
An Efficient Algorithm for the Computation of the
Metric Average of Two Intersecting Convex Polygons,

with Application to Morphing
Evgeny Lipovetsky† and Nira Dyn‡

School of Mathematical Sciences, Tel-Aviv University, Israel

Abstract. Motivated by the method for the reconstruction of 3D objects from a set of
parallel cross sections, based on the binary operation between 2D sets termed “metric
average”, we developed an algorithm for the computation of the metric average
between two intersecting convex polygons in 2D. For two 1D sets there is an algorithm
for the computation of the metric average, with linear time in the number of intervals in
the two 1D sets. The proposed algorithm has linear computation time in the number of
vertices of the two polygons. As an application of this algorithm, a new technique for
morphing between two convex polygons is developed. The new algorithm performs
morphing in a non-intuitive way.

1. Introduction. In this work an algorithm for the computation of the metric average
between two intersecting convex polygons in 2D is developed and studied. The metric
average of two compact sets is a union of the weighted averages between any point from
any set of the two, and the subset of all the closest points to it from the other set.
 The original application of the metric average is for “piecewise linear” approximation of
set-valued functions [2]. It is applied in spline subdivision schemes for compact sets, a
procedure which is motivated by the problem of the reconstruction of a 3D smooth object
from its parallel cross-sections [4]. An algorithm for the computation of the metric
average of 1D compact sets with computation time which is linear in the number of
connected subsets in the two 1D sets is introduced in [3].
 The metric average of two sets is a subset of the Minkowski average of the sets and
generally is a non-convex set (even for two convex sets). The Minkowski average is
much bigger than the metric average. For example the Minkowski average of a non-
convex set with itself is a larger set containing it, while the metric average is the set itself.
The metric property of the metric average is that its Hausdorff distance from any one of
the averaged sets changes linearly with the weight parameter in the average.
 For the reconstruction problem of a smooth 3D object from its parallel cross-sections,
the assumption that the projections of two consecutive cross-sections into a parallel plane
intersect significantly, is natural. The choice of convex polygons was made although for
such polygons the reconstruction from parallel cross-sections can be done by using
Minkowski sums [5]. Yet the algorithm developed in this work is regarded as a first step
in developing an efficient algorithm for the computation of the metric average of two
general polygons. The authors have recently developed a general algorithm for the
computation of the metric average of two intersecting regular polygons.
 An additional outcome of this work is a new morphing technique between two convex
polygons, based on the metric average. The morphing of shapes or objects is a common
task in producing animations and visual effects. The goal of a morphing process is to

†eug@post.tau.ac.il
‡niradyn@post.tau.ac.il

change “smoothly” a source shape or object into the target shape or object. An intuitive
way to do this is to find a correspondence between elements in the two shapes, and to
map these elements into each other. For example in [1] methods based on correspondence
between meshes are reviewed.
 We suggest a new non-intuitive approach to the morphing of 2D shapes, which does not
require a search for corresponding parts. We produce the intermediate objects as the
metric average computed with suitable weights between the source shape and the target
shape, mapped by a rigid motion to intersect significantly the source. The performance of
the new technique is demonstrated by an example. Note that the intermediate shapes are
non-convex, although the source and the target shapes are convex polygons.
 Here is the outline of the work: Section 2 gives the background, it introduces the metric
average and studies the internal structure of the computed set. Section 3 presents the
algorithm. First it describes how to split the original problem into several simple ones,
and presents several sub-algorithms, each one solving a simple sub-problem. Then all the
sub-algorithms are integrated into the final algorithm. Complexity analysis of the
algorithm is performed in Section 4. An example demonstrates the performance of the
algorithm in Section 5. Our morphing technique based on the algorithm from Section 3 is
studied in Section 6. Some important properties of this technique are observed and
proved, and an example demonstrating its performance is given in Section 7.

2. Preliminaries. The metric average is a binary operation defined on two sets, which
depends on a parameter t∈[0,1]. To define this binary operation we first introduce some
notations.
 For two sets A and B in Rn we define

A\B = { a: a∈A, a∉B }.
∏A(b) ⊂ A is the set of all closest points to some b∈Rn from the set A, termed the
projection of b on the set A.
An addition of two sets is the Minkowski sum of these sets

A + B = { a + b: a∈A, b∈B }.
A multiplication of a set by a scalar is the set

tA = { ta: a∈A }.
| ab | is the Euclidean distance between the points a, b.
[a,b] is the segment with boundary points a, b.

The metric average of two compact sets A, B∈Rn and a weight t∈[0,1] is defined as the
set:

A ⊕t B = { t{ a } + (1-t) ∏B(a): a∈A } U { t∏A(b) + (1-t){ b }: b∈B }.
It is easy to verify that A⊕t A = A, A ⊕0 B = B, A ⊕1 B = A. An example of the metric
average of two non-convex sets in 1D is given in Fig.1. An example of the metric average
of two intersecting convex polygons is given in Fig. 6.

2

Fig.1.The metric average of two non-convex sets in 1D.
A=[0,1] ∪[2,3], B=[0.5,1.3]∪[1.8,2.5], A⊕1/2B=[c,d]∪[e,f].

Introducing the non-symmetric operation between two sets,
Mt(A, B) = { t{ a } + (1-t) ∏B(a): a∈A },

and taking into consideration the fact that for all p∈A∩B, p∈A⊕t B (since for p∈A∩B,
p = ∏A(p) = ∏B(p)),the metric average is a union of three sets:

A ⊕t B = Mt(A\B, B) ∪ M(1-t)(B\A, A) ∪ (A∩B).

In the following we limit the discussion to the case where the two sets are two
intersecting convex polygons A, B∈R2. We compute the set A ⊕t B by computing its
boundary.

Fig. 2. Two intersecting convex polygons and their pockets.
≡ - A-pockets, ð - B-pockets, intersection polygon in gray

 As we can see in Fig. 2, there is an intersection polygon A∩B (the gray area) which is
convex and there are “pockets” (the white area). We define a pocket as a connected
component of the symmetric difference between the two polygons. A disjoint union of all
the pockets is the symmetric difference between the two polygons A and B.
 A pocket is a simple polygon, not necessarily a convex polygon. A simple polygon is a
simply connected polygon without holes and self-intersections of the boundary.
The boundary of a pocket consists of two polylines. One of these polylines is a part of A’s
boundary, and is denoted by pA, the second is a part of B’s boundary and is denoted by pB.
Each pocket has a common polyline with the boundary of the intersection polygon A∩B.
We call a pocket an “A-pocket” if it is a subset of A. Similarly, we call a pocket a “B-
pocket” if it is a subset of B.

3

 The computation of boundary(A ⊕t B) is done in terms of an operation termed the exterior
boundary average of a pocket. Here we introduce this operation. For a pocket P, Extbt(P)
is a polyline defined as

Extbt(P) = {
Mt(pA, pB), P ⊂ A,

Mt(pB, pA), P ⊂ B,

 Observe that for A, B convex polygons in R2 A\B is a disjoint union of simple polygons
which are A-pockets P1 … PN and B\A is a disjoint union of simple polygons which are
B-pockets Q1 … QM.
 With this notation the boundary of the metric average A ⊕t B, t∈[0,1] is given by
 N M

boundary(A ⊕t B) = UExtbt(Pi) Ụ UExtb(1-t)(Qj).
 i=1 j=1
The algorithm we present in the next section is based on the above representation of
boundary(A ⊕t B).

3. The algorithm. We have seen in the previous section that it is possible to reduce the
original problem of calculating the boundary of A⊕t B to a smaller one – namely of
calculating the exterior boundary average of pockets. We limit the following discussion to
the case of an A-pocket since the processing of a B-pocket is similar.
 The boundary of an A-pocket P consists of two polylines pA and pB. pB denotes the
common boundary of P and A∩B, and is termed the interior boundary. pA is termed the
exterior boundary.

Fig. 3. An example of an A-pocket.
PA is the polyline through {xb, Ai, Ai+1, Ai+2, Ai+3, xe}. PB is the polyline through {xb, Bj, Bj+1, Bj+2, xe}.

 Denote by pA
1, …, pA

n the ordered vertices of pA, pB
1, …, pB

m the ordered vertices of pB,
xb and xe the intersection points between pA and pB and γ1 and γ2 the intersection angles
between pA and pB at xb and xe respectively (See Fig. 3). We define a pocket to be

4

“acute” if both angles γ1 and γ2 are less than π/2, otherwise the pocket is called “non-
acute”. The closest points to a point p∈pA from the boundary of B in an acute pocket are
in pB (see Proposition 3.2), which is not necessarily the case for a non-acute pocket. This
observation is in the basis of the proof of the linear complexity of the algorithm (see
Section 4).
 The algorithm for calculating Extbt(P) processes the points on the exterior boundary of
the A-pocket P looking for the nearest points on the boundary of the polygon B. The
geometric property stated in Proposition 3.1 allows us to calculate projections only for
the breakpoints of the exterior boundary.
Proposition 3.1 Let qj = ∏pB(pA

j), j = 1,…,n. Then q1,…,qn are ordered along pB.
Moreover, for any point v in the segment [pA

j, pA
j+1], j = 1,…,n-1, ∏pB(v) is in the part

of pB between qj and qj+1
.

Proof: First note that for any point u in a segment of the form [v, ∏pB(v)], with v a point
on pA, we have ∏pB(u) = ∏pB(v). Also, since pB is convex, the set ∏pB(v) for any point
v in the pocket P, consists of a unique point [7]. Thus two segments of the form [v, ∏pB(
v)] and [w, ∏pB(w)], with v, w on pA, cannot intersect. This proves the claim of the
proposition. 

For an acute pocket the search of q1,…, qn is straight forward.
Proposition 3.2: For an acute pocket P with boundaries pA and pB, ∏B(p) ⊂ pB, for all p∈
pA.
Proof: P is an acute pocket. So the angles γ1 and γ2 (see Fig. 3) are less than π/2. So both
∏B(pA

1) and ∏B(pA
n) are in pB. A repeated application of proposition 3.1 yields the

result. 

 The computation of the exterior boundary average of a pocket can be further reduced to
several simpler operations.
Calculating Πs(p) – the closest point to a point p = (px, py) in a segment s in R2.
 This algorithm checks whether the projection of point p to the line containing the
segment s is in the segment. If it is then the projection is returned. If not then the nearest
end point of the segment is returned. 

For a point x and a polyline p, we denote by ∏p(x, h, d) the operation that starts a search
from the seed h∈p in the search direction d to compute ∏p(x). Using this operation the
search for the closest points from the boundary of B to the points of pA is in one direction
in the case of acute pockets. This property of the algorithm guarantees its linear
complexity (see Section 4).

Calculating Πp(x, h, d) – the closest point to a point x in a polyline p using a seed h
and a search direction d∈{ -1, 1 }.
We denote by p1, …, pm the ordered vertices of p.

1) Let p j be the first end point of the segment that h belongs to (relative to d).
set pj := h; set k: = j

2) If d = 1 then limit := m – 1
Else limit := -2

5

3) While dk ≤ limit do:
3.1 pcurr = ∏[p

k

,p
 k + d

]
 (x)

3.2 If pcurr ≠ p k+d then break loop 3.
4) Return pcurr. 

Remark: to calculate the closest point to a point x in a polyline p we use the previous
algorithm with h = p1 and d=1.

The following algorithm is the core algorithm for the computation of Extbt(P).
Calculating Mt(s, p) for a segment s (with end points s1 and s2) and a polyline p.
We assume that s and p do not intersect (See Fig. 5.) or have an intersection point which
is either s1 or s2. In calculating Extbt(P), s∈pA either does not intersect pB or intersects pB

only at one of its boundary points. (See Fig. 4.)
1) Find the points q1 and q2 in the polyline p such that q1 = ∏p(s1) and q2 = ∏p(s2).
 (Assumption: q1 is a predecessor to q2 in some order.)
2) Define by v0,…,vn the breakpoints of p between q1 and q2 and define v-1 = q1, vn+1=

q2.
3) Calculate q’α = tsα + (1-t)qα, α = 1,2; define y-1 = q’1, y2n+2 = q’2.
4) For each breakpoint vi of the polyline p between q1 and q2 do:

4.1 Construct a perpendicular w to the segment vi-1vi from vi.
4.2 Find the intersection x2i between w and s.
4.3 Construct a perpendicular w’ to the segment vivi+1 from vi.
4.4 Find the intersection x2i+1 between w’ and s.
4.5 Calculate yα = txα + (1-t)vi, α = 2i, 2i+1.
4.6 Connect y2(i-1)+1 from the previous step with y2i.
4.7 Connect y2i with y2i+1.

 5) Connect y2n+1 with y2n+2. 

 To see that the result of the algorithm is Mt(s, p) observe that for any x2i-1< x < x2i,
∏p(x)∈[vi-1,vi], since the line through x, which is perpendicular to the line through vi-1, vi

intersects the latter inside [vi-1, vi]. Also by the continuity of the projection mapping, all
points in [x2i, x2i+1] are projected to the point vi, because x2i and x2i+1 are projected to vi.
Thus [y2i, y2i+1] = Mt([x2i, x2i+1], p). Since for x∈[x2i-1, x2i], ∏p(x)∈[vi-1,vi] then Mt([x2i-1,
x2i], p) = [y2i-1, y2i]. The number of breakpoints in the resulting polyline is O(n).

6

Fig. 4. Calculating M1/2(s, p) in the intersecting case.

Fig. 5. Calculating M1/2(s, p) in the non-intersecting case.

Remark: the first step of the above algorithm can be omitted when calculating Extbt(P).
Since q1 is known from the previous step, only q2 has to be calculated. Thus we introduce
the operation Mt(s, p, q1, q2) to replace Mt(s, p) and compute q2 prior to it.

 We introduce two additional operations. For a polyline p and a point q∈p we denote by
sourcep(q) the index of the first end point of the segment in the polyline p that point q
belongs to. In the same manner targetp(q) denotes the second end point. For example, in
Fig. 5 v1 = sourcep(q2) and v2 = targetp(q2). We introduce the notation ∂B for the
boundary of B. At this stage we have the tools for calculating Extb(P).

7

Calculating Extbt(P) for a pocket P.
1) If γ1 > π/2 then dir := -1

Else dir := 1
 Set q1 := xb

 Set q2
 = ∏∂B(pA

1, q1

, dir).

 Set The_Result := Mt(pA
1xb, ∂B, q1, q2

).
 q1

 := q2

2) For each segment pA
i pA

i+1 in pA (i = 1,...,n-1) do:
2.1 If | pA

i+1source∂B(q2) | < | pA
i+1target∂B(q2

) | then dir := -1
 Else dir := 1
2.2 Set q2

 = ∏∂B(pA
 i+1

, q1
 i

, dir).
2.3 Set Current_result := Mt(pA

i pA
i+1, ∂B, q1, q2

).
2.4 Concatenate Current_result with The_result
2.5 Set q1 := q2

3) Concatenate Mt(pA
nxe, ∂B, q2

 , xe
) with the previously calculated polyline.

In the acute case the number of breakpoints in the produced polyline is O(n + m), where
n is the number of breakpoints in pA and m is the number of breakpoints in pB.

Based on all previous algorithms, the algorithm for computing the boundary of the metric
average of two intersecting convex polygons can be easily formulated.
Computing boundary(A ⊕t B)

1) Find the intersection A∩B and the pockets T1…Tk.
2) For each pocket Ti, i = 1,..,k

If Ti is an A-pocket Then calculate Extbt(Ti)
Else calculate Extb1-t(Ti)
Concatenate current result with the previous.

4. Complexity Analysis.
 To estimate the complexity of our algorithm, we first derive a bound on the number of
pockets of two intersecting convex polygons. For that we introduce the notation | A | for
the number of vertices of a polygon A, and #{ A, B } for the number of pockets
generated by the intersection of the polygons A, B .

Proposition 4.1: Let A and B be two intersecting convex polygons. Then
#{ A, B } ≤ 2min{ | A |, | B | }.
Proof: We define an intersection of two polygons to be generic if the boundaries of the
two polygons intersect at isolated points that are not vertices. Since degenerate cases do
not increase the number of pockets relative to generic intersections, we can limit this
proof to generic intersections. (See Fig. 2.)
 As we mentioned above the boundary of a pocket P consists of two polylines: the inner
polyline and the outer polyline. The minimal possible number of segments of an inner
polyline is 1. (See Fig. 2.) Thus there are at most | B | A-pockets and at most | A | B-
pockets. Each intersection point of the boundaries of A and B defines the end point of the

8

boundary polylines of a pocket and the starting point of the boundary polylines of the
next pocket.
 We term an A-pocket and a B-pocket as “corresponding” if the last intersection point of
the polylines of the A-pocket is equal to the first intersection point of the polylines of the
B-pocket. Here last and first refers to the clockwise order. Since each intersection point
produces two corresponding pockets we may say that in the generic case the number of
A-pockets is equal to the number of B-pockets. Due to this statement we have:
#{ A-pockets } = #{ B-pockets } ≤ min{ | A |, | B | }.
Thus the total number of pockets satisfies: #{ A, B } ≤ 2min{ | A |, | B | }. 

Proposition 4.2: Let A be a convex polygon. Then the number of angles less than π/2 is
at most 3.
Proof: Our proof is based on the following two properties of a convex polygon:
1. Each angle of a convex polygon is less than π.
2. If there are n vertices in a convex polygon then the sum of its angles is π(n-2).
Let m be the number of acute angles in a convex polygon. Then (n-m) π+ mπ/2 > (n-2)π,
showing that m < 4. 

Proposition 4.3: Let A and B be two convex intersecting polygons. Then the number of
non-acute pockets is bounded by 6.
Proof: To each angle smaller than π/2 in A∩B, there correspond at most two non-acute
pockets (See Fig. 2). Since A∩B is a convex polygon, the number of angles smaller than
π/2 in it is at most 3, and the number of non-acute pockets is at most 6. 

Remark: The number 6 is achieved in the intersection of an equilateral triangle with itself
after a small rotation around its center.

 The entire algorithm of calculating boundary(A⊕t B) consists of two parts. In the first,
A∩B is calculated and the pockets are determined. This is done in O(| A | + | B |)
operations [6].
 The algorithm for calculating Extbt(P), for P – acute, process sequentially the vertices
of the boundaries of the pocket, operating on each vertex at most twice.
 The boundaries of any two pockets do not have common vertices, except for the vertices
of A∩B. The number of vertices of A∩B is the same as the number of pockets in the
generic case, and hence is bounded by 2min{ | A |, | B | }, in view of Proposition 4.1. So
the number of vertices in the boundaries of all pockets is bounded by 2(| A | + | B |), and
the complexity of the calculation of Extbt(P) for all acute pockets is O(| A | + | B |). In
case of a non-acute pocket the number of processed vertices is bounded by | A | or by
| B |. By proposition 4.2, the complexity of computing Extbt(P) for at most 6 non-acute
pockets is O(| A | + | B |).
 So the entire algorithm has O(| A | + | B |) time complexity.

9

5. Example.

Fig. 6. A generic case: boundary(A⊕1/2 B) for a pentagon A and a hexagon B.
The boundary of the metric average is painted black. All pockets here are acute.

6. Application to Morphing. In this section we describe the application of the metric
average to morphing. We allow morphing between two convex polygons, which are not
necessarily intersecting.

 Consider two convex (not necessarily intersecting) polygons A, B∈R2 with the vertices
ordered clock-wise. Our goal is to obtain a set of polygons Q0, …,Qn such that Q0

 = A, Qn

= B and when the polygons Q0, …,Qn are displayed sequentially one after another, one at
a time, an illusion of continuous transformation of A to B is created.
Our method is based on a continuous set-valued function S(t) satisfying S(1)=B, S(0)=A,
which we descretize to get Qi = S(i/n), for i = 0, …, n.

 First we define some operations on polygons. For a polygon A∈R2 (with vertices A1,…,
An) we define:

1) The point “center(A)” = (px, py) with
 n n

px = (∑ (Ai)x) / n, py = (∑ (Ai)y) / n.
 i =1 i =1

2) The polygon “translate(A, p)” with vertices:
 (Ai)x + (px – (center(A))x),

i = 1, …, n,
(Ai)y + (py – (center(A))y),

for a given point p=(px,py).
Note that
 translate(A, p) = A + p - center(A)

 and that center(translate(A, p)) = p.

10

→→

3) The polygon “Rα(A)” = “rotate(A, α)” is obtained by a rotation of A in an angle
α around its center. It has the vertices:
((Ai)x – (center(A))x) cos(α) + ((Ai)y – (center(A))y) sin(α) + (center(A))x,
((Ai)y – (center(A))y) cos(α) – ((Ai)x – (center(A))x) sin(α) + (center(A))y,

i = 1,…,n.

 The use of the metric average for morphing is effective only if the intersection part of
the two polygons is significant. Therefore we add a rigid motion component to the
morphing.

Determining the rigid motion component. We increase the intersection between A and
B by a rigid motion to improve the visual effect. We obtain B’(rigidly moved B) in the
following way:

1) Translate the center of polygon B to the center of polygon A.
2) Find µ, ν such that AµAν

 is the longest diagonal in A, namely
| Aµ Aν

 |= Max{ | Ai, Aj |, | i – j | > 1, i,j = 1,…,| A | }
3) Find θ, η such that BθBη

 is the longest diagonal in B, namely
| BθBη | = Max{ | Bk Bl |, | k – l | > 1, k,l = 1,…,| B | }

4) Calculate the angle β between the lines determined by Aµ , Aν
 and by Bθ, Bη.

5) Calculate the area A ∩ rotate(translate(B, center(A)), α) with α = β and
 α = π - β. Set α to that angle which yields the maximal intersection area.
6) Set B’ = rotate(translate(B, center(A)), α).
7) If there are several candidates for µ, ν or θ, η then check all the possible rotations

and take the one corresponding to the maximal intersection area.
8) If area(A∩B) is greater than area(A∩B’) then cancel the rigid motion and set B’

= B and α = 0.

 The above choice of the rigid motion component has the important property:
Proposition 6.1: Let A and B be such that there exists a rigid motion transformation of B
to A. Then the algorithm performs this transformation.
Proof: A rigid transformation consists of a translation and a rotation. First we consider
the case of a convex polygon with a unique largest diagonal. The position of a polygon in
R2 is determined by the position of its center and by the angle between the polygon’s
largest diagonal and the positive direction of the x-axes, termed hereafter as the
“positioning angle”. After translating polygon B such that its center coincides with the
center of polygon A, the algorithm chooses between two possible rotations around the
center in an angle α and in an angle (π - α), where α is the difference between the
positioning angles of A and B. After one of these two rotations B coincides with A. The
algorithm performs this rotation, since after this rotation the area of the intersection is
maximal.
 In case of several maximal diagonals the algorithm compares each pair of diagonals for
maximum intersection. At least one of the pairs achieves the coincidence of the two
polygons. 

11

Performing the morphing of two convex polygons A and B. After applying the
previous algorithm to the polygons A and B, and obtaining the rotation angle α, we
define the continuous set-valued function S(t), 0 ≤ t ≤ 1, such that S(1) = B, S(0) = A,

S(t) := R-αt(Rα(B + b) ⊕ t A) – b t

with b = center(A) – center(B).
Note that in S(t) the metric average is performed between the two intersecting convex
polygons A and B’ generated by the algorithm in the previous paragraph. Also note that,
up to a rigid transformation, the Hausdorff distance between S(t) and A is t times the
Hausdorff distance between A and B’, 0 ≤ t ≤ 1.
We descretize S(t) and obtain polygons Q0,…,Qn

Qi = S(ti) = R-αti(Rα(B + b) ⊕ ti A) – b ti,

where ti = i/n.

7. Example.
The following example illustrates the morphing of a hexagon A to a septagon B. Note
that the morphing is not intuitive, since the intermediate polygons are not convex and the
number of vertices is greater than that of A and of B.

Fig. 7. Some snapshots of the morphing process. A generic case.

References
 [1] M.Alexa, Mesh Morphing STAR. Eurographics 2001 State-of-the-Art Reports,
 (2001).
 [2] Z.Artstein, Piecewise linear approximations of set-valued maps, Journal of Approx.
 Theory 56 (1989), 41-47

 [3] R.Baier, N.Dyn and E.Farkhi, Metric averages of one dimensional compact sets, in
 Approximation theory X, C.Chui, L.L.Schumaker and J.Stoeckler (eds.), Vanderbilt
 Univ. Press, Nashville, TN, (2002), 9-22.

12

 → →

 →
 →

 →

 [4] N.Dyn and E.Farkhi, Spline subdivision schemes for compact sets with metric
 averages, in Trends in Approximation Theory, K.Kopotun, T.Lyche and M.Neamtu
 (eds.), Vanderbilt Univ. Press, Nashville, TN, (2001), 95-104.
 [5] N.Dyn and E.Farkhi, Spline subdivision schemes for compact sets-a survey,
 Serdica Math. J. Vol.28 (4), (2002), 349-360.
 [6] F.Preparata and M.Shamos. Computational Geometry: An Introduction. Texts and
 Monographs in Computer Science. Springer-Verlag, Berlin, Germany, 1985.
 [7] R.T.Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

13

	An Efficient Algorithm for the Computation of the
	Metric Average of Two Intersecting Convex Polygons,
	Performing the morphing of two convex polygons A and B. After applying the previous algorithm to the polygons A and B, and obtaining the rotation angle α, we define the continuous set-valued function S(t), 0 ≤ t ≤ 1, such that S(1) = B, S(0) = A,

