution (see e.g. [9], Sections 11, 12).

9



Result B If Q,,(r) = max (?)xk(l —2)™* meN, xe(0,1), then

0<k<m

Tim /ma(l — 2)Q(x) = \/% (27)

It follows directly from Result B that there exists a constant ¢(z), depending on x, such
that

Qo) <92 w0, se) 29
This together with Theorem 4.3 leads to

Corollary 4.4 For a Lipschitz continuous multifunction F : [0,1] — IC,,

M

haus(B,(F, z),coF(z)) < C(x) m™2, z € (0,1), (29)
where the constant C'(x) depends on x and on F.

In the case of {HN)(F, )}, limy—s00Qm(x) = 0 since the hypergeometric distributions tend
to the continuous Pearson distributions when m — oo ([11]).

Corollary 4.5 Let F :[0,1] — K, be Lipschitz continuous. Then for x € (0,1),

lim_haus(H\Y)(F, z),coF (z)) = 0. (30)
Remark 4.6 Note that by (27) and (28), C(z) in (29) is unbounded in [0,1]. The non-
uniformity of the estimate (29) reflects the fact that for all m, By, (F,0) = F(0), B, (F,1) =
F(1), while at any x € (0,1), (29) holds.

5 Convexification in Subdivision of Compact Sets

Spline subdivision schemes applied to compact convex sets are considered in [8]. For initial
data {F?, i € Z}, with F, i € Z convex compact sets, the subdivision scheme of order
m > 2 consists of a sequence of refinement steps,

Fik—i—l _ Z aﬂjp}c, i€Z, k=0,1,2,.. (31)
JEL

with o™ = {agm} = (T)/2m*1, i=0,1,..,m, agm} =0, i € Z\{0,1,...,m}}, a finitely

supported mask.
Note that > aim = > ay” | =1, and that for m > 2

)

S = v, <1, Y (ah)? = pn < 1. (32)

) [
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Also note that convex compact sets are generated at each step of (31), if FY, i € Z
are compact and convex. At the k—th refinement level one defines the piecewise linear
multifunction

=Y Ffn(2"t —i), teR, (33)
i€Z
where h(-) is the hat function
1=t for|t| <1,
ht) = {0 otherwise, (34)

and {FF, i € Z} are the sets generated by the subdivision scheme at refinement level k. Tt is
shown in [8] that for initial convex sets {F?, i € Z}, there exists a set-valued spline function
E° R — C,, which is the uniform limit of the subdivision scheme, namely

lim sup haus(F2°(t), F*(t)) = 0. (35)

The proofs in [8] are based on the support functions parametrization of convex compact sets.
It is shown there that

=Y FB,,(t —1i) foreachteR, (36)
1EZ

with B,, the scalar B-spline of order m (degree m — 1) with integer knots and support [0, m].

It is conjectured there that for initial data consisting of compact (not necessarily convex)
sets, F* = {F? : 1 € Z}, any spline subdivision scheme converges, and the limit multifunction
is identical with the one obtained by the same subdivision scheme applied to initial data
consisting of the convex hulls of the sets F°. In this section we prove this conjecture by
using Corollary 2.8.

Theorem 5.1 The spline subdivision scheme of order m when applied to initial data consis-
ting of compact sets F°, converges uniformly in the Hausdorff metric to the spline multifunc-

tion with conver images
=" coF} By, (t —i). (37)

€L

Moreover,
haus(F*(t), £ (1)) < () *lo(F)|| + haus(coF M(t), F2(2)), (38)
where a, = max{\/fm, /Um} and ||p(FF(-)| = sup p(FH(¢)).

Proof: By (33), for 2 ki <
hence by (8), ||p(F¥(-))

27k + 1), F¥(¢) is a convex combination of F} and FF,,

t <
ma x p(FF). Thus, using (8), (31)and (32), we obtain that

| =
Ip(FM())] < max p(Ff) < agymax p(FF) < ... < ()" max p(F).
(3 (3 13
The above inequality gives the convexification rate in the subdivision process.
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To see that the limit multifunction is given by (37), we denote by G*I(¢) the functions as
in (33), obtained from the initial data G° = {coF? : i € Z}, and by G* the corresponding
limit. It is proved in [8] that G*°(t) = F>°(t) (with F°(-) defined in (37)). Observe that by
(3), GH¥(t) = coF¥(t) for each t, and that

haus(F¥ (1), G®(t)) < haus(F¥ (1), G¥(t)) 4+ haus(GF(t), G (t))
= haus(F¥(2), coF (1)) + haus(G¥I(t), F2°(t))
Using (5) and Corollary 2.8, we finally get
haus(FH(#), Foe (1)) < p(FM(1)) + haus(GH (1), F (1))

< [lp(F¥)[| + haus(GM(1), Fo2 (1)) < (cwm)*[|p(F )| + haus(GH(1), Fo (1)),

which implies (38). By the convergence of the subdivision scheme for convex sets [8], and
since |a,,| < 1, the proof of the theorem is completed. Estimates of haus(GF!(t), F°(t)), are
obtained in [8]. ]

Remark 5.2 The proof of Theorem 5.1 applies also for the general class of subdivision
schemes with non-negative masks a = {a; > 0 : i € Z}, which converge uniformly for scalar
data.
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