Spline Subdivision Schemes for
Compact Sets with Metric Averages

Nira Dyn and Elza Farkhi

Abstract. To define spline subdivision schemes for general compact
sets, we use the representation of spline subdivision schemes in terms of
repeated averages, and replace the usual average (convex combination)
by a binary averaging operation between two compact sets, introduced
in [1] and termed here the “metric average”. These schemes are shown to
converge in the Hausdorff metric, and to provide O(h) approximation.

§1. Introduction

In this paper, we introduce spline subdivision schemes for general compact
sets.

Motivated by the problem of the reconstruction of 3D objects from their
2D cross-sections, we consider spline subdivision schemes operating on data
consisting of compact sets. A spline subdivision scheme generates from such
initial data a sequence of set-valued functions, with compact sets as images,
which converges in the Hausdorff metric to a limit set-valued function. In the
case of 2D sets, the limit set valued function, with 2D sets as images, describes
a 3D object.

For the case of initial data consisting of convex compact sets, we intro-
duced in [3] spline subdivision schemes, where the usual addition of numbers
is replaced by Minkowski sums of sets. Then, the spline subdivision schemes
generate limit set-valued functions with convex compact images which can be
expressed as linear combinations of integer shifts of a B-spline, with the initial
sets as coefficients. The subdivision techniques are used to conclude that these
limit “set-valued spline functions” have shape preserving properties similar to
those of scalar spline functions, for shape properties defined on sequences of
sets and on set-valued functions.

For the case of non-convex initial sets, it is shown in [4] that the limit set-
valued function, generated by a spline subdivision scheme, using the Minkow-
ski sums, coincides with the limit set-valued function, generated by the same
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subdivision scheme from the convex hulls of the initial sets. Therefore, this
generated set-valued function has too large images to be a good approximation
to the set-valued function from which the initial non-convex sets were sampled.

To define spline subdivision schemes for general compact sets which do
not convexify the initial data, i.e., preserve the non-convexity, we use the
representation of spline subdivision schemes in terms of repeated averages, as
presented in Section 2. The usual Minkowski average is replaced by a binary
operation between two compact sets, introduced in [1]. This binary operation
between sets, termed here the “metric average”, is discussed in Section 3. As
is shown in Section 4, spline subdivision schemes, based on the metric average,
converge, in the Hausdorff metric, to set-valued functions which are Lipschitz
continuous. Also, for initial data sampled from a Lipschitz continuous set-
valued function with compact images, the limit function of a spline subdivision
scheme approximates the sampled set-valued function to order O(h).

§2. Spline Subdivision Schemes via Repeated Binary Averages

An m-th degree spline subdivision scheme, in the scalar setting, refines the
values

fFrt={fi"la e Z} C R,
where f* is defined by

f§ - Z a[cyni]Zﬁfg_lv o€, k=123,.., (1)
BEZ
with the mask a[am_][mTH] = (mjl)/Qm, a=0,1,....m+1, and aim_][mTH] =0,

for a € Z\{0,1,...,m+1}. It is clear from (1) and the mask formulae that f*
is an average of two or more values from f¥~1. It is well known that the values
f* can be obtained by one step of first degree spline subdivision followed by
a sequence of binary averaging. Thus, first define

k,0 _ k,0 _ k—
2a :fclyC 17 2a+1:%(f§ 1‘|‘ a—i—})? a €77, (2)

Then, for 1 < j < m — 1, define the intermediate averages

I =3 D, e el
2
where - o
o > J odd,
I = { %Z\Z, j even. (3)

The final values at level k are

fE = fhm=1" for m odd, o € Z ,

k,m—1
f§ = faﬁ , for m even, a € ZZ.
2
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For example, in the case m = 2, one step of averaging yields the Chaikin
algorithm in the form

k k—1 k—1
fo=3fa + 357

k 3 k=1 | 1 ;h—1
foioa =320 38

At each level k, the piecewise linear function, interpolating the data (27 a, fX),
o € 72, is defined on R by

o= (R e (550 st @)

for a27% < ¢t < (a + 1)27%. Note that, by (4), every value of f¥(¢) is a
weighted average of two consecutive elements in f*. If the constructed se-
quence { f* (t)}rem . converges uniformly to a continuous function f*°(t), then
f°°(+) is defined as the limit function of the subdivision scheme [2]. Thus, the
limit function of spline subdivision schemes can be described in terms of binary

averages only.

In this paper, we study spline subdivision schemes for compact sets in-
stead of scalars. Since we want to avoid the convexification caused by the use
of Minkowski averages [4], we propose, in the next section, to use instead the
binary metric average introduced in [1].

§3. The Metric Average of Two Sets

In many applications, averages of sets are defined as Minkowski averages.
Here, we propose to use a different kind of a weighted average of two sets,
which is a subset of the Minkowski convex combination and which possesses
several important properties.

First, we introduce some notations. The collection of all compact subsets
of R" is denoted by K,,, <-, > is the inner product in R", |z| is the Euclidean
norm of x € R", the Hausdorff distance between the sets A,B € K, is
haus(A, B), co A denotes the convex hull of A, the Euclidean distance from a
point  to a set A € K, is dist(x, A). The set of all projections of x on the
set A is

Ma(z)={a€ A : |a—z|=dist(z,A)}.

The set difference of A, B € K, is
A\B={a : a€ A, a¢ B}.
A linear Minkowski combination of two sets A and B is
M+ puB={ a+pub : a€ A, b€ B},

for A,B € K,, and A\,u € IR. The Minkowski sum A + B corresponds to a

linear Minkowski combination with A = 4 = 1.
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A segment is denoted by
[c,d] = {/\c—l—(l—/\)d :0< AL 1}, ¢,d e R"

Definition 3.1. Let A, B € K,, and 0 <t < 1. The t-weighted metric average
of A and B i1s:

A®B=M(At B)| JM(B,1-1A) (5)
with
M(A,t,B) = | (Ha} + (1 - 1)Ip(a)), (6)

where the linear combinations in the last equality are in the Minkowski sense.

The metric average and its two components in (5) have several noticeable
properties.

Theorem 3.2. Let A, B,C € K, and 0 <t <1, 0 < s < 1. Then, the
following properties hold:

1. M(M(A,t,B),s,B) = M(A,ts,B).
M(ANB,t,B)=ANBC M(B,s,A).
A®B=(ANB)UM(A\B,t,B)UM(B\ A,1—1,A).
A®oB=B,A® 1 B=AA®:B=B®d_ A
A A=A
A®BCtA+(1—-1t)B C co(AU B).
If B is a convex superset of A, then, for 0 <t < s <1,

NS ok Loy

ACAe@,BCA®BCB.

8. The Hausdorft distance between A @, B and each of the given sets A and

B is a linear function of t, or, more generally, for s,t € [0,1],
haus(A @&¢ B, A &5 B) = |t — s|haus(A, B).

Proof: The proof of Property 1 is easily obtained by the observation that,
for every b € lIg(a) and 0 <t < 1,

Op(ta+ (1 —t)b) = {b}.
Otherwise, there is a closer point to a from B. Therefore,

M(M(A,t,B),s,B) = {s(ta+ (1 —t)b) + (1 —s)b la € A, beIlg(a)}
= {(ts)a +(1—ts)bla€ A, be HB(a)}
= M(A,ts,B).

Properties 2-6 follow from the definition. Property 8 is proved in [1].
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To prove Property 7, we note that since A C B, A = AnB C B.
By Property 2, M(A,t,B) = M(AnN B,t,B) C M(B,1 —t,A), therefore
A@¢B=M(B,1—1t,A). Hence, by Property 6 and the convexity of B,

A=ANBCM(B,1—tA) =Ad BCco(AUB)=B.

Thus, it remains to prove that M(B,1 — s, A) C M(B,1 —t,A). This is
easily established by the convexity of B, which yields that, for each b € B and
a € I14(b), the whole segment [a,ta + (1 — t)b] is a subset of M(B,1 —t, A).
Since, for s > t, [a,sa + (1 — $)b] C [a,ta + (1 — t)b], the desired inclusion
follows. O

Remark 3.3. In contrast to Property 5, the equality tA 4+ (1 —¢t)A = A
with the Minkowski average, is true only if A is convex. Generally, only
an inclusion holds: A C tA + (1 — t)A C coA. It is well-known that the
sequence of increasing Minkowski averages of a set A tends to co A. (See e.g.,

[4, Example 3.11]).

Note that A &; B may be non-convex even for convex sets A, B C R",

for n > 2 ([1]).

It follows from Property 2 that A C B = A C A &, B. In general, in
the nonconvex case, it is not true that A C B — A @&; B C B. This is true
only if B is convex and is proved in Property 7.

Example 3.4. Let the sets A and B in IR* be a ring and its center, respec-
tively:

A:{(:z;,y)EIRZ Do §:1;2—|—y2§r2}, B:{(0,0)}.

Then it is not hard to see that the metric average of A and B with a weight
t € [0,1] is the t times contracted ring A:

Ad: B = {(:zj,y) eR? : 21 <22 442 < tzrg}.

64. Metric Spline Subdivision Schemes for Compact Sets

Given {F%},ecz, a sequence of compact sets in IR", we define recursively a
sequence of sequences {{Fgf}aez}kez of compact sets.
+

First, we define the initial sets at level k, from the sets at level k — 1, by
k0 _ pk—-1 k0 _ pk-1 k-1
Fye =Fa Fyoy1 = Fa @§Fa+1v a € 7. (7)
Then, for 1 < 5 < m — 1, we define the intermediate metric averages

k,j kj— k,j—1 ‘
Faj%:FaJ 1@%Fa_|‘_71 ) aelj, (8)
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where I; is defined in (3). The final sets at level k are defined as

FF = FFm=1 " for m odd, (9)

FF = Fj;ﬂi_l for m even, (10)

for o € 7Z, with the corresponding piecewise-linear interpolating set-valued
function F*(-),

Fk(t) = Fk-|-1 Dart—a FX

[ «?

a2 F<t<(a+1)27% acZ. (11)

First, we prove two basic metric results which are used in the proof of the
convergence theorem and in the proof of the approximation result.

Lemma 4.1. Let F* = {F¥ | a € ZZ} be defined as above and let

d* = sup haus(FF, FF ).

ac’
Then
dd < 27RO, (12)
Proof: If we denote
" = sup haus(F¥7, Fyy,), (13)
aclj_a

then it follows from (7) and Property 8 that

haus(Fy°, Fyfy) < 3d*~', B e Z,

1
2
and, therefore

d*0 < 1qk-1, (14)
Also, for a € I;, by (8), the triangle inequality and Property 8,
k. k. k. k,j—1 kg—1 gk,
haus(Fa_%,Fa_i_%) < haus(Fa_%,Fa ) + haus(F; 7Fa—|—%)
haus(FXI 71 FRi=1) 4 Thaus(FE—1 FRITT

k,j—1
)

IA A
Q. W=

which implies d¥7 < d*7=1 and therefore
dhi < dho, (15)
This, together with (12) yields
db = ghm=1 < 1gh=t, (16)

hence (12) holds. O
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Lemma 4.2. Let the sequence {Fk(-)}kez+ be defined as above. Then,
haus(FF(4), FR(t)) < Cd¥, k€ Zy, (17)
where C' = % + %, with m the degree of the spline subdivision scheme.

Proof: First, we prove the inequality

m —

haus(FyH FRy < , keZl.. (18)

We prove (18) for m odd. The case of m even is similar. By (7), (9) and the
triangle inequality we get
haus(FC’f, szcj—l) = hauS(sz;LOv sz;Lm_l)

< haus(sz;LO Fk—H’l) + lflaus(F’H_L1 Fk+1’2) +...

P 2043 20+3 77 2a

k+1,m—2 k+1,m—1
—I—haus(an_i_% JEy ).

It follows by (8), (13) and Property 8, that

[\

m—

haus(F¥, FiH) < 3

1 gk+1,5
2d .
]:

Using (15) and (14), one gets

(m — 1)d*+10 < (m —1)d*

2 - 4 '
Now, we prove (17). Let a27F <t < (o + %)2_’“. It follows from (11) and the
metric Property 8, that

haus(FY, FAF1) <

haus(FZf,Fk(t)) < gk haus(Fk'i'l(t),sz;l) < dH

2
hence, by the triangle inequality, (18), Property 8 and (16), we obtain
haus(Fk+1(t), Fk(t)> < haus(Fk+1(t), sz;1> + haus(szjl, FZf)
+ haus(FC’f, Fk(t)>
m—1

< dk 4 Tdk + 1dk < Cd*.

For (a + %)Q—k <t < (a+1)27% we have a similar bound, using FZk(—;}l—l)
instead of szjl. O

Theorem 4.3. The sequence {Fk(-)}kez+ converges uniformly to a set-
valued function F°(-), which is Hausdorff Lipschitz continuous with a Lips-
chitz constant d° = sup haus(Fy, Fo_ ;).

[e3

Proof: By Lemma 4.1, (11), and Property 8, it follows that, for every §
haus(Fk(t +4), Fk(t)> < §2kdk < 5d°.
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Hence, the set-valued functions F*(.) are uniformly Lipschitz continuous with
the constant d°. By the triangle inequality,

haus(Fk+M(t), F* (t)) < k+§:_l haus(Fi"i'l(t), Fi(t)>,

and, by Lemmas 4.1 and 4.2, for any positive integer M,

k+M—1
. d°
haus(F*HM(1), FE() < Y < Oy (19)
1=k

where (' is defined in Lemma 4.2. This implies that, for every ¢, the sequence
{F*(t)} is a Cauchy sequence in K, and, since K, is a closed metric space
under the Hausdorff metric, the sequence {F¥(¢)}; tends, for each ¢, to a
compact set F'*°(t). The convergence is uniform in ¢ by (19). The uniform
Lipschitz continuity of { F*(-)} yields that F>°(¢) is Lipschitz continuous with
the same constant d°. O

Theorem 4.4. Let the set-valued function G(-) : R — K, be Lipschitz
continuous with a Lipschitz constant L, and let the initial sets be given by

F° = G(a + ah), a € 7, for arbitrary a € [0,h). Then,
haus(Fk(t), G(t)) < Cih, foreachk =0,1,.., (20)
where F*(.) is defined in (11), and

Ck:<7+Tm>L, E>1, Co=2L.

Proof: By (19), the triangle inequality and the metric Property 8, we get,
for k > 1 and ¢ satisfying ah <t < (a + 1)h,

haus(Fk(t), G(t)) < haus(Fk(t), Fo(t)> + haus(FO(t), Fg) + haus(Fg, G(t))
<20d° +d° + Lh <2(C + 1)Lh,

where C' is defined in Lemma 4.2. Here, we used the Lipschitz condition on
G which yields that d° < Lh. This proves the claim of the theorem, since, for
k =0, the term with C is missing. O

Corollary 4.5. Under the assumptions of Theorem 4.4, the distance between
the original set-valued function G(-) and the limit set-valued function F(-)

is bounded by

max haus(F>(t),G(t)) < rtm

Lh. (21)

Remark 4.6. The last corollary indicates that the metric spline subdivision
scheme produces good approximations of G(+) even for non-convex-valued set-
valued function G(-) with non-convex images. An analogous result for spline
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Fig. 2. Four cross-sections of the final body.

subdivision schemes, based on Minkowski sums of sets, is true only for convex-
valued G(-), since, as is shown in [4], the limit set-valued functions generated
by such schemes are convex-valued. The inequality (21) implies that, if the
initial set-valued function G is not convex-valued, then, for small h, the limit
set-valued function F'*° has non-convex images, which are close to those of G
in the Hausdorff metric.

This approximation property is also attained by F(+), according to The-
orem 4.4. Yet, it is expected that F*° is “smoother” than F°, as is indicated

by our numerical tests. In the future work, we intend to develop smoothness
measures for such set-valued functions in order to quantify this statement.

Example 4.7. A shell included between two quarters of spheres is represented
in Figure 1. This body can be represented by the following set-valued function
F(x), defined, for 0 < a <1, by

F(z) = {(y,z) ER?|2<0, r(z) <y?+:2 < R(:L')},

where r(z) = 1 — 2%, R(x) = (1.2)? — 2%. Given the initial cross-sections

F(0),F(h),F(2h),...,F(1), we reconstruct this shell by a metric subdivision
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scheme of Chaikin type, and obtain a sequence of piecewise linear (in a metric
sense) set-valued functions F* : [ay,b;] — K,, where a; = %(1 — 278\,
by = 1 — aj. The cross-sections F3(% +0.257),7 = 0,1,2,3, of F?, obtained
after three subdivision iterations from the initial sets as above with h = 0.125,
are presented in Figure 2. The maximal error between these cross-sections at

the third iteration and the corresponding cross-sections of the initial object is
0.0122. The calculations and pictures are obtained using MATLAB 6.

Remark 4.8. The application of Corollary 4.5 to the reconstruction of 3D
objects from their 2D cross-sections, as in Example 4.7, is not as wide as
might be expected. It is very easy to observe that, for a nonconvex compact
3D object, even if its boundaries (outer and inner boundaries) are smooth,
the univariate set-valued function, with images the 2D parallel cross-sections
of the object, might be discontinuous at certain points of the boundary. Dis-
continuity points are boundary points with a tangent plane parallel to the
cross-sections planes, and the last planes have empty intersection with the
object in the neighborhood of the contact point. Our conclusion is that a 3D
object can be approximated by a spline subdivision scheme, for any direction
of parallel cross-sections, if it is a smooth convex object with smooth convex
holes.

In our approach, we approximate the object “inside” its domain, namely,
for those values of the 1D variable corresponding to non-empty cross-sections.
Our method, as it is represented here, does not approximate well the object
near the boundary of its domain.
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