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Abstract� Attempts at extending spline subdivision schemes to operate

on compact sets are reviewed� The aim is to develop a procedure for ap�

proximating a set�valued function with compact images from a �nite set of

its samples� This is motivated by the problem of reconstructing a �D object

from a �nite set of its parallel cross sections� The �rst attempt is limited to

the case of convex sets� where the Minkowski sum of sets is successfully ap�

plied to replace addition of scalars� Since for nonconvex sets the Minkowski

sum is too big and there is no approximation result as in the case of convex

sets� a binary operation� called metric average� is used instead� With the

metric average� spline subdivision schemes constitute approximating opera�

tors for set�valued functions which are Lipschitz continuous in the Hausdor�

metric� Yet this result is not completely satisfactory� since �D objects are

not continuous in the Hausdor� metric near points of change of topology�

and a special treatment near such points has yet to be designed�
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�� Introduction� The interest in developing subdivision schemes for
compact sets is motivated by the problem of the reconstruction of �D objects
from a set of their �D parallel cross sections� or the reconstruction of a �D shape
from a set of its �D parallel cross sections� For a review on methods for the
reconstruction of �D objects from a �nite set of parallel cross sections see ���	�

In our approach every n
dimensional body is regarded as a univariate
set
valued function with compact sets of dimension n� � as images� determined
by parallel cross sections ��	� The set
valued function is then approximated from
the given samples �cross sections� The approximating procedure we use is an
extension to compact sets of spline subdivision schemes�

A spline subdivision scheme generates from data consisting of real values
attached to the integer points� a smooth function� In case of data sampled from
a smooth function� the limit function� generated by such a scheme� approximates
the sampled function� and has shape preserving properties ��� �� ��	�

Here we consider spline subdivision schemes operating on data consisting
of compact sets� A spline subdivision scheme generates from such initial data
a sequence of set
valued functions� with compact sets as images� This sequence
converges in the Hausdor� metric to a limit set
valued function� In the case of
�D sets� the limit set valued function� with �D sets as images� describes a �D
object�

For the case of initial data consisting of convex compact sets� we intro

duced in ��	 spline subdivision schemes� where the usual addition of numbers
is replaced by Minkowski sums of sets� Then the spline subdivision schemes
generate limit set
valued functions with convex compact images which can be ex

pressed as linear combinations of integer shifts of a B
spline� with the initial sets
as coe�cients� The subdivision techniques are used to conclude that these limit
�set
valued spline functions� have shape preserving properties similar to those of
scalar spline functions� but with shape properties relevant to sequences of sets
and to set
valued functions�

In the case of nonconvex initial sets it is shown in ��	 that the limit set

valued function� generated by a spline subdivision scheme� using the Minkowski
sums� coincides with the limit set
valued function� generated by the same subdi

vision scheme from the convex hulls of the initial sets� Therefore� a set
valued
function generated in such a way� has too big images to be a good approximation
to the set
valued function from which the initial nonconvex sets are sampled�

To de�ne spline subdivision schemes for general compact sets� which
do not convexify the initial data� i�e� preserve the non
convexity� the usual
Minkowski average is replaced by a binary operation between two compact sets�
the metric average� introduced in ��	 and applied within subdivision schemes in
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��	� As is shown in ��	� spline subdivision schemes� based on the metric average�
converge in the Hausdor� metric� The limit set
valued function generated by
such a scheme� from initial data sampled at distance h from a Lipschitz contin

uous set
valued function with compact images� approximates to order O�h the
sampled function�

�� Preliminaries� First we introduce some notations� The collection of
all nonempty compact subsets of Rn is denoted by Kn� Cn denotes the collection
of convex sets in Kn� h�� �i is the inner product in R

n � jxj is the Euclidean norm
of x � Rn � Sn�� is the unit sphere in Rn � coA denotes the convex hull of the set
A�
The Hausdor� distance between two sets A and B in Rn is de�ned by

haus�A�B � maxf sup
x�A

dist�x�B � sup
y�B

dist�y�A g�

where the Euclidean distance from a point x to a set A � Kn is

dist�x�A � minfjx� yj � y � A g�

The support function ���A� � � Rn � R is de�ned for A � Kn as

���A� l � max
a�A

hl� ai� l � Rn �

The set of all projections of x on the set A is

�A�x � f a � A � ja� xj � dist�x�A g�

The set di�erence of A�B � Kn is

A nB � f a � a � A� a �� B g�

A linear Minkowski combination of two sets A and B is

�A� �B � f �a� �b � a � A� b � B g�

for A�B � Kn and �� � � R� The Minkowski sum A�B corresponds to a linear
Minkowski combination with � � � � �� A Minkowski average �a Minkowski
convex combination of two sets is a linear Minkowski combination with �� �
non
negative� summing up to ��

We denote by S the class of multifunctions �set
valued functions of the
form�

F �t �

NX
i��

Aifi�t���

where N is �nite and Ai � Cn� We say that F � S is Ck if in �� fi � Ck for
i � �� � � � � N �
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The notions convergence� continuity� Lipschitz continuity for set
valued
functions or for sets� are to be understood with respect to the Hausdor� metric
�distance� Let us recall that Kn is a complete metric space with respect to this
metric�

�� Spline subdivision schemes for points in Rd� A spline curve
in Rd of degree m is de�ned by

C�t �
X
i�Z

P �
i Bm�t� i for each t � R���

where P � � fP �
i � R

d � i � Zg are the control points and Bm�� is a B
spline of
degree m� Due to the compact support of Bm� the treatment of the case in ��
applies also to curves de�ned by a �nite set of control points�

The curve in �� is the limit of a sequence of piecewise linear curves�
each interpolating the points generated by the spline subdivision scheme Sm at
a certain re�nement level according to the re�nement step�

P k��
i �

X
j�Z

a
�m�
i��jP

k
j � i � Z� k � �� �� �� � � ���

with the spline weights a
�m�
i �

�
m� �

i

�
��m� i � �� �� � � � �m�� and a

�m�
i � � for

i � Z n f�� �� � � � �m� �g�

For m � �� the above scheme has coe�cients a� �
�

�
� a� � �� a� �

�

�
�

and the re�nement step is�

P k��
�i �

�

�
P k
i �

�

�
P k
i�����

P k��
�i�� � P k

i ���

In this case the limit is a linear spline curve� interpolating the initial points
fP �

i � i � Zg�

A quadratic spline curve is obtained as a limit in case m � �� with the

well
known scheme of Chaikin� The coe�cients of this scheme are� a� �
�

�
�

a� �
�

�
� a� �

�

�
� a� �

�

�
� and the re�nement step is

P k��
�i �

�

�
P k
i �

�

�
P k
i�����

P k��
�i�� �

�

�
P k
i �

�

�
P k
i�����
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An important result �see e�g� ��	� ��	 is that the scheme ��� starting from
fP �

i � i � Zg � ld
�
� converges to a function f�� � C�Rd � i�e� lim

k��
sup
i�Z

jf���ki�

P k
i j � � if and only if lim

k��
sup
t�R

jf�t�
P
i�Z

P k
i h��

kt� ij � �� where h�� is the �hat

function�

h�t �
n
�� jtj for jtj � ��
� otherwise�

��

The limit function f�t is denoted by S�m P ��

�� Extension to convex compact sets� The case of convex compact
sets is investigated in ��	�

We assume that the initial data fF �
i � i � Zg are convex compact sets�

Then the addition operation in �� is replaced by the Minkowski sum of sets� and
the multiplication of a set by a scalar is de�ned as

�A � f �a � a � A g� � � R���

The re�nement step becomes

F k��
i �

X
j�Z

a
�m�
i��jF

k
j � i � Z� k � �� �� �� � � ����

We note that convex compact sets are generated at each step of ���� if F �
i � i � Z

are compact and convex�
It is shown in ��	 that the set
valued spline function

F�m �t �
X
i�Z

F �
i Bm�t� i for each t � R����

is the uniform limit in the Hausdor� metric of the subdivision scheme�

lim
k��

sup
i�Z

haus�F�m ���ki� F k
i  � ��

or equivalently� that lim
k��

sup
t�R

haus

�
F�m �t�

P
i�Z

F k
i h��

kt� i

�
� �� where h�� is

the hat function de�ned in ��� The proofs in ��	 are based on the support
functions parametrization of convex compact sets� The linear �and ordering
properties of the support functions� re�ecting the corresponding properties of the
Minkowski operations on convex sets� allow to reduce the subdivision process on
convex compact sets to subdivision on the support functions� and to apply known
results on subdivision of scalar functions�

An easy way �suggested by David Levin to see that F�m in ��� is the limit
of the spline subdivision scheme� is based on the associativity and distributivity
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of the Minkowski sum and the positive
scalar multiplication of sets� Writing
F � �

P
i�Z

F �
i �

�i� with

�
�i�
j �

�
� for j � i
� j �� i�

we get F�m �
P
i

F �
i S

�

m ��i�� Since S�m ��i� � Bm��� i �see e�g� ��� �	� ��� follows�

The spline subdivision schemes have the following shape preserving prop

erties�

�� Monotonicity preservation� If F �
i � F �

i�� for all i� then F k
i � F k

i�� for
all k� i� and F�m is monotone in the sense that F�m �t � F�m �t� h for any
t � R and h � ��

�� Convexity preservation� If � F �
i�� � F �

i � F �
i�� for all i� then �F k

i�� �

F k
i � F k

i�� for all k� i� and F�m is convex in the sense that its graph is
convex� i�e�� �F�m �t� h � F�m �t � F�m �t� �h for all h� t � R�

As already mentioned� subdivision schemes for compact sets constitute a
method for the approximate reconstruction of �D objects from their �D parallel
crossections� or� respectively� of �D shapes from their �D parallel crossections�
Thus the rate of approximation of these schemes is of importance� Indeed� for
continuous set
valued functions we have an approximation result�

If the set
valued function G�� has convex compact images �it is not nec

essary that its graph is convex� and is Lipschitz continuous� that is� haus�G�t�
�t� G�t � O��t� and the initial data for the spline subdivision scheme consist
of samples of G� of the form F �

i � G�i�t� i � Z� then

haus�G�t� F�m �t � O��t�

One can easily use the method of proof in ��	 to show that if G�� is only con

tinuous� then the right
hand side of the last estimate is O���G� t��t� where
��G� t��t is the modulus of continuity of G de�ned in terms of the Hausdor�
distance�

The estimate haus�G�t� F�m �t � O���t� is obtained for a multifunc

tion G�t which has a support function ���G�t� l with second derivative with
respect to t� uniformly bounded in l � Sn��� Clearly� every multifunction G from
S � C� satis�es this condition�

It is well known that Minkowski averages with equal weights of a large
number of nonconvex sets� tend as the number of sets grows� to the limit of the
averages with equal wights of the convex hulls of the sets� It turns out that for
every spline subdivision scheme� since a �xed Minkowski convex combination of a
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small number of sets is repeated an in�nite number of times� the limit set
valued
function equals to the limit multifunction obtained by the same scheme from the
convex hulls of the initial sets ��	�

F�m �t �
X
i�Z

�coF �
i  Bm�t� i for each t � R����

The proof of ��� is based on the use of a measure of nonconvexity of a set�
the so
called inner radius� which is an upper bound for the Hausdor� distance
between the set and its convex hull� Two important ingredients are used in the
proof� A Pythagorean type upper estimate for the inner radius of a Minkowski
sum of compact sets by the inner radii of the summands� proved by Cassels ��	�
and the fact that the coe�cients of averaging in the re�nement step of the spline
subdivision schemes ��� are non
negative and sum up to �� With these two
ingredients it can be shown that the Hausdor� distance between the set F k

i and
its convex hull vanishes as k � 	� uniformly in i� as a geometric progression
with a ratio less than ��

Therefore� with the Minkowski averages� no approximation result can be
expected for set
valued functions with nonconvex images� This failure of the
Minkowski sum for nonconvex sets is in accordance with the observation that the
Minkowski average of convex sets has properties� which do not hold for nonconvex
sets� Let A�B�C � Cn� � � � � �� Then

�� �A� ��� �A � A� � � ��� ��

�� �A� ��� �B � �A� ��� �C �
 B � C�

These two properties do not hold for nonconvex sets� Indeed� for a nonconvex set
A � Kn� �A� ��� �A � A�

Here is a simple example� showing that Minkowski averages for nonconvex

sets are too big� A � f�� �g� An �
�

n

nP
i��

A �

�
��
�

n
�
�

n
� � � � � �

�
� Moreover� in the

Hausdor� metric� lim
n��

An � coA� demonstrating the convexi�cation nature of

Minkowski averaging processes�

�� The metric average� A binary operation introduced in ��	� and
called in ��	 �metric average�� has several properties which make it appropriate
for our purposes�

De�nition 	
�
 Let A�B � Kn and � � t � �� The t�weighted metric

average of A and B is

A�tB � ftfag� �� � t�B�a � a � Ag � ft�A�b � ��� tfbg � b � Bg���
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where the linear combinations above are in the Minkowski sense


The following properties of the metric average are easy to observe ��	�
Let A�B�C � Kn and � � t � �� � � s � �� Then

�� A�� B � B� A�� B � A� A�t B � B ���t A�

�� A�t A � A�

�� A �B  A�t B  tA� ��� tB  co�A �B�

The metric property of this average� which is essential for our applications and
which gave it its name� is proved in ��	�

�� haus�A�t B�A�s B � jt� sjhaus�A�B�

The metric average of sets in R has several more properties ��	�
Let A�B�C � K�� D�E � C�� t � ��� �	 and let ��A denote the Lebesgue measure
of the set A� Then

� D�tE � tD � ��� tE�

� ��A�tB � t��A � ��� t��B�

� ��co�A�tB n �A�tB � t��coA n A � ��� t��coB n B�

� A�tB � A�tC �
 B � C�

In the next example we have plotted the one
dimensional sets A� B and the set
Ct � A�tB in one picture� giving B at the y
coordinate �� A at y��� and Ct at

y� t for t �
�

�
�
�

�
�
�

�
�see Figure �� The two sets are

A � ��� �	 � ��� �	 � ����� �	 � ��� ��	 � ������ ��	� B � ��� �	 � ��� ���	 � ���� ��	�

It follows from the de�nition of the metric average that the metric average
of two sets produces a subset of the Minkowski average and also that the metric
average of a set with itself is the set� Indeed� this binary operation� being smaller
than the Minkowski average� does not convexify repeated averaging processes�
Since it is de�ned as a binary operation between two sets� in order to use it in
spline subdivision schemes we need another representation of these schemes in
terms of repeated binary averaging�

�� Spline subdivision schemes with metric averages� First� we
represent the spline subdivision schemes in terms of repeated binary averages�
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Figure �� The sets A� B and Ct

The re�nement step �� can be obtained by one step of re�nement of the
linear spline subdivision� followed by a sequence of binary averages� The sequence
of steps which replaces �� consists of �rst de�ning

P k����
�i � P k

i � P k����
�i�� �

�

�
�P k

i � P k
i��� i � Z����

and then de�ning for � � j � m� � the intermediate averages

P k���j

i� �
�

�
�

�
�P k���j��

i � P k���j��
i�� � i � Ij ����

where

Ij �

�
Z� j odd

�
�Z n Z� j even�

���

The �nal values at level k � � are

P k��
i � P k���m��

i for m odd� i � Z�

P k��
i � P k���m��

i� �
�

for m even� i � Z�

For example� in case m � �� one step of ��� followed by one step of ��� is
equivalent to the re�nement step of the Chaikin scheme�

The above procedure is carried over to compact sets� with the metric
average replacing the averaging operations in ��� and ��� ��	� First re�ning
with metric averages

F k����
�i � F k

i � F k����
�i�� � F k

i � �
�
F k
i��� i � Z����
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and then� for � � j � m � �� replacing the sequence fF k���j��
i � i � Zg by

metric averages of pairs of consecutive sets

F k���j

i� �
�

� F k���j��
i � �

�
F k���j��
i�� � i � Ij ����

The �nal re�ned sets are

F k��
i � F k���m��

i for m odd� i � Z�

F k��
i � F k���m��

i� �
�

for m even� i � Z�

The convergence of this scheme follows from the metric property of the metric
average� Denote dk � sup

i

haus�F k
i � F

k
i��� k � �� �� � � � � Then dk�� � �

�d
k� At

the k
th stage of the subdivision� the set
valued function F k�t is constructed as
follows�

F k�t � F k
i ���t	 F

k
i��� i��k � t � �i� ���k�

where ��t � �i � � � t�k� It follows from the metric property of the metric
average that

sup
t
haus�F k���t� F k�t � O���k�

therefore fF k�tgk�Z� is a Cauchy sequence in the complete metric space Kn�
Thus the limit of this sequence exists and is denoted by S�mF ��t�

The approximation property below justi�es the reconstruction of objects
from their parallel cross sections by a spline subdivision scheme which uses metric
averages instead of Minkowski averages�

Let the univariate multifunction G�t have compact images and let it be
Lipschitz continuous� If F �

i � G�i�t� i � Z� then

sup
t
haus�S�m F ��t� G�t � O��t�

An example ��	 of a shell included between two quarters of spheres is represented
in Figure ��

This body can be represented by the following set
valued function F �x�
de�ned for � � x � ��

F �x � f �y� z � R� j z � �� r�x � y� � z� � ��� � r�x g�

where r�x � � � x�� Given the initial crossections F ��� F �h� F ��h� � � � � F ���
we reconstruct this shell by a metric subdivision scheme of Chaikin type� and
obtain a sequence of piecewise linear �in a metric sense set
valued functions
fF k�tg�k��� with F k�t interpolating the sets generated at level k� The crossec


tions F �

�
h

�
� ����i

�
� i � �� �� �� � of F �� obtained after three subdivision iter


ations from the initial sets as above with h � ������ are presented in Figure ��
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Figure �� A shell included between two quarters of spheres
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Fig� �� Four cross�sections of the �nal body

The maximal Hausdor� distance between these crossections at the third iteration
and the corresponding crossections of the initial object is �������

Since �D shapes and �D objects� when regarded as univariate multifunc

tions� are usually discontinuous in the Hausdor� metric at points of change of
topology� the above approximation result does not hold near such points� This
observation calls for a special treatment near points of change of topology� a
subject which is still under investigation�
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