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Abstract. Motivated by the method for the reconstruction of 3D objects from a set of 
parallel cross sections, based on the binary operation between 2D sets termed “metric 
average”,  we  developed  an  algorithm  for  the  computation  of  the  metric  average 
between two intersecting convex polygons in 2D. For two 1D sets there is an algorithm 
for the computation of the metric average, with linear time in the number of intervals in 
the two 1D sets. The proposed algorithm has linear computation time in the number of 
vertices of the two polygons. As an application of this algorithm, a new technique for 
morphing between two convex polygons is developed. The new algorithm performs 
morphing in a non-intuitive way.

1. Introduction.  In this work an algorithm for the computation of the metric average 
between two intersecting convex polygons in 2D is developed and studied. The metric 
average of two compact sets is a union of the weighted averages between any point from 
any set of the two, and the subset of all the closest points to it from the other set.
  The original application of the metric average is for “piecewise linear” approximation of 
set-valued functions [2]. It is applied in spline subdivision schemes for compact sets, a 
procedure which is motivated by the problem of the reconstruction of a 3D smooth object 
from its  parallel  cross-sections  [4].  An  algorithm  for  the  computation  of  the  metric 
average of 1D compact sets  with computation time which is  linear in the number of 
connected subsets in the two 1D sets is introduced in [3]. 
  The metric average of two sets is a subset of the Minkowski average of the sets and 
generally is  a non-convex set  (even for two convex sets).  The Minkowski average is 
much bigger than the metric  average. For example the Minkowski  average of a non-
convex set with itself is a larger set containing it, while the metric average is the set itself. 
The metric property of the metric average is that its Hausdorff distance from any one of 
the averaged sets changes linearly with the weight parameter in the average.
  For the reconstruction problem of a smooth 3D object from its parallel cross-sections, 
the assumption that the projections of two consecutive cross-sections into a parallel plane 
intersect significantly, is natural. The choice of convex polygons was made although for 
such  polygons  the  reconstruction  from  parallel  cross-sections  can  be  done  by  using 
Minkowski sums [5]. Yet the algorithm developed in this work is regarded as a first step 
in developing an efficient algorithm for the computation of the metric average of two 
general  polygons.  The  authors  have  recently  developed  a  general  algorithm  for  the 
computation of the metric average of two intersecting regular polygons.
  An additional outcome of this work is a new morphing technique between two convex 
polygons, based on the metric average. The morphing of shapes or objects is a common 
task in producing animations and visual effects. The goal of a morphing process is to 
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change “smoothly” a source shape or object into the target shape or object. An intuitive 
way to do this is to find a correspondence between elements in the two shapes, and to 
map these elements into each other. For example in [1] methods based on correspondence 
between meshes are reviewed.
  We suggest a new non-intuitive approach to the morphing of 2D shapes, which does not 
require  a search for  corresponding parts.  We produce the intermediate  objects  as  the 
metric average computed with suitable weights between the source shape and the target 
shape, mapped by a rigid motion to intersect significantly the source. The performance of 
the new technique is demonstrated by an example. Note that the intermediate shapes are 
non-convex, although the source and the target shapes are convex polygons.
  Here is the outline of the work: Section 2 gives the background, it introduces the metric 
average and studies the internal  structure of the computed set.  Section 3 presents the 
algorithm. First it describes how to split the original problem into several simple ones, 
and presents several sub-algorithms, each one solving a simple sub-problem. Then all the 
sub-algorithms  are  integrated  into  the  final  algorithm.  Complexity  analysis  of  the 
algorithm is performed in Section 4. An example demonstrates the performance of the 
algorithm in Section 5. Our morphing technique based on the algorithm from Section 3 is 
studied  in  Section  6.  Some  important  properties  of  this  technique  are  observed  and 
proved, and an example demonstrating its performance is given in Section 7.

2. Preliminaries.  The metric average is a binary operation defined on two sets, which 
depends on a parameter t∈[0,1]. To define this binary operation we first introduce some 
notations. 
  For two sets A and B in Rn we define

A\B = { a: a∈A,  a∉B }.
∏A( b ) ⊂ A  is the set of all closest points to some b∈Rn from the set A, termed the 
projection of b on the set A.
An addition of two sets is the Minkowski sum of these sets

A + B = { a + b: a∈A, b∈B }.
A multiplication of a set by a scalar is the set

tA = { ta: a∈A  }.
| ab | is the Euclidean distance between the points a, b. 
[a,b] is the segment with boundary points a, b.

The metric average of two compact sets A, B∈Rn and a weight t∈[0,1] is defined as the 
set:

A ⊕t B =  { t{ a } + ( 1-t ) ∏B( a ): a∈A } U { t∏A( b ) + ( 1-t ){ b }: b∈B }.
It is easy to verify that A⊕t  A = A, A ⊕0 B = B, A ⊕1 B = A. An example of the metric 
average of two non-convex sets in 1D is given in Fig.1. An example of the metric average 
of two intersecting convex polygons is given in Fig. 6.
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Fig.1.The metric average of two non-convex sets in 1D.
A=[0,1] ∪[2,3], B=[0.5,1.3]∪[1.8,2.5], A⊕1/2B=[c,d]∪[e,f].

Introducing the non-symmetric operation between two sets,
Mt( A, B ) = { t{ a } + ( 1-t ) ∏B( a ): a∈A },

and taking into consideration the fact that for all p∈A∩B,  p∈A⊕t B ( since for p∈A∩B, 
p = ∏A( p ) = ∏B( p ) ),the metric average is a union of three sets:

A ⊕t B = Mt( A\B, B ) ∪ M(1-t)( B\A, A ) ∪ ( A∩B ).

In  the  following  we  limit  the  discussion  to  the  case  where  the  two  sets  are  two 
intersecting convex polygons A, B∈R2. We compute the set A  ⊕t  B by computing its 
boundary.

Fig. 2. Two intersecting convex polygons and their pockets.
≡ - A-pockets, ð  - B-pockets, intersection polygon in gray

  As we can see in Fig. 2, there is an intersection polygon A∩B (the gray area) which is 
convex and there are “pockets” (the white area).  We define a pocket as a connected 
component of the symmetric difference between the two polygons. A disjoint union of all 
the pockets is the symmetric difference between the two polygons A and B. 
  A pocket is a simple polygon, not necessarily a convex polygon. A simple polygon is a 
simply connected polygon without holes and self-intersections of the boundary. 
The boundary of a pocket consists of two polylines. One of these polylines is a part of A’s 
boundary, and is denoted by pA, the second is a part of B’s boundary and is denoted by pB. 
Each pocket has a common polyline with the boundary of the intersection polygon A∩B. 
We call a pocket an “A-pocket” if it is a subset of A. Similarly, we call a pocket a “B-
pocket” if it is a subset of B. 
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  The computation of boundary(A ⊕t B) is done in terms of an operation termed the exterior  
boundary average of a pocket. Here we introduce this operation. For a pocket P, Extbt( P ) 
is a polyline defined as

Extbt( P ) = {
Mt( pA, pB ), P ⊂ A,

Mt( pB, pA ), P ⊂ B,

  Observe that for A, B convex polygons in R2 A\B is a disjoint union of simple polygons 
which are A-pockets P1 … PN and B\A is a disjoint union of simple polygons which are 
B-pockets Q1 … QM. 
  With this notation the boundary of the metric average A ⊕t B, t∈[0,1] is given by
                                                               N                                           M

boundary( A ⊕t B ) =  UExtbt( Pi )    Ụ   UExtb(1-t)( Qj ).
                                                                                             i=1                                         j=1
The algorithm we present in the next section is based on the above representation of 
boundary( A ⊕t B ).

3. The algorithm. We have seen in the previous section that it is possible to reduce the 
original  problem of  calculating  the  boundary  of  A⊕t  B to  a  smaller  one  –  namely  of 
calculating the exterior boundary average of pockets. We limit the following discussion to 
the case of an A-pocket since the processing of a B-pocket is similar. 
  The boundary of  an A-pocket  P  consists  of  two polylines  pA and  pB.  pB  denotes  the 
common boundary of P and A∩B, and is termed the interior boundary. pA is termed the 
exterior boundary.

Fig. 3. An example of an A-pocket.
PA is the polyline through {xb, Ai, Ai+1, Ai+2, Ai+3, xe}. PB is the polyline through {xb, Bj, Bj+1, Bj+2, xe}.

  Denote by pA
1, …,  pA

n the ordered vertices of pA, pB
1, …,  pB

m  the ordered vertices of pB, 
xb and xe the intersection  points between pA and pB and γ1 and γ2 the intersection angles 
between pA and pB at xb and xe respectively ( See Fig. 3 ). We define a pocket to be 
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“acute” if both angles  γ1 and  γ2 are less than  π/2, otherwise the pocket is called “non-
acute”. The closest points to a point p∈pA from the boundary of B in an acute pocket are 
in pB (see Proposition 3.2), which is not necessarily the case for a non-acute pocket. This 
observation is in the basis of the proof of the linear complexity of the algorithm (see 
Section 4).
  The algorithm for calculating Extbt( P ) processes the points on the exterior boundary of 
the A-pocket P looking for the nearest points on the boundary of the polygon B. The 
geometric property stated in Proposition 3.1 allows us to calculate projections only for 
the breakpoints of the exterior boundary. 
Proposition 3.1  Let  qj =  ∏pB(  pA

j  ),  j  =  1,…,n.  Then q1,…,qn are  ordered along pB. 
Moreover, for any point v in the segment [ pA

j, pA
j+1], j = 1,…,n-1, ∏pB( v ) is in the part 

of pB between qj and qj+1
.

Proof: First note that for any point u in a segment of the form [v, ∏pB( v )], with v a point 
on pA, we have ∏pB( u ) = ∏pB( v ). Also, since pB is convex, the set ∏pB( v ) for any point 
v in the pocket P, consists of a unique point [7]. Thus two segments of the form   [v, ∏pB( 
v )] and [w,  ∏pB( w )], with v, w on pA, cannot intersect. This proves the claim of the 
proposition.                                                                                                               

For an acute pocket the search of q1,…, qn is straight forward.
Proposition 3.2: For an acute pocket P with boundaries pA and pB, ∏B( p ) ⊂ pB, for all p∈
pA.
Proof:   P is an acute pocket. So the angles γ1 and γ2 (see Fig. 3) are less than π/2. So both 
∏B( pA

1 ) and ∏B( pA
n ) are in pB.   A repeated application of proposition 3.1 yields the 

result.                                                                                                                                   

  The computation of the exterior boundary average of a pocket can be further reduced to 
several simpler operations.
Calculating Πs( p ) – the closest point to a point p = ( px, py )  in a segment s in R2.
  This  algorithm checks  whether  the  projection  of  point  p  to  the  line  containing the 
segment s is in the segment. If it is then the projection is returned. If not then the nearest 
end point of the segment is returned.                                                                      
 
For a point x and a polyline p, we denote by ∏p( x, h, d ) the operation that starts a search 
from the seed h∈p in the search direction d to compute ∏p( x ). Using this operation the 
search for the closest points from the boundary of B to the points of pA is in one direction 
in  the  case  of  acute  pockets.  This  property  of  the  algorithm  guarantees  its  linear 
complexity (see Section 4).

Calculating Πp( x, h, d ) – the closest point to a point x in a polyline p using a seed h 
and a search direction d∈{ -1, 1 }.
We denote by p1, …,  pm  the ordered vertices of p.

1) Let p j be the first end point of the segment that h belongs to (relative to d).
set pj := h; set k: = j

2) If d = 1 then limit := m – 1
Else limit := -2
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3) While dk ≤ limit do:
3.1  pcurr = ∏[p

k

,p
 k + d

]
 ( x )   

3.2  If  pcurr ≠ p k+d then break loop 3.
4) Return pcurr.                                                                                                              

Remark: to calculate the closest point to a point x in a polyline p we use the previous 
algorithm with h = p1 and d=1.                                                                              
             
The following algorithm is the core algorithm for the computation of Extbt( P ).
Calculating Mt( s, p ) for a segment s (with end points s1 and s2) and a polyline p.
We assume that s and p do not intersect (See Fig. 5.) or have an intersection point which 
is either s1 or s2. In calculating Extbt( P ), s∈pA either does not intersect pB or intersects pB 

only at one of its boundary points. (See Fig. 4.)
1) Find the points q1 and q2 in the polyline p such that q1 = ∏p( s1 ) and q2 = ∏p( s2 ).
      (Assumption: q1 is a predecessor to q2 in some order.)
2) Define by v0,…,vn the breakpoints of p between q1 and q2 and define v-1 = q1, vn+1= 

q2.
3) Calculate q’α = tsα + (1-t)qα, α = 1,2;  define y-1 = q’1, y2n+2 = q’2.
4) For each breakpoint vi of the polyline p between q1 and q2 do:

4.1     Construct a perpendicular w to the segment vi-1vi from vi. 
4.2  Find the intersection x2i between w and s.
4.3  Construct a perpendicular w’ to the segment vivi+1 from vi.
4.4  Find the intersection x2i+1 between w’ and s.
4.5  Calculate yα = txα + (1-t)vi, α = 2i, 2i+1.
4.6  Connect y2(i-1)+1 from the previous step with y2i.
4.7  Connect y2i with y2i+1.   

        5)    Connect y2n+1 with y2n+2.                                                                                                                         

  To see that the result of the algorithm is Mt( s, p ) observe that for any x2i-1< x < x2i, 
∏p(x)∈[vi-1,vi], since the line through x, which is perpendicular to the line through vi-1, vi 

intersects the latter inside [vi-1, vi]. Also by the continuity  of the projection mapping, all 
points in [x2i,  x2i+1] are projected to the point vi, because x2i and x2i+1 are projected to vi. 
Thus [y2i, y2i+1] = Mt([x2i,  x2i+1], p). Since for x∈[x2i-1, x2i], ∏p( x )∈[vi-1,vi] then Mt( [x2i-1, 
x2i], p ) = [y2i-1, y2i]. The number of breakpoints in the resulting polyline is O( n ). 
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Fig. 4. Calculating M1/2( s, p ) in the intersecting case.

Fig. 5. Calculating M1/2( s, p ) in the non-intersecting case.

Remark: the first step of the above algorithm can be omitted when calculating Extbt( P ). 
Since q1 is known from the previous step, only q2 has to be calculated. Thus we introduce 
the operation Mt( s, p, q1, q2 ) to replace Mt( s, p ) and compute q2 prior to it. 

  We introduce two additional operations. For a polyline p and a point q∈p we denote by 
sourcep( q ) the index of the first end point of the segment in the polyline p that point q 
belongs to. In the same manner targetp( q ) denotes the second end point. For example, in 
Fig. 5 v1 = sourcep( q2 )  and v2 = targetp( q2 ).  We introduce the notation  ∂B for the 
boundary of B. At this stage we have the tools for calculating Extb( P ).
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Calculating Extbt( P ) for a pocket P. 
1) If γ1 > π/2 then dir := -1

Else dir := 1
            Set q1 := xb

      Set q2
  = ∏∂B( pA

1,  q1
 
,  dir ). 

      Set The_Result := Mt( pA
1xb, ∂B, q1, q2

  ).
      q1

 := q2

2) For each segment pA
i pA

i+1 in pA  ( i = 1,...,n-1 ) do:
2.1 If | pA

i+1source∂B( q2 ) | < | pA
i+1target∂B( q2

 ) | then dir := -1
            Else dir := 1 
2.2 Set q2

  = ∏∂B( pA
 i+1

, q1
 i 

,  dir ). 
2.3 Set Current_result := Mt( pA

i pA
i+1, ∂B, q1, q2

 ).
2.4 Concatenate Current_result with The_result
2.5 Set q1 := q2 

3) Concatenate Mt( pA
nxe, ∂B, q2

 , xe
 ) with the previously calculated polyline.

  
In the acute case the number of breakpoints in the produced polyline is O( n + m ), where 
n is the number of breakpoints in pA and m is the number of breakpoints in pB.

Based on all previous algorithms, the algorithm for computing the boundary of the metric 
average of two intersecting convex polygons can be easily formulated.
Computing boundary( A ⊕t B )

1) Find the intersection A∩B and the pockets T1…Tk.
2) For each pocket Ti, i = 1,..,k

If  Ti is an A-pocket Then calculate Extbt( Ti )
Else calculate Extb1-t( Ti )
Concatenate current result with the previous.

4. Complexity Analysis.
  To estimate the complexity of our algorithm, we first derive a bound on the number of 
pockets of two intersecting convex polygons. For that we introduce the notation | A | for 
the  number  of  vertices  of  a  polygon  A,  and  #{  A,  B  }  for  the  number  of  pockets 
generated by the intersection of the polygons A, B .

Proposition 4.1: Let A and B be two intersecting convex polygons. Then
#{ A, B } ≤  2min{ | A |, | B | }.
Proof: We define an intersection of two polygons to be generic if the boundaries of the 
two polygons intersect at isolated points that are not vertices. Since degenerate cases do 
not increase the number of pockets relative to generic intersections, we can limit this 
proof to generic intersections. (See Fig. 2.)
  As we mentioned above the boundary of a pocket P consists of two polylines: the inner 
polyline and the outer polyline. The minimal possible number of segments of an inner 
polyline is 1. (See Fig. 2.) Thus there are at most | B | A-pockets and at most | A | B-
pockets. Each intersection point of the boundaries of A and B defines the end point of the 
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boundary polylines of a pocket and the starting point of the boundary polylines of the 
next pocket.
  We term an A-pocket and a B-pocket as “corresponding” if the last intersection point of 
the polylines of the A-pocket is equal to the first intersection point of the polylines of the 
B-pocket. Here last and first refers to the clockwise order. Since each intersection point 
produces two corresponding pockets we may say that in the generic case the number of 
A-pockets is equal to the number of B-pockets. Due to this statement we have: 
#{ A-pockets } = #{ B-pockets } ≤  min{ | A |, | B | }.
Thus the total number of pockets satisfies: #{ A, B } ≤  2min{ | A |, | B | }.                     

Proposition 4.2: Let A be a convex polygon. Then the number of angles less than π/2 is 
at most 3.
Proof:   Our proof is based on the following two properties of a convex polygon:
1. Each angle of a convex polygon is less than π.
2. If there are n vertices in a convex polygon then the sum of its angles is π(n-2).
Let m be the number of acute angles in a convex polygon. Then (n-m) π+ mπ/2 > (n-2)π,
showing that m < 4.                                                                                                                                                 

Proposition 4.3:  Let A and B be two convex intersecting polygons. Then the number of 
non-acute pockets is bounded by 6.
Proof: To each angle smaller than π/2 in A∩B, there correspond at most two non-acute 
pockets (See Fig. 2). Since A∩B is a convex polygon, the number of angles smaller than 
π/2 in it is at most 3, and the number of non-acute pockets is at most 6.                            

Remark: The number 6 is achieved in the intersection of an equilateral triangle with itself 
after a small rotation around its center.

  The entire algorithm of calculating boundary( A⊕t B ) consists of two parts. In the first, 
A∩B is calculated and the pockets are determined. This is done in O( | A | + | B | ) 
operations [6]. 
  The algorithm for calculating Extbt( P ), for P – acute, process sequentially the vertices 
of the boundaries of the pocket, operating on each vertex at most twice. 
  The boundaries of any two pockets do not have common vertices, except for the vertices 
of A∩B. The number of vertices of A∩B is the same as the number of pockets in the 
generic case, and hence is bounded by 2min{ | A |, | B | }, in view of Proposition 4.1. So 
the number of vertices in the boundaries of all pockets is bounded by 2( | A | + | B | ), and 
the complexity of the calculation of Extbt( P ) for all acute pockets is O( | A | + | B | ). In 
case of a non-acute pocket the number of processed vertices is bounded by | A | or by 
| B |. By proposition 4.2, the complexity of computing Extbt( P ) for at most 6 non-acute 
pockets is O( | A | + | B | ).
  So the entire algorithm has O( | A | + | B | ) time complexity.
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5. Example.

Fig. 6. A generic case: boundary( A⊕1/2 B ) for a pentagon A and a hexagon B.
The boundary of the metric average is painted black. All pockets here are acute.

6. Application to Morphing.  In this section we describe the application of the metric 
average to morphing. We allow morphing between two convex polygons, which are not 
necessarily intersecting.

  Consider two convex (not necessarily intersecting) polygons A, B∈R2 with the vertices 
ordered clock-wise. Our goal is to obtain a set of polygons Q0, …,Qn such that Q0

 = A,  Qn 

= B and when the polygons Q0, …,Qn are displayed sequentially one after another, one at 
a time,  an illusion of continuous transformation of A to B is created.
Our method is based on a continuous set-valued function S(t) satisfying S(1)=B, S(0)=A, 
which we descretize to get Qi = S( i/n ), for i = 0, …, n.

  First we define some operations on polygons. For a polygon A∈R2 ( with vertices A1,…, 
An ) we define:

1) The point “center( A )” = (px, py) with 
                                                     n                                           n

px = ( ∑ ( Ai )x ) / n,    py = ( ∑ ( Ai )y  ) / n.
                                                    i =1                                       i =1

2) The polygon “translate( A, p )” with vertices:
 (Ai)x + (px – (center( A ))x),

i = 1, …, n,
(Ai)y + (py – (center( A ))y),

for a given point p=(px,py). 
Note that  
                                     translate( A, p ) = A  +  p   - center( A )

      and that center( translate( A, p ) ) = p.
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3) The polygon “Rα( A )” = “rotate( A, α )” is obtained by a rotation of A in an angle 
α around its center. It has the vertices:
((Ai)x – (center( A ))x) cos(α) + ((Ai)y – (center( A ))y) sin(α) + (center( A ))x,
((Ai)y – (center( A ))y) cos(α) – ((Ai)x – (center( A ))x) sin(α) + (center( A ))y,

i = 1,…,n.

  The use of the metric average for morphing is effective only if the intersection part of 
the two polygons is significant. Therefore we add a rigid motion component to the 
morphing.

Determining the rigid motion component. We increase the intersection between A and 
B by a rigid motion to improve the visual effect.  We obtain B’(rigidly moved B) in the 
following way:

1) Translate the center of polygon B to the center of polygon A.
2) Find µ, ν such that AµAν

  is the longest diagonal in A, namely
| Aµ Aν

 |= Max{ | Ai, Aj |,  | i – j | > 1, i,j = 1,…,| A | }
3) Find θ, η such that BθBη

  is the longest diagonal in B, namely
| BθBη | = Max{ | Bk Bl |, | k – l | > 1, k,l = 1,…,| B | }

4) Calculate the angle β between the lines determined by Aµ , Aν
 and by Bθ, Bη.

5) Calculate the area A ∩ rotate( translate( B, center( A ) ), α ) with α = β and
      α = π - β. Set α to that angle which yields the maximal intersection area.
6) Set B’ = rotate( translate( B, center( A ) ), α ).
7) If there are several candidates for  µ, ν or θ, η then check all the possible rotations 

and take the one corresponding to the maximal intersection area.
8) If area(A∩B) is greater than area(A∩B’) then cancel the rigid motion and set  B’ 

= B and α = 0.

  The above choice of the rigid motion component has the important property:
Proposition 6.1: Let A and B be such that there exists a rigid motion transformation of B 
to A. Then the algorithm performs this transformation.
Proof: A rigid transformation consists of a translation and a rotation. First we consider 
the case of a convex polygon with a unique largest diagonal. The position of a polygon in 
R2 is determined by the position of its center and by the angle between the polygon’s 
largest  diagonal  and  the  positive  direction  of  the  x-axes,  termed  hereafter  as  the 
“positioning angle”. After translating polygon B such that its center coincides with the 
center of polygon A, the algorithm chooses between two possible rotations around the 
center  in  an angle  α and in an angle  (π  -  α),  where α  is  the difference between the 
positioning angles of A and B. After one of these two rotations B coincides with A. The 
algorithm performs this rotation, since after this rotation the area of the intersection is 
maximal.
  In case of several maximal diagonals the algorithm compares each pair of diagonals for 
maximum intersection. At least one of the pairs achieves the coincidence of the two 
polygons.                                                                                                                            
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Performing  the  morphing  of  two  convex  polygons  A  and  B. After  applying  the 
previous algorithm to the  polygons  A and B, and obtaining the rotation angle α, we 
define the continuous set-valued function S(t), 0 ≤ t ≤ 1, such that S(1) = B, S(0) = A, 

S( t ) := R-αt( Rα( B + b  ) ⊕ t A )  –  b t 

with   b = center( A ) – center( B ).
Note that in S(t) the metric average is performed between the two intersecting convex 
polygons A and B’ generated by the algorithm in the previous paragraph. Also note that, 
up to a rigid transformation, the Hausdorff distance between S(t) and A is t times the 
Hausdorff distance between A and B’, 0 ≤ t ≤ 1.
We descretize S(t) and obtain polygons Q0,…,Qn

Qi = S( ti ) =   R-αti( Rα( B + b  ) ⊕ ti A )  –  b ti,

where ti = i/n.

7. Example.
The following example illustrates the morphing of a hexagon A to a septagon B. Note 
that the morphing is not intuitive, since the intermediate polygons are not convex and the 
number of vertices is greater than that of A and of B. 

             
Fig. 7. Some snapshots of the morphing process. A generic case.
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