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1. Introduction

Subdivision schemes in geometric applications are efficient tools for the generation
of curves/surfaces from discrete data, by repeated refinements.

The first subdivision schemes where devised by de Rahm [53] for the generation
of functions with a first derivative everywhere and a second derivative nowhere.

In geometric modelling the first schemes were proposed for easy and quick
rendering of B-spline curves. A B-spline curve has the form

C(t) =
∑

i

PiBm(t− i) (1)

with {Pi} points in R
d (d = 2 or 3) termed control points, and Bm a B-spline

of degree m with integer knots, namely Bm|[i,i+1] is a polynomial of degree m,
Bm ∈ Cm−1(R), suppBm = [0,m+1]. Equation (1) is a parametric representation
of a B-spline curve. By using the refinement equation satisfied by a B-spline,

Bm(x) =

m+1∑

i=0

a
[m]
i Bm(2x− i) , a

[m]
i = 2−m

(
m+ 1

i

)
, i = 0, . . . ,m+ 1 . (2)
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C(t) in (1) has the parametric representations

C(t) =
∑

i

P 0
i Bm(t− i) =

∑

i

P 1
i Bm(2t− i) = . . .

=
∑

i

P k
i Bm(2kt− i) = . . . ,

(3)

where
P `+1

i =
∑

j

a
[m]
i−2jP

`
j , ` = 0, 1, 2, . . . , (4)

with the convention a
[m]
i = 0, i /∈ {0, 1, . . . ,m+ 1}.

As is demonstrated in §2.3, the differences {P k
i − P k

i−1} tend to zero as k
increases, and since Bm ≥ 0 and

∑
iBm(t− i) ≡ 1 [6], the polygonal line through

the control points {P k
i } is close to C(t) for k large enough, and can be easily

rendered.
The relation (4) encompasses the refinement rule for B-spline curves. The first

scheme of this type was devised by Chaikin [10] for quadratic B-spline curves,
and the schemes for general B-spline curves were investigated in [14]. All other
subdivision schemes can be regarded as a generalization of the spline case.

original iteration #1

iteration #2 iteration #3

Figure 1. Refinements of a polygon with Chaikin scheme

In this paper we first review the “classical” subdivision schemes for the re-
finement of control points. The schemes for the generation of curves are direct
generalizations of (4), in the sense that the coefficients, defined in (2), are replaced
by other sets of coefficients. The “classical” schemes, and in particular those gen-
erating surfaces, are used extensively in Computer Graphics. In §2 we discuss the
construction of such schemes, their approximation properties, tools for the anal-
ysis of their convergence and smoothness, and their application to the generation
of surfaces from general nets of points in R

3. Examples of important schemes are
presented.
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Subdivision schemes for the refinement of objects other than control points
are reviewed in §3. These schemes include subdivision schemes refining vectors, in
particular, vectors consisting of values of a function and its consecutive derivatives,
schemes refining compact sets in R

n and a scheme refining nets of curves.
All the schemes reviewed in this paper are linear. Recently, various non-linear

schemes were devised and analyzed (see, e.g., [26] and references therein). It
seems that this is one of the future directions in the study of subdivision schemes.
Applications of “classical” schemes to the numerical solution of special types of
PDEs is another direction. (See, e.g., [11]).

New “classical” schemes are still being devised for particular applications. For
example, adaptive refinements can be accomplished straightforwardly by refining
according to topological rules different from the “classical” ones, therefore, corre-
sponding linear schemes had to be devised (see, e.g. [47] and [58]).

2. Stationary linear schemes for the refinement of

control points

A subdivision scheme Sa for the refinement of control points is defined by a finite
set of coefficients called mask a = {ai ∈ R : i ∈ σ(a) ⊂ Z

s}. Here σ(a) denotes
the finite support of the mask, s = 1 corresponds to curves and s = 2 to surfaces.
The refinement rule is

P k+1
α =

∑

β∈Z
s

aα−2βP
k
β , α ∈ Z

s . (5)

Remark. In most of the paper we consider schemes defined on Z
s, although, in

geometric applications the schemes operate on finite sets of data. Due to the finite
support of the mask, our considerations apply directly to closed curves/surfaces,
and also to “open” ones, except in a finite zone near the boundary.

In the case s = 1, a subdivision scheme is termed uniformly convergent (or
convergent for geometric applications) if the sequence {Pk(t)} of polygonal lines
through the control points at refinement levels k = 0, 1, 2, . . . (with parametric
representation as the piecewise linear interpolants to the data {(i2−k, P k

i ) : i ∈ Z},
k = 0, 1, 2, . . . ), converges uniformly in bounded intervals. In the case s = 2, we
require the uniform convergence of the sequence of piecewise bi-linear interpolants
to the data {(α2−k, P k

α) : α ∈ Z
2} on bounded squares [9], [33], [24].

The convergence of a scheme Sa implies the existence of a basic-limit-function
φa, being the limit obtained from the initial data, f0

i = 0 everywhere on Z
s except

f0
0 = 1.

It follows from the linearity and uniformity of (5) that the limit obtained from
any set of initial control points P0 = {P 0

α ∈ R
d : α ∈ Z

s}, S∞
a P0, can be written

in terms of integer translates of φa, as

S∞
a P0(x) =

∑

α∈Zs

P 0
αφa(x − α) , x ∈ R

s. (6)
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For s = 1 and d = 2 or d = 3, (6) is a parametric representation of a curve in
R

d, while for s = 2 and d = 3, (6) is a parametric representation of a surface in
R

3. Also, by the linearity, uniformity and stationarity of the refinement (5), φa

satisfies the refinement equation (two-scale relation)

φa(x) =
∑

α∈Zs

aαφa(2x− α) , (7)

analogous to the refinement equation (2) for B-splines.
It follows from (5) or from (7) that supp(φa) is contained in the convex hull of

σ(a) [9], as is the case for the B-spline schemes.
The choice of the mask in the design of good schemes is partly heuristic and

partly aims at obtaining specific properties of the scheme as convergence, smooth-
ness, locality, interpolation, shape preservation, and approximation order.

For the case s = 1, the topology of Z is sufficient to describe an ordered set
of control points for curve design. For the case s = 2, the topology of Z

2, where
the point (i, j) is connected to the four points (i ± 1, j), (i, j ± 1), is sufficient to
describe a set of control points in R

3, connected each to four neighboring points
and constituting a quad-mesh. The above connectivity of Z

2, with the additional
connections of the point (i, j) to the points (i+1, j+1), (i−1, j−1), forms the three-
direction mesh which is sufficient to describe a regular triangulation (each vertex
is connected to six neighboring vertices). These two types of topologies of Z

2, are
also relevant to general topologies of control points, since they are generated by
most of the topological refinement rules. This is explained in §2.4.

2.1. The main construction methods of schemes. There are two
main approaches to the construction of subdivision schemes. The first approach
is by repeated averaging. In case s = 1, repeated averaging leads to B-spline
schemes.

In this approach, the refinement rule (5) consists of several simple steps. The
first is the trivial refinement

P k+1,0
α = P k

[α
2 ] , α ∈ Z

s (8)

with
[

α
2

]
the biggest integer smaller than or equal to α

2 for α ∈ Z, and
([

α1

2

]
,
[

α2

2

])

for α = (α1, α2) ∈ Z
2.

The trivial refinement is followed by a fixed number m of repeated averaging

P k+1,j
α =

P k+1,j−1
α + P k+1,j−1

α−ej

2
, α ∈ Z

s , j = 1, . . . ,m ,

where {e1, . . . , em} are non-zero vectors in Z
s with components in {0, 1}.

The case s = 1 corresponds to the B-spline scheme of degree m, while in case
s = 2 one gets the tensor-product B-spline schemes for the choice e1 = · · · =
er = (1, 0), er+1 = · · · = em = (0, 1), 1 ≤ r < m, and the three-direction box-
spline schemes [7] for the choice e1 = · · · = er = (1, 0), er+1 = · · · = eρ = (0, 1),
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eρ+1 = · · · = em = (1, 1), 1 ≤ r < ρ < m. One can get other box-spline schemes
for more general choices of e1, . . . , em [7].

The second construction of subdivision schemes is based on a local approxima-
tion operator A, approximating on [0, 1]s. A is defined in terms of samples of the
approximated function in a set of points A ⊂ Z

s,

(Af)(x) =
∑

α∈A

f(α)wα(x) , x ∈ [0, 1]s . (9)

For geometrical applications, the set A contains the set Es of extreme points of
[0, 1]s, and is symmetric relative to [0, 1]s. The operator A has to be scale and
shift invariant, so that (9) can be used in any refinement level and at any location.
This leads to the choice of a polynomial approximation operator A.

The commonly derived refinement rule from (9) is

P k+1
2α+γ =

∑

β∈A

P k
α+βwβ

(γ
2

)
, γ ∈ Es . (10)

Another possibility is

P k+1
2α+γ =

∑

β∈A

P k
α+βwβ

(
g +

γ

2

)
, γ ∈ Es , g = {1/4}s . (11)

In case s = 1, with Af the interpolation polynomial based on the symmetric set
of points relative to [0, 1], −N + 1, . . . , 0, 1, . . . , N , the resulting family of schemes
obtained by (10) for N = 1, 2, . . . consists of the Dubuc–Deslaurier schemes [22]

P k+1
2i = P k

i , P k+1
2i+1 =

N∑

`=−N+1

w`

(
1

2

)
P k

i+` , wi(x) =

N∏

j=−N+1
j 6=i

x− j

i− j
(12)

The schemes in (12) are interpolatory, since the set of control points after refine-
ment contains the control points before refinement. These schemes are conver-
gent, and the limit curves interpolate the initial control points [22]. Interpolatory
schemes in general are discussed in [34].

Recently this construction was extended to non-interpolatory schemes [30], by
using (11) instead of (10) with wi(x) defined in (12).

The refinement rules are

P k+1
2i =

N∑

`=−N+1

w`

(
1

4

)
P k

i+` , P k+1
2i+1 =

N∑

`=−N+1

w`

(
3

4

)
P k

i+` .

It is checked in [30] that, for N ≤ 10, the schemes are convergent with limit curves
of higher smoothness than the limit curves of the corresponding Dubuc–Deslaurier
schemes. Yet, there is no proof that this holds in general.

In fact, (11) can be further extended to

P k+1
2α+γ =

∑

β∈A

P k
α+βwβ

(
g + (1 − 2µ)γ

)
, γ ∈ Es , g = {µ}s
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with 0 < µ < 1
2 .

This refinement was studied in [33], [39], [4], for s = 1 and A a linear interpo-
lation operator at the points x = 0, x = 1. For µ = 1

4 , this is Chaikin’s scheme for
generating quadratic B-spline curves [10]. For µ 6= 1

4 it is a general corner cutting
scheme.

2.2. Approximation order of subdivision schemes. A convergent
subdivision scheme S, constructed by the second approach of §2.1 with refinement
rule (10), has the property of reproduction of polynomials.

Let the operator A map the set f |A to a unique interpolation polynomial of
total degree not exceeding m, interpolating the data {(x, f(x)) : x ∈ A}. In the
following, we denote by Πm(Rs) the space of all s-variate polynomials of degree
up to m. It is easy to verify that for f ∈ Πm(Rs) and f0 = {f0

α = f(αh) :
α ∈ Z

s}, h ∈ R+, the refinement (10) generates data on f , namely fk = Skf0 =
{fk

α = f(2−kαh) : α ∈ Z
s}, and therefore S∞f0 = f , and the subdivision scheme

reproduces polynomials in Πm(Rs).

In case of the refinement rule (11), arguments as in [30] lead to (S∞f0)(x) =
f(x+2hg), with g as in (11). This property of the scheme S is termed reproduction
with a fixed shift of polynomials in Πm(Rs).

The reproduction of polynomials in Πm(Rs) (with or without a shift), the
representation of S∞f0 in terms of the compactly supported basic limit function
φ of S,

S∞f0(x) =
∑

α∈Zs

f0
αφ(x − α) , (13)

and classical quasi-interpolation arguments [5], lead to the error estimate

sup
x∈Ω

∣∣(S∞f0)(x) − f(x)
∣∣ ≤ Chm+1. (14)

In (14) f0 = {f0
α = f(αh) : α ∈ Z

s} for the refinement rule (10), while, for the
refinement rule (11), f0 = {f0

α = f(αh − 2gh) : α ∈ Z
s}, f is a smooth enough

function, Ω is a bounded domain in R
s, and the constant C may depend on S, f,Ω

but not on h. A subdivision scheme satisfying (14) is said to have approximation
order m+ 1.

Subdivision schemes constructed by repeated averaging reproduce constant
functions and hence have approximation order 1. If the repeated averaging is
done in a symmetric way relative to [0, 1]s, then the resulting scheme reproduces
also linear polynomials, and the scheme has approximation order 2. For example,
this property is shared by all the symmetric B-spline schemes of odd degrees. The
mask of the scheme generating B-spline curves, based on the symmetric B-spline
of degree 2`+ 1 is

ã
[2`+1]
i =

1

22`+1

(
2`+ 2

`+ 1 + i

)
, i = −`− 1, . . . , 0, . . . , `+ 1 .



Subdivision Schemes Refining Geometric Objects 7

The repeated averaging for such a symmetric mask takes the symmetric form

P k+1,0
2i = P k

i , P k+1,0
2i+1 =

1

2
(P k

i + P k
i+1) ,

P k+1,j
i =

1

4
(P k+1,j−1

i−1 + 2P k+1,j−1
i + P k+1,j−1

i+1 ), i ∈ Z , j = 1, . . . , ` ,

P k+1
i = P k+1,`

i , i ∈ Z .

2.3. Convergence and smoothness analysis. Given the coefficients
of the mask of a scheme, one would like to be able to determine if the scheme is
convergent, and what is the smoothness of the resulting basic limit function (which
is the generic smoothness of the limits generated by the scheme in view of (13)).
Such analysis tools are essential for the design of new schemes.

We present one method for convergence analysis of the two cases s = 1, 2. The
method for smoothness analysis in case s = 1 is simpler and is given in full. Its
extension to s = 2 is omitted, but some special cases are discussed. There are
other methods for convergence and smoothness analysis, see, e.g., [18], [19], [20],
[41], [44].

An important tool in the analysis of convergence, presented here, is the symbol
of a scheme Sa with the mask a = {aα : α ∈ σ(a)},

a(z) =
∑

α∈σ(a)

aαz
α. (15)

A first step towards the convergence analysis is the derivation of the necessary
condition for uniform convergence,

∑

β∈Zs

aα−2β = 1 , α ∈ Es , (16)

derived easily from the refinement rule

fk+1
α =

∑

β∈Z
s

aα−2βf
k
β , α ∈ Z

s.

with fk = {fk
α ∈ R : α ∈ Z

s}. The necessary condition (16) implies that we have
to consider symbols satisfying

a(1) = 2 , a(−1) = 0 if s = 1 , (17)

or
a(1, 1) = 4 , a(−1, 1) = a(1,−1) = a(−1,−1) = 0 if s = 2 . (18)

In case s = 1, condition (17) is equivalent to

a(z) = (1 + z)q(z) with q(1) = 1 . (19)

The scheme with symbol q(z), Sq, satisfies Sq∆ = ∆Sa (see, e.g. [24]), where ∆
is the difference operator

∆f =
{
(∆f)i = fi − fi−1 : i ∈ Z

}
. (20)
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A necessary and sufficient condition for the convergence of Sa is the contractivity
of the scheme Sq, namely Sa is convergent if and only if S∞

q f0 = 0 for any f0

[33]. The contractivity of Sq is equivalent to the existence of a positive integer L,
such that ‖SL

q ‖∞ < 1. This condition can be checked for a given L by algebraic
operations on the symbol q(z) (see, e.g., [24], [25]).

For practical geometrical reasons, only small values of L have to be considered,
since a small value of L guarantees “visual convergence” of {Fk(t)} to S∞

a P0,
already for small k, as the distances between consecutive control points contract
to zero fast. A good scheme corresponds to L = 1 as the B-spline schemes, or to
L = 2 as many of the schemes constructed by the second method in §2.1 (see the
following examples).

For s = 2, the necessary condition (18) guarantees the existence of two decom-
positions of the form

(1 − zi)a(z) = qi1(z)(1 − z2
1) + qi2(z)(1 − z2

2) , i = 1, 2 , (21)

where z = (z1, z2). The above two decompositions extend to s = 2 the factorization
(19) written as (1 − z)a(z) = (1 − z2)q(z). The decompositions (21) guarantee
the existence of a matrix subdivision scheme SQ, with a matrix symbol Q(z) =
{qij(z)}2

i,j=1, satisfying SQ(∆1,∆2)
T = (∆1,∆2)

TSa. Here (∆1,∆2)
T is the vector

difference operator, extending (20) to s = 2,

(∆1,∆2)
T f =

{
((∆1,∆2)

T f)α = (fα − fα−(1,0), fα − fα−(0,1))
T : α ∈ Z

2
}
.

A sufficient condition for the convergence of Sa is the contractivity of SQ, which
can be checked by algebraic operations on the symbol Q(z) [9], [24], [43].

Since many of the schemes have symmetries relative to Z
2, their symbols are

factorizable and have the form a(z) = (1 + z1)(1 + z2)q(z). As a simple extension
of the case s = 1, we get that Sa is convergent if the two schemes with symbols
(1 + z1)q(z), (1 + z2)q(z) are contractive. If a(z) is symmetric in the sense that
q(z1, z2) = q(z2, z1), then it is sufficient to check the contractivity of (1 + z1)q(z)
(see, e.g., [25]).

The smoothness analysis in the case s = 1, relies on the result that if the symbol
of a scheme has a factorization

a(z) =

(
1 + z

2

)ν

b(z) , (22)

such that the scheme Sb is convergent, then Sa is convergent and its limit functions
are related to those Sb by

Dν(S∞
a f0) = S∞

b ∆νf0, (23)

with D the differentiation operator [33], [24]. Thus, each factor (1 + z)/2 multi-
plying a symbol of a convergent scheme adds one order of smoothness. This factor
is termed a smoothing factor.

The relation between (22) and (23) is a particular instance of the “algebra of
symbols” [35]. If a(z), b(z) are two symbols of converging schemes, then Sc with
the symbol c(z) = 1

2s a(z)b(z) is convergent, and

φc = φa ∗ φb . (24)



Subdivision Schemes Refining Geometric Objects 9

Example (B-spline schemes). The smoothness of the limit functions generated

by the m-th degree B-spline scheme, having the symbol a[m](z) = 2
(

1+z
2

)m+1
, can

be concluded easily. The factor b(z) = (1+z)
2

2
corresponds to Sb generating a

piecewise linear interpolant to the initial data {(i, f0
i )}, which is continuous, and

the factors
(

1+z
2

)m−1
add smoothness, so that S∞

a[m]f
0 ∈ Cm−1. Note that a[m](z)

consists of smoothing factors only. In fact the B-spline schemes are optimal, in
the sense that for a given support size of the mask, the limit functions generated
by the corresponding B-spline scheme is of maximal smoothness.

Example (the four-point scheme). Here we present the most general univari-
ate interpolatory scheme which is based on four points [31], and describe briefly
its convergence and smoothness analysis.

The refinement rule is

fk+1
2i = fk

i , fk+1
2i+1 = −w(fk

i−1 + fk
i+2) +

(
1
2 + w

)
(fk

i + fk
i+1) ,

with w a parameter controlling the shape of the limit curves. The symbol of the
scheme is

aw(z) = 1
2z

(z + 1)2
[
1 − 2wz−2(1 − z)2(z2 + 1)

]
. (25)

Note that for w = 0, a0(z) is the symbol of the two-point scheme generating
the polygonal line through the initial control points, and that for w = 1/16 it
coincides with the symbol of the Dubuc–Deslauriers scheme based on four points
(reproducing cubic polynomials).

The range of w for which Saw
is convergent is the range for which Sbw

with
symbol bw(z) = aw(z)/(1 + z) is contractive. The condition ‖Sbw

‖∞ < 1 holds
in the range −3/8 < w < (−1 +

√
13)/8, while the condition ‖S2

bw
‖∞ < 1 holds

in the range −1/4 < w < (−1 +
√

17)/8. Thus Saw
is convergent in the range

−3/8 < w < (−1 +
√

17)/8. To find a range of w where Saw
generates C1 limits,

the contractivity of Scw
with cw(z) = 2aw(z)/(1 + z)2 has to be investigated. It is

easy to check that ‖Scw
‖∞ ≥ 1, but that ‖S2

cw
‖∞ < 1 for 0 < w < (

√
5 − 1)/8.

The limit of Saw
is not C2 even for w = 1/16, although for w = 1/16 the symbol

is divisible by (1+z)3 (see, e.g., [31]). It is shown in [20] by other methods, that the
basic limit function for w = 1/16, restricted to its support, has a second derivative
only at the non-dyadic points.

For the case s = 2, the idea of smoothing factors generalizes straightforwardly.
Two smoothing factors in two linearly independent directions in Z

2 are sufficient
for increasing the smoothness. A smoothing factor in direction (u, v) ∈ Z

2 is
1
2 (1 + zu

1 z
v
2 ). Specializing to the coordinate directions in Z

2, (1, 0) and (0, 1), we
get for a symbol a(z) = (1 + z1)

m(1 + z2)
mb(z), such that Sb is convergent, that

∂i,jS
∞
a f0 = S∞

ai,j
∆i

1∆
j
2f

0, i, j = 0, . . . ,m , (25)

with

ai,j(z) =
2i+ja(z)

(1 + z1)i(1 + z2)j
, i, j = 0, . . . ,m , (26)
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and with ∂ij the (i+ j)-th partial derivative of orders i, j in directions (1, 0) and
(0, 1) respectively.

For a symbol with the symmetry of the three direction mesh

a(z) = (1 + z1)
m(1 + z2)

m(1 + z1z2)
mb(z) , (27)

such that Sb is convergent, we get

∂i,j,`S
∞
a f0 = S∞

ai,j,`
∆i

1∆
j
2(∆1 + ∆2)

`f0, i, j, ` = 0, . . . ,m , (28)

with

ai,j,`(z) =
2i+j+`a(z)

(1 + z1)i(1 + z2)j(1 + z1z2)`
, i, j, ` = 0, . . . ,m , (29)

and with ∂i,j,` the (i + j + `)-th partial derivative of orders i, j, ` in directions
(1, 0), (0, 1), (1, 1) respectively.

In particular Sa with the symbol a(z) = (1 + z1)
2(1 + z2)

2b(z) generates C1

limit functions if the three schemes with the symbols

2(1 + z1)(1 + z2)b(z) , 2(1 + z1)
2b(z) , 2(1 + z2)

2b(z) ,

are contractive. Similarly for a(z) = (1+ z1)(1+ z2)(1+ z1, z2)b(z), φa ∈ C1 if two
of the three schemes with the symbols 2(1 + z1)b(z), 2(1 + z2)b(z), 2(1 + z1z2)b(z)
are contractive.

The conditions for smoothness given above are only sufficient. Yet, in the case
s = 1, there is a large class of convergent schemes for which the factorization in
(22) is necessary for generating Cν limit functions. The schemes in this class are
L∞-stable, namely, satisfy

‖S∞
a f0‖ ≥ C‖f0‖∞ , f0 ∈ `∞(Z) , (31)

with constant C dependent on Sa but not on f0. All relevant schemes for geometric
applications are L∞-stable, as the interpolatory schemes and the B-spline schemes.

This is not the case for s = 2. The symbol of a convergent L∞-stable scheme,
generating smooth limit functions is not necessarily factorizable. Yet, many of the
schemes in use have factorizable symbols.

2.4. Subdivision schemes generating surfaces. Schemes generating
surfaces operate on control nets, and map a control net to a refined one.

A control net N(V,E, F ), consists of a set V of points in R
3, termed vertices,

with two sets of topological relations between them E and F , called edges and
faces respectively (see, e.g., [48]). An edge denotes a pair of vertices. A face is a
cyclic list of vertices where every pair of consecutive vertices constitutes an edge.
The valency of a vertex is the number of edges that share it, the valency of a face
is the number of vertices that belong to it. In Fig. 2 we present a schematic net.
We consider here only closed nets, namely nets in which each edge is shared by
two faces.
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face
edge

vertex

Figure 2. A schematic net

2.4.1. Topological refinement of nets. There are several topological rules for
refining a net N(V,E, F ). The most common one defines the new set of vertices,
as

V ′ =
{
u(v) : v ∈ V

}
∪

{
u(e) : e ∈ E

}
∪

{
u(f) : f ∈ F

}
= V ′

V ∪ V ′
E ∪ V ′

F . (32)

Here V ′
V denotes all the new vertices, called v-vertices, corresponding to the vertices

in V (in an interpolatory scheme V ′
V = V ); E′

V denotes all the new vertices, called
e-vertices, corresponding to the edges in E, and V ′

F denotes all the new vertices,
called f -vertices, corresponding to the faces in F . The rule for determining the
location in R

3 of u(v), u(e) and u(f) is the refinement rule of the subdivision
scheme. For example, a new vertex u(e) is a certain linear combination of the
vertices in V , weighted according to the topological relation between each v ∈ V
and e.

The topological relations E′, F ′ in the refined net N ′(V ′, E′, F ′) are indepen-
dent of the subdivision scheme, but depend only on E and F ,

E′ =
{
(u(e), u(f)) : e ∈ f ∈ F

}
∪

{
(u(e), u(v)) : v ∈ e ∈ E

}
= E′

F ∪ E′
E (33)

and
F ′ =

{
(u(v), u(e), u(f), u(ẽ)) : v = e ∩ ẽ ∈ f ∈ F} . (34)

Thus after one refinement step all faces have valency four and similarly all the
vertices in the set V ′

E . The valency of a vertex in V ′
F is the same as that of the

“parent” face, and the valency of a vertex in V ′
V is the same as that of the “parent”

vertex. From this observation we conclude that the nets obtained after two or more
refinements have the topology of a quad-mesh (of Z

2), except for a finite number of
vertices with valency different from four (each equals the valency of an “ancestor”
face or vertex in the initial net). The vertices with valency different from four
are termed irregular (extra-ordinary) and a special local analysis of convergence
and smoothness is required there [54]. Over the net, except in the vicinity of the
irregular vertices, the analysis relative to Z

2 is applicable.
For a net N(V,E, F ) with all faces of valency three, the topological refinement

which is commonly used is such that the new vertices consist of v-vertices and



12 Nira Dyn

e-vertices only, with the topological refinement

E′ = E′
E ∪E′

V , F ′ = F ′
V ∪ F ′

F . (35)

In (35), E′
E is defined as in (33), and E′

V = {(u(e), u(ẽ)) : e ∩ ẽ ∈ V }. The
new faces are of two types, F ′

V = {(u(v), u(e), u(ẽ)) : v ∈ e ∩ ẽ ∈ V }, and F ′
F =

{(u(e1), u(e2), u(e3)) : e1, e2, e3 ∈ f ∈ F}. This refinement is presented in a
schematic way in Fig. 3. As can be observed from Fig. 3, every face is replaced by

e e

e

v

v
v

N N'

Figure 3. Schematic triangular topological refinement

four faces, one determined by the face itself, and three in F ′
V , each consisting of

three new vertices, one corresponding to one vertex of the face and two to the two
edges of the face sharing that vertex.

Note that a face with valency three can be realized in R
3 as a planar triangle,

and therefore N(V,E, F ), with all faces of valency three, can be realized as a
triangulation of the set V . According to the topological refinement (35), the e-
vertices have valency six, while a v-vertex has the same valency as that of its
“parent” vertex in V . Thus, after two or more topological refinements, most of
the vertices in the triangulations have valency six. Only a finite set of irregular
(extra-ordinary) vertices have valencies different from six, “inherited” from those
in the initial triangulation. Also, each irregular vertex is connected by edges only
to regular vertices (of valency six).

Thus for a triangulation refined as above, the analysis of convergence and
smoothness relative to the three-direction mesh applies, except in the vicinity of a
finite number of isolated points, where a special local analysis is required [54].

While the analysis on regular meshes can handle any order of smoothness,
the analysis at irregular vertices is limited to C1 smoothness (see, [51], [45], and
references therein). This limitation is the main reason why subdivision schemes are
used mainly in computer graphics. In many industrial applications the designed
surfaces have to be C2 everywhere.

2.4.2. Some popular schemes. The first schemes devised for general nets were
the bivariate tensor-product B-spline schemes of low degree, with special rules
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near irregular vertices [8], [23]. A bivariate tensor-product scheme of a univariate
scheme with symbol a(z), is a scheme with the symbol a(z1, z2) = a(z1)a(z2).

The most commonly used scheme of that type for the topological refinement
(32)–(34) is the Catmull–Clark scheme, which is an extension of the tensor-product
cubic B-spline scheme [8]. The weights, up to normalization, of this scheme are
given in Fig. 4. The points designated by o are the new f -vertices, and the weight

1

1

1

1

1

1

1

1

1

1 1

1

1

1

w
K

1

1

1

1

1

Figure 4. Weights for Catmull-Clark scheme: f -vertex (left), e-vertex (middle) and v-
vertex (right)

of a vertex of valency k, in the rule for its “son”, is wk = k(k − 2), k = 3, 4, . . . .
Note that w4 = 8, which is the weight in the tensor-produce cubic B-spline scheme.
This scheme is easy to implement as can be inferred from Fig. 4. Different choices
of wk were considered in [2], [3] to improve the limit curvature at irregular ver-
tices. Applications of the Catmull–Clark scheme are many. Here we refer to two
important papers [21], [40].

In [46], the tensor-product four-point scheme is extended to an interpolatory
scheme for general nets with the topological refinement (32)–(34).

1

1
1

1

1

w

1

1

3
3

K

Figure 5. Weights for Loop scheme: e-vertex (left) and v-vertex (right)

For triangulations, the box-spline-based scheme of Loop [49] is very popular.
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Loop scheme is an extension of a box-spline scheme with the symbol

a(z1, z2) =
1

16
(1 + z1)

2(1 + z2)
2(1 + z1z2)

2 ,

generating C2 piecewise quartic box-spline surfaces on the three-direction mesh.
The support of the mask of Loop scheme is small, and the refinement rule involves
only neighboring vertices. In Fig. 5 the weights for defining a new e-vertex and a
new v-vertex are given up to normalization. The weight wk of a vertex of valency
k, involved in the rule for its “son”, is

wk =
64k

40 −
(
3 + 2 cos 2π

k

) , k = 3, 4, . . . (36)

Fig. 6 depicts an initial triangulation of a head, and the triangulations after two
refinements with Catmull-Clark scheme and with Loop scheme.

Figure 6. Head. Initial control net (left), after two refinements: with Catmull-Clark
scheme (middle) and with Loop scheme (right)

An interpolatory scheme for general closed triangulations with a shape param-
eter is the butterfly scheme [32]. The weights defining a new e-vertex are depicted
in the left figure of Fig. 7. Since the scheme is interpolatory, the new v-vertices
coincide with the old vertices. The scheme generates C1 surfaces if all vertices
have valencies at least four and at most eight, depending on the value of w [43],
[56]. Modified weights for e-vertices, corresponding to edges having an irregular
vertex of any valency above three are derived in [60] for w = 1/16. These weights
are depicted in the right figure of Fig. 7. The values {sj} are given by a formula
depending on the valency k of the irregular vertex,

sj =
1

k

(
1

4
+ cos

2πj

k
+

1

2
cos

4πj

k

)
, j = 0, 1, . . . , k − 1 , k > 3 . (37)
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2w

2w
-w

-w

-w-w

1

2

1

2

s

s

s

s

s0

1

2

3

3
4

K-1

Figure 7. Weights for e-vertex: butterfly scheme (left), modified butterfly scheme (right)

With the modified weights, the generated surfaces are C1 for any valency greater
than three, and are better looking in the vicinity of irregular vertices of valency
between four and eight.

3. Linear extensions

In this section, we review several extensions of stationary linear schemes for the
refinement of points to stationary linear schemes which refine other objects.

3.1. Matrix subdivision schemes. Matrix schemes are defined by ma-
trix masks and refine sequences of vectors. Although, in the geometric setting,
the schemes of §2 refine sequences of control points in R

2 or in R
3, the schemes

operate on each component of the vectors in the same way, such that the refine-
ment of one component is independent of the other components. This property is
very important in geometric applications, since the subdivision schemes commute
with affine transformations (the schemes are affine invariant). The schemes pre-
sented here are not affine invariant, and their main application is in multiwavelets
constructions [12], [57] and in the analysis of multivariate subdivision schemes for
control points as indicated in §2.3 (see, e.g., [24]).

A finite set of matrices of order d × d, A = {Aα : α ∈ σ(A) ⊂ Z
s}, defines a

matrix subdivision scheme SA with a refinement rule

(SAv)α =
∑

β∈Z
s

Aα−2βvβ , v = {vα ∈ R
d : α ∈ Z

s} . (1)

Given initial “control vectors” v0 = {v0
α ∈ R

d : α ∈ Z
s}, the matrix subdivision

scheme SA generates a sequence of control vectors by

vk+1 = SAvk, k = 1, 2, . . . (2)
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The notion of uniform convergence from §2 can be extended to this case, by
considering the convergence of each of the d components of the vectors. The con-
vergence analysis has a linear algebra component to it, in addition to the analysis
component. By considering the matrices

Bγ =
∑

β∈Z
s

Aγ−2β , γ ∈ Es , (3)

one can easily conclude a necessary condition for convergence. This condition is
the analogue of condition (2.16), stating that for any initial control vectors v0, and
any x ∈ R

s,

(S∞
A v0)(x) ∈ span{u ∈ R

d : Bγu = u for all γ ∈ Es} . (4)

In the extreme case of schemes with Bγ = I, γ ∈ Es, the space in (4) is R
d,

and no condition of linear-algebra type is imposed. Such are the schemes used
in the analysis of convergence and smoothness of multivariate schemes for points.
Schemes for which the space in (4) is R

d, are very similar to schemes with a
scalar mask [17]. In the other extreme case, the space in (4) is one dimensional
with vectors of equal components, implying that the limit vector function S∞

A v0,
has equal components. An example of this type of schemes is provided by matrix
subdivision schemes generating multiple knot B-spline curves (see, e.g., [52]). This
latter extreme case is the most relevant to the construction of multiwavelets.

In [13] and in [38], univariate (s = 1) matrix schemes with the space (4) of
dimension m, 1 ≤ m ≤ d, are studied. An appropriate change of basis, depending
on the structure of the space (4), facilitates the extension of the factorization of
scalar symbols to a certain factorization of matrix symbols. This factorization is
sufficient for convergence and smoothness analysis of matrix schemes, and is also
necessary under an extension of the notion of L∞-stability (see §2.3) to the matrix
case. Multivariate matrix schemes with the space (4) of general dimension are
considered in [55].

In the next section we discuss a special type of matrix subdivision schemes,
which is relevant to curve design from locations and normals, and to the generation
of functions from the point values of the functions and their derivatives. The use
of analogous schemes for the generation of surfaces from locations and normals is
not straightforward, and leads to non-linear schemes.

3.2. Hermite subdivision schemes. The first Hermite schemes to be
studied were univariate and interpolatory [50]. Interpolatory Hermite subdivision
schemes are matrix schemes, such that the components of the vectors are regarded
as the value of a function and its consecutive derivatives up to a certain order at the
points of 2−k

Z
s. Non-interpolatory Hermite subdivision schemes were introduced

later [42].

3.2.1. Univariate interpolatory Hermite schemes. The most common con-
struction of interpolatory Hermite subdivision schemes is similar to the second
construction method presented in §2.1. The approximation operator A is an exten-
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sion of the one in (2.9). For interpolatory schemes, it is a polynomial interpolation
operator of the form

(Af)(x) =
∑

α∈A

d−1∑

i=0

wα,i(x)f
(i)(α) , (5)

satisfying Di(Af)(α) = f (i)(α), α ∈ A, i = 0, 1, . . . , d− 1.

The refinement is similar to (2.10), namely

vk+1
2α = vk

α ,
(
vk+1
2α+1

)
j

=
∑

β∈A

d−1∑

i=0

Djwβ,i(1/2)(vk
α+β)i , 0 ≤ j ≤ d− 1 . (6)

In (6), (v)i denotes the i-th component of the vector v. The refinement (6) can be
written in terms of a matrix mask as,

vk+1
α =

∑

β∈Z
s

A
(k)
α−2βv

k
β , α ∈ Z

s , (7)

where the matrices with even indices are

A
(k)
2α = δα,0Id×d , α ∈ Z , (8)

with δα,0 = 0 for α 6= 0, and δ0,0 = 1. The matrices with odd indices depend on
the refinement level k, and have the form

A
(k)
2α+1 = Λd(2

k)A
(0)
2α+1Λd(2

−k) , α ∈ Z , (9)

with Λd(h) = diag(1, h, h2, . . . , hd−1) and

A
(0)
1−2α =

{
Diwα,j

(
1

2

)}d−1

i,j,=0

, α ∈ A . (10)

The powers of 2 in (9) are due to the fact that derivatives of polynomials are
not scale invariant. More precisely if q(x) = p(hx), with p a polynomial, then
(Djq)(hx0) = hj(Djp)(x0).

An interpolatory Hermite scheme is termed uniformly convergent if there is a
limit vector function F of the form F = (Djf, 0 ≤ j ≤ d−1)T , with f ∈ Cd−1(R),
satisfying for any closed interval [a, b],

lim
k→∞

sup
α∈2k[a,b]∩Z

∥∥F (2−kα) − vk
α

∥∥ = 0 ,

with ‖ · ‖ any norm in R
d.
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Example (a two-point Hermite interpolatory scheme). The scheme is given
by the non-zero matrices of its mask:

A0 = I2×2 , A
(k)
1 =

(
1
2 ν2−k

−µ2k 1−µ
2

)
, A

(k)
−1 =

(
1
2 −ν2−k

µ2k 1−µ
2

)
.

This scheme with ν = 1/8 and µ = 3/2 generates the C1 piecewise Hermite cubic
interpolant to the data {v0

i = (f(i), f ′(i))T : i ∈ Z}, while for ν = 0, µ = 1,
it generates the piecewise linear interpolant to the given function’s values at the
integers, which is only C0. By the analysis to be reviewed, it can be shown that
for 0 < ν < 1/4, µ = 4ν + 1, the limit functions generated by the scheme are C1.
(See, e.g. [36].)

One method for the convergence analysis of such schemes is based on deriving
an equivalent stationary matrix scheme, refining vectors of (d−1)-th order divided
differences, obtained from the original control vectors. The limit of such a scheme,
if it exists, necessarily consists of equal components, which are the derivative of
order d− 1 of the smooth function f [37].

More precisely, the divided difference vector uk
n at level k is defined for each

n ∈ Z by
(uk

n)j = [τj+1, τj+2, . . . , τj+d]f , j = 0, . . . , d− 1 ,

with τ1 = · · · = τd−1 = (n− 1)2−k, τd = τd+1 = · · · = τ2d−1 = n2−k. Here we use
the definition of divided differences, allowing repeated points for functions with
enough derivatives (see, e.g., [6, Chapter 1]). In our setting all integer points have
multiplicity d. The vector uk

n can be derived from the vectors vk
n−1 and vk

n.
The symbol D(z) of the matrix scheme refining the control vectors uk = {uk

n :

n ∈ Z}, can be obtained recursively from the symbol D[0](z) =
∑

α A
(0)
α zα, by

algebraic manipulations, involving multiplication by certain matrix Laurent poly-
nomials and their inverses.

It is proved in [37] that the matrix symbol D(z) is a matrix Laurent polynomial
if the scheme (7) reproduces polynomials of degree ≤ d− 2, and that necessarily a
scheme of the form (7), which generates Cd−1 functions, reproduces polynomials
of degree ≤ d − 1. In (5), the degree of the interpolation polynomial is d|A| − 1,
so the scheme (7), with the mask (8),(9),(10), reproduces polynomials of degree at
least 2d − 1, as A contains at least the points 0, 1. These arguments lead to the
conclusion that the Hermite subdivision scheme SA, refining the control vectors vk

can be transformed into the matrix subdivision scheme SD for the control vectors
uk.

To determine the convergence of the scheme SD, which is equivalent to the con-
vergence of the original Hermite subdivision scheme SA to Cd−1 functions, we ob-
serve that the component (uk

n)j , in case of convergence, approximates f (d−1)(2−kn)
for j = 1, . . . , d. Thus as in the case of control points, a necessary condition
for convergence is the contractivity of the scheme which refines the differences
(uk

n)j − (uk
n)j−1, j = 2, . . . , d, (uk

n)1 − (uk
n−1)d, n ∈ Z. Indeed, such a scheme

exists, and its symbol is a matrix Laurent polynomial when (7) reproduces poly-
nomials of degree ≤ d− 1 [37], guaranteeing that the contractivity of this scheme
can be checked by algebraic manipulations.
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The analysis of higher order smoothness is along the same lines.

3.3. B-spline subdivision schemes for compact sets. In the last
years, the univariate B-spline schemes were extended to operate on data consisting
of compact sets [27], [28]. The motivation for the study of such schemes is the
problem of approximating a 3D object from a discrete set of its 2D parallel cross-
sections, and the problem of approximating a 2D shape from a discrete set of its
1D parallel cross-sections. In both problems, either the 3D object or the 2D shape
is regarded as a univariate set-valued function, with its parallel cross-sections as
images. The B-spline subdivision schemes are adapted to this setting, so that the
limit set-valued function generated by the subdivision from samples of a continuous
set-valued function, approximates it.

For initial data F0 = {F 0
i ⊂ R

n : i ∈ Z} consisting of convex compact sets,
averages of numbers in the execution of a scheme, can be replaced by Minkowski
averages of sets. A Minkowski average of sets B1, . . . , B` ⊂ R

n with weights
λ1, . . . , λ` ∈ R,

∑`
i=1 λi = 1, is the set

∑̀
M

i=1

λiBi =

{∑̀

i=1

λibi : bi ∈ Bi

}
.

Thus the m-th degree B-spline subdivision scheme (2.4) can be adapted to convex
compact sets by the refinement rule

F k+1
i =

∑
M

j

a
[m]
i−2jF

k
j , i ∈ Z , (11)

with a[m] = {a[m]
i , i = 0, . . . ,m + 1} given in (2.2). Since the coefficients of the

mask are positive, the sets Fk, k ≥ 1, generated by the subdivision scheme SM,a[m]

with the refinement rule (11) are compact and convex [27]. By the associativity
and distributivity of the Minkowski average of convex sets with positive weights,
it can be deduced straightforwardly that the limit generated by SM,a[m] from F0,
when F0 consists of convex compact sets, is

(S∞
M,a[m]F

0)(t) =
∑

M
i∈Z

F 0
i Bm(t− i) . (12)

In (12) the convergence is in the Hausdorff metric, defined for two sets A,B in R
n,

by

haus(A,B) = max
{

sup
a∈A

inf
b∈B

‖a− b‖ , sup
b∈B

inf
a∈A

‖a− b‖
}

with ‖ · ‖ the Euclidean norm in R
n.

The subdivision scheme SM,a[m] has approximation properties. It is shown
in [27] that for a set-valued function G with convex compact images, which is
Lipschitz continuous, namely satisfies haus(G(t), g(t+∆)) = O(∆t), and for initial
data F0

h = {G(ih) : i ∈ Z}

haus
(
(S∞

M,a[m]F
0
h)(t), G(t)

)
= O(h) . (13)
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The subdivision SM,a[m] fails to approximation set-valued functions with general
compact images. As is shown in [29], for initial data F0, consisting of general
compact sets

S∞
M,a[m]F

0 =
∑

i∈Z

〈F 0
i 〉Bm(· − i)

with 〈F 0
i 〉 the convex hull of F 0

i . Thus S∞
M,a[m]F

0 is convex even when the initial

sets are non-convex, and it cannot approximate set-valued functions with general
compact sets as images.

There is another adaptation of the B-spline subdivision schemes to compact
sets [28], which yields approximation also in case of set-valued functions with
general compact sets as images. This adaptation is obtained by using the first
construction in §2.1 for s = 1, and by replacing the average of two numbers by the
metric average of two compact sets, introduced in [1],

A⊕t B =
{
ta+ (1 − t)b : (a, b) ∈ Π(A,B)

}

with

Π(A0, A1) =
{

(a0, a1) : ai ∈ Ai, i = 0, 1,

‖a0 − a1‖ = min
a∈Aj

‖ai − a‖, j = 1 − i, for i = 0 or 1
}
.

The refinement rule of the resulting scheme SMA,m is achieved by the m + 1
steps,

F k+1,0
2i = F k

i F k+1,0
2i+1 = F k

i , i ∈ Z ,

F k+1,j
i = F k+1,j−1

i ⊕ 1
2
F k+1,j−1

i−1 , i ∈ Z , j = 1, . . . ,m

F k+1
i = F k+1,m

i , i ∈ Z

(14)

The refinement rule (14) is denoted formally by Fk+1 = SMA,mFk.
Two important properties of the metric average, which are central to its appli-

cation in B-spline subdivision schemes are

A⊕t A = A , haus(A⊕t B,A⊕s B) = |s− t| haus(A,B) , (15)

for (s, t) ∈ [0, 1].
Let the sequence {Hk} consist of the “piecewise linear” set valued functions,

interpolating {Fk = Sk
MA,mF0},

Hk(t) = F k
i ⊕λ(t) F

k
i+1 , 2−ki ≤ t < 2−k(i+ 1) , i ∈ Z , k = 0, 1, 2, . . . , (16)

with λ(t) = i + 1 − 2kt. It is proved in [28], with the aid of the metric property
of the metric average (the second equality in (15)) and the completeness of the
metric space of compact sets with the Hausdorff metric, that the sequence {Hk(t)}
converges to a limit set-valued function denoted by S∞

MA,mF0.
Moreover, for G a Lipschitz continuous set valued function with general com-

pact sets as images, the limit generated by the scheme SMA,m starting from
F0

h = {G(ih) : i ∈ Z} approximates G with “error” given by

haus
(
(S∞

MA,mF0
h)(t), G(t)

)
= O(h) , t ∈ R . (17)
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3.4. A blending-based subdivision scheme for nets of curves.
The quadraticB-spline scheme (Chaikin algorithm) was extended to the refinement
of nets of curves in [15]. A net of curves with parameter d > 0 consists of two
families of continuous curves

{
φi(s) : 0 ≤ i ≤ n , s ∈ [0,md]

}
,

{
ψj(t) : 0 ≤ j ≤ m, t ∈ [0, nd]

}

satisfying the compatibility condition

φi(jd) = ψj(id) , i = 0, . . . , n , j = 0, . . . ,m .

Such a net is denoted by N (d, {φi}n
i=0, {ψj}m

j=0). The blending-based Chaikin-

type scheme refines a net of curves, N0 = N (d, {φ0
i }n

i=0, {ψ0
j }m

j=0) into a net of

curves N1 = N
(

d
2 , {φ1

i }2n−1
i=0 , {ψ1

j }2m−1
j=0

)
. A repeated application of such refine-

ments generates a sequence of nets
{
Nk = N

(
d
2k , {φk

i }nk

i=0, {ψk
j }mk

j=0

)
: k ∈ Z+

}
,

with nk = 2k(n − 1) + 1, mk = 2k(m − 1) + 1, which converges uniformly to a
continuous surface [15].

The construction of the refinement rule is analogous to the second method in
§2.1. The approximation operator A maps a net of curves N (d, {φi}n

i=0, {ψj}m
j=0)

into the piecewise Coons patch surface, interpolating the curves of the net,

C(N )(s, t) = C(φi, φi+1, ψj , ψj+1; d)(s− jd, t− id) ,

(s, t) ∈ [jd, jd+ d] × [id, id+ d] , i = 0, . . . , n− 1 , j = 0, . . . ,m− 1 ,
(18)

with C(φi, φi+1, ψj , ψj+1; d) a Coons patch [16].
Four continuous curves φ0, φ1, ψ0, ψ1 defined on [0, h] and satisfying φi(jh) =

ψj(ih), i, j = 0, 1, define a Coons patch on [0, h]2. For (s, t) ∈ [0, h]2 the Coons
patch is given by

C(φ0, φ1, ψ0, ψ1;h)(s, t)

=

[(
1 − t

h

)
φ0(s) +

t

h
φ1(s)

]
+

[(
1 − s

h

)
ψ0(t) +

s

h
ψ1(t)

]

−
[(

1− s

h

) ((
1− t

h

)
φ0(0)+

t

h
φ1(0)

)
+
s

h

((
1− t

h

)
φ0(h)+

t

h
φ1(h)

)]
. (19)

The Coons patch is blending between two surfaces. One is interpolating linearly
between corresponding points of φ0, φ1 and the other between the corresponding
points of ψ0, ψ1. (These two surfaces are the two first terms on the right-hand side
of (19)). It is easy to verify that C(φ0, φ1, ψ0, ψ1;h) coincides with the four curves
on the boundary of [0, h]2, namely that

C(φ0, φ1, ψ0, ψ1;h)(jh, t) = ψj(t) , j = 0, 1 ,

C(φ0, φ1, ψ0, ψ1;h)(s, ih) = φi(s) , i = 0, 1 .

Regarding the Coons patch of four curves as the analogue of a linear segment
between two points, the Chaikin scheme for the refinement of control points is
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“extended” to nets of curves, by sampling each of the Coons patches of C(Nk) at
1/4 and 3/4 of the corresponding parameters values. Thus the refinement rule
analogous to (2.11) is

φk+1
2i (s) = C(Nk)

(
s,

(
i+

1

4

)
d

2k

)
, φk+1

2i+1 = C(Nk)

(
s,

(
i+

3

4

)
d

2k

)
,

i = 0, . . . , nk − 1 , (20)

ψk+1
2j (t) = C(Nk)

((
j +

1

4

)
d

2k
, t

)
, ψk+1

2j+1 = C(Nk)

((
j +

3

4

)
d

2k
, t

)
,

j = 0, . . . ,mk − 1 . (21)

This refinement rule generates a refined net of curves after a simple reparametriza-
tion. This is written formally as Nk+1 = SBCNk.

The proof of convergence of the scheme SBC is not an extension of the analysis
of §2.3, but is based on the proximity of SBC to a new subdivision scheme Sa for
points, which is proved to be convergent by the analysis of §2.3.

Convergence proofs by proximity to linear stationary schemes for points are
employed, e.g., in [35] for the analysis of linear non-stationary schemes, and in [59]
for the analysis of a certain class of non-linear schemes.

Another important ingredient in the convergence proof is a property of a net
of curves, which is preserved during the refinements with SBC . A net of curves
N (d, {φi}n

i=0, {ψj}m
j=0) is said to have the M -property if the second divided dif-

ferences of all curves of the net at three points restricted to intervals of the form[
`d,

(
`+ 1

2

)
d
]
, ` ∈ (1/2)Z in the domain of definition of the curves, are all bounded

by a constant M .
The sequence {C(Nk) : k ∈ Z+} of continuous surfaces is shown to be a Cauchy

sequence for N0 with the M -property, by comparison of one refinement of SBC

with one refinement of Sa. The scheme Sa is constructed to be in proximity to
SBC in the sense that

∥∥E(SBCNk) − Sa(E(Nk))
∥∥ ≤ 3

2
M

(
d

2k+1

)2

, (22)

with E(Nk) =
{
C(Nk)

(
id
2 , j

d
2

)
, 0 ≤ i ≤ 2mk, 0 ≤ j ≤ 2nk

}
, and with M the

constant in the M -property satisfied by all the sets {Nk : k ∈ Z+} which are
generated by SBC .

Although the limit of the Cauchy sequence {C(Nk) : k ∈ Z+} is only C0, it is
conjectured in [15] that SBC generates C1 surfaces from initial curves which are
C1. This conjecture is based on simulations.
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[45] Karĉiauskas, K., Peters, J., Reif, U., Shape characterization of subdivision surfaces:
case studies. Computer Aided Geometric Design 21 (2004), 601–614.

[46] Kobbelt, L., Interpolatory subdivision on open quadrilateral nets with arbitrary
topology. Computer Graphics Forum 15 (1996), 409–420.

[47] Kobbelt, L., Sqrt(3) subdivision. In Proceedings of SIGGRAPH 2000, Annual Con-

ference Series, ACM-SIGGRAPH , 2000, 103–112.

[48] Kobbelt, L., Hesse, T., Prautzsch, H., Schweizerhof, K., Interpolatory subdivision
on open quadrilateral nets with arbitrary topology. Computer Graphics Forum 15
(1996), 409–420.

[49] Loop, C., Smooth spline surfaces based on triangles. Master Thesis, University of
Utah, Department of Mathematics, 1987.

[50] Merrien, J. L., A family of Hermite interpolants by bisection algorithms. Numerical

algorithms 2 (1992), 187–200.

[51] Peters, J., Reif, U., Shape characterization of subdivision surfaces-basic principles.
Computer Aided Geometric Design 21 (2004), 585–599.

[52] Plonka, G., Approximation order provided by refinable function vectors. Constr.

Approx. 13 (1997), 221–244.

[53] de Rahm, G., Sur une courbe plane. J. de Math. Pures & Appl. 35 (1956), 25–42.

[54] Reif, U., A unified approach to subdivision algorithms near extraordinary points.
Computer Aided Geometric Design 12 (1995), 153–174.

[55] Sauer, T., Stationary vector subdivision - quotient ideals, differences and approxi-
mation power. Rev. R. Acad. Cien., Serie A, Mat. 96 (2002), 257–277.

[56] Shenkman, P., Computing normals and offsets of curves and surfaces generated by
subdivision schemes. Master Thesis, Tel-Aviv university, 1996.

[57] Strella, V., Multiwavelets: Theory and Applications. PhD Thesis, MIT, 1996.

[58] Velho, L., Zorin, D., 4-8 subdivision. CAGD 18 (2001), 397–427.



26 Nira Dyn

[59] Wallner, J., Dyn, N., Convergence and C1 analysis of subdivision schemes on mani-
folds by proximity. Computer Aided Geometric Design 22 (2005), 593–622.
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