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Abstract

Subdivision schemes are efficient computational methods for the design,

representation and approximation of 2D and 3D curves, and of surfaces

of arbitrary topology in 3D. Subdivision schemes generate curves/surfaces

from discrete data by repeated refinements. While these methods are

simple to implement, their analysis is rather complicated.

The first part of the paper presents the ”classical” case of linear, sta-

tionary subdivision schemes refining control points. It reviews univari-

ate schemes generating curves and their analysis. Several well known

schemes are discussed.

The second part of the paper presents three types of nonlinear subdivi-

sion schemes, which depend on the geometry of the data, and which are

extensions of univariate linear schemes. The first two types are schemes

refining control points and generating curves. The last is a scheme re-

fining curves in a geometry-dependent way, and generating surfaces.

1.1 Introduction

Subdivision schemes are efficient computational tools for the generation

of functions/curves/surfaces from discrete data by repeated refinements.

They are used in geometric modeling for the design, representation and

approximation of curves and of surfaces of arbitrary topology. A linear

stationary scheme uses the same linear refinement rules at each loca-

tion and at each refinement level. The refinement rules depend on a

finite number of mask coefficients. Therefore, such schemes are easy to

implement, but their analysis is rather complicated.

The first subdivision schemes where devised by G. de Rahm (1956)
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for the generation of functions with a first derivative everywhere and a

second derivative nowhere. Infact, in most cases, the limits generated by

subdivision schemes are convolutions of a smooth function with a fractal

one.

This paper consists of two parts. The first is a review of ”classical”

subdivision schemes, namely linear, stationary schemes refining control

points. The second brings several constructions of nonlinear schemes,

taking into account the geometry of the refined objects. The nonlinear

schemes are all extensions of ”good” linear univariate schemes.

In the first part we review only linear univariate subdivision schemes

(schemes generating curves from initial points). Although the main ap-

plication of subdivision schemes is in generating surfaces, we limit the

presentation here to these schemes. The main reasons for this choice

are two. The theory of univariate schemes is much more complete and

easier to present, yet it consists of most of the aspects of the theory

of schemes generating surfaces. The understanding of this theory is a

first essential step towards the understanding of the theory of schemes

generating surfaces. Also, the schemes that are extended in the second

part to nonlinear schemes, are univariate.

Section 1.2 is devoted to the presentation of stationary, linear, uni-

variate subdivision schemes. Important examples such as the B-spline

schemes and the interpolatory 4-point scheme are discussed in details.

Among these important examples are the schemes that are extended in

the second part to nonlinear schemes. A sketch of tools for analysis

of convergence and smoothness of linear, univariate schemes is given in

§1.2.2. The relation between subdivision schemes and the construction

of wavelets is briefly discussed in §1.2.3.

The second part of the paper consists of three sections. In Section

1.3 linear schemes are extended to refine manifold-valued data. This is

done in two steps. First, the refinement rules of any convergent linear

scheme are presented (in several possible ways) in terms of repeated

binary averages. This is demonstrated by several examples in §1.3.1.

Then in §1.3.2 the manifold-valued subdivision schemes are constructed,

either by replacing every linear binary average in the linear refinement

rules by a geodesic average, yilding a geodesic analoguous scheme, or by

replacing every linear binary average in the linear refinement rules by

its projection to the manifold, yielding a projection analogue scheme.

The analysis of the so constructed manifold-valued subdivision schemes,

is done in §1.3.3, via their proximity to the linear schemes from which

they are derived.
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In Section 1.4 two data-dependent extensions of the linear interpola-

tory 4-point scheme are discussed. In both extensions the refinement

is adapted to the local geometry of the four points used. These two

geometric (data-dependent) 4-point schemes are effective in case of an

initial control polygon with edges of significantly different length. For

such initial control polygons the limits generated by the linear 4-point

scheme have unwanted features (artifacts), while the geometric 4-point

schemes tend to generate artifact free limits.

The last section deals with repeated refinements of curves for the

generation of a surface. Here the scheme that is extended is the quadratic

B-spline scheme (called Chaikin algorithm). It is used to refine curves

by first constructing a geometric correspondence between pairs of curves,

and then applying the refinment to corresponding points. Since this is

a work in progress only partial results are presented.

1.2 Linear subdivision schemes for the generation of curves

In this section we discuss stationary, linear schemes, generating curves

by repeated refinements of points. Such a subdivision scheme is defined

by a finite set of real coefficients called mask

a = {ai ∈ R, i ∈ σ(a) ⊂ Z},

where σ(a) denotes the finite support of the mask. The scheme with the

mask a is denoted by Sa.

The refinement rules of Sa have the form

(SaP)α =
∑

β∈Z

aα−2βPβ , α ∈ Z, (1.1)

where P denotes the polygonal line through the points {Pi}i∈Z ⊂ R
d,

with d ≥ 1.

Note that there are two different refinement rules in (1.1), one cor-

responding to odd α and one to even α, involving the odd respectively

even coefficients of the mask.

Remark 1.1 In this section we consider schemes operating on points

defined on Z, although, in geometric applications the schemes operate on

finite sets of points. Due to the finite support of the mask, our consider-

ations apply directly to closed curves and also to ’open’ ones, except in

a finite zone near the boundary.
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The initial points to be refined are called control points, and the corre-

sponding polygonal line through them is called control polygon. These

terms are used also for the points and the corresponding polygonal line at

each refinement level. The subdivision scheme is a sequence of repeated

refinements of control polygons,

{Pk+1 = SaPk, k ≥ 0}, (1.2)

with P0 the initial control polygon. The refinements in (1.2) are station-

ary, since at each refinement level the same scheme Sa is used. Material

on nonstationary subdivision schemes can be found in the review paper

Dyn & Levin (2002).

A subdivision scheme is termed uniformly convergent if the sequence

of control polygons {Pk} converges uniformly on compact sets of R
d.

This is the notion of convergence relevant to geometric applications.

Each control polygons in (1.2) has a parametric representation as the

vector in R
d of the piecewise linear interpolant to the data {(i2−k, P k

i ) , i ∈
Z}, and the uniform convergence is analyzed in the setting of continuous

functions. (see e.g. Dyn (1992)).

For P0 ⊂ R
d with d = 1, the scheme converges to a univariate func-

tion, while in case d ≥ 2 the scheme converges to a curve in R
d.

The convergence of a scheme Sa implies the existence of a basic-limit-

function φa, which is the limit obtained from the initial data, δ0i = 0

everywhere on Z except δ00 = 1.

It follows from the linearity and uniformity of (1.1) that the limit

S∞
A P0, obtained from any initial control polygon P0 passing through

the initial control points {P 0
α ∈ R

d, α ∈ Z}, can be written in terms of

integer translates of φa, as

(S∞
a P0)(t) =

∑

α∈Z

P 0
αφa(t− α) , t ∈ R. (1.3)

Equation (1.3) is a parametric representation of a curve in R
d for d ≥ 2.

Also, by the linearity, uniformity and stationarity (see (1.2)) of the

subdivision scheme, and since (Saδ
0)α = aα , α ∈ Z , φa satisfies the

refinement equation (two-scale relation)

φa(t) =
∑

α∈Z

aαφa(2t− α) . (1.4)

It is easy to obtain from (1.1) or from (1.4) that the support of φa

equals the convex hull of σ(a) (see e.g. Cavaretta, Dahmen & Micchelli

(1991)).
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Remark 1.2 The discussion above leads to the conclusion that a con-

vergent subdivision scheme gives rise to a unique continuous basic-limit-

function, satisfying a refinement equation with the mask of the scheme.

The converse is not generally true. Yet a continuous function satisfing

a refinement equation is a basic-limit-function of a convergent subdivi-

sion scheme, if its integer shifts are linearly independent (see Cavaretta,

Dahmen & Micchelli (1991)).

1.2.1 The main types of schemes

The first subdivision schemes in geometric modelling were proposed for

easy and quick rendering of B-spline curves. A B-spline curve has the

form

C(t) =
∑

i

PiBm(t− i) (1.5)

with {Pi} ⊂ R
d the control points, and Bm a B-spline of degree m with

integer knots, namely Bm|[i,i+1] is a polynomial of degree m for each

i ∈ Z, Bm ∈ Cm−1(R), and Bm has a compact support [0,m+ 1].

Equation (1.5) is a parametric representation of a B-spline curve.

The B-spline curves (1.5) are a powerful design tool, since their shape

is similar to the shape of the control polygon P corresponding to the

control points in (1.5) (see e.g. Prautzsch, Boehm & Paluszny (2002)).

Such curves can be well approximated by the control polygons gener-

ated by the repeated refinements (1.2), using the mask a[m] with coeffi-

cients

a
[m]
i = 2−m

(

m+ 1

i

)

, i = 0, . . . ,m+ 1 . (1.6)

The repeated refinements of a B-spline scheme of degree m are thus

P `+1
i =

∑

j

a
[m]
i−2jP

`
j , i ∈ Z , ` = 0, 1, 2, . . . . (1.7)

In (1.7) we use the convention a
[m]
i = 0, i /∈ {0, 1, . . . ,m+ 1}.

By the convergence analysis, presented in §1.2.2, it is easy to check

that the subdivision scheme with the mask (1.6) is convergent. It con-

verges to B-spline curves of degree m, since Bm is the basic-limit-

function of Sa[m] .

This can be easily concluded in view of Remark 1.2 from the definition

of B-splines, by observing that Bm satisfies a refinement equation ( 1.4)
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with the mask a[m] (see e.g. Dyn (1992)), and that the integer translates

of Bm are linearly independent.

Thus the control polygon Pk = Sk
aP approximates C(t) for k large

enough, and C(t) can be easily rendered by rendering its approximation

Pk. In practice a large enough k is about 4 as can be seen in Figure 1.1.

The first scheme of this type was devised in Chaikin (1974) for a fast

geometric rendering of quadratic B-spline curves. It has the refinement

rules

P k+1
2i =

3

4
P k

i−1 +
1

4
P k

i , P k+1
2i+1 =

1

4
P k

i−1 +
3

4
P k

i . (1.8)

Figure 1.1 illustrates three refinement steps with this scheme, applied to

a closed initial control polygon. Chaikin scheme is extended to nonlinear

schemes in §1.3 and in §1.5.

original iteration #1

iteration #2 iteration #3

Fig. 1.1. Refinements of a polygon with Chaikin scheme

The schemes for general B-spline curves were introduced and inves-

tigated in Cohen, Lyche & Riesenfeld (1980). All other subdivision

schemes can be regarded as a generalization of the B-spline schemes.

The B-spline schemes generate curves with a similar shape to the

shape of the initial control polygons, but do not pass through the initial

control points. Schemes with limit curves that interpolate the initial

control points, were introduced in the late 1980’s. These schemes are

called interpolatory, and have the even refinement rule P k+1
2i = P k

i .

Thus the control points at refinement level k are contained in those

at refinement level k + 1. The odd refinement rule, called in case of
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interpolatory schems insertion rule, is designed by a local approximation

based on nearby control points.

The first schemes of this type were introduced by Deslauriers & Dubuc

(1988) and by Dyn, Gregory & levin (1987). In the first paper the inser-

tion rule for the point P k+1
2i+1 is obtained by first interpolating the data

{((i+ j), P k
i+j) , j = −N + 1, . . . , N} by a vector polynomial of degree

2N − 1, and then sampling it at the point i + 1
2 . This is done for a

fix positive N . Rgarding N as a parameter, this construction yields a

one-parameter family of convergent interpolatory subdivision schemes,

with masks of increasing support, and with basic-limit-functions of in-

creasing smoothness (see also the book Daubechies (1992)). We denote

the scheme in this family corresponding to N by DDN .

In the second paper above, a one-parameter family of 4-point inter-

polatory schemes is introduced, with the insertion rule

P k+1
2i+1 = −w(P k

i−1 + P k
i+2) + (

1

2
+ w)(P k

i + P k
i+1) . (1.9)

Here w is a shape parameter. For w = 0 the limit is the initial control

polygon, while as w increases to w = 1/8 the limit is a C1 curve which

becomes looser relative to the initial control polygon, as demonstrated

in Figure 1.3. Thus w acts as a tension parameter. For w = 1
16 this

scheme coincides with DD2. The local approximation which is used in

the construction of the insertion rule (1.9) is a convex combination of

the cubic interpolant used in DD2 and the linear interpolant used in

DD1. In the next subsection the dependence of the convergence and

smoothness of the 4-point scheme on the parameter w is discussed.

More about general interpolatory subdivision schemes, including mul-

tivariate schemes, can be found in Dyn & Levin (1992).

While in case of the B-spline schemes the limit was known and con-

vergence was guaranteed, in case of the interpolastory schemes, analysis

tools had to be developed. The analysis in Deslauriers & Dubuc (1988)

and Daubecheis (1992) and in references therein is mainly in the Fourier

domain, while in Dyn, Gregory & levin (1987) it is done in the geometric

domain, based on the symbol of the scheme. Hints on this method of

analysis, which was further developed in Dyn, Gregory & Levin (1991),

are given in the next subsection.
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1.2.2 Analysis of convergence and smoothness

Given the coefficients of the mask of a scheme, one would like to be able

to determine if the scheme is convergent, and what is the smoothness

of the resulting basic limit function (which is the generic smoothness

of the limits generated by the scheme in view of (1.3)). Such analysis

tools are also essential for the design of new schemes. We sketch here

the method of convergence and smoothness analysis in Dyn, Gregory &

Levin (1991) (see also Dyn (1992)).

An important tool in the analysis is the symbol of a scheme Sa with

the mask a = {aα : α ∈ σ(a)},

a(z) =
∑

α∈σ(a)

aαz
α. (1.10)

In the following we use also the notation Sa(z) for Sa.

A first step towards the convergence analysis is the derivation of the

necessary condition for uniform convergence,
∑

β∈Z

aα−2β = 1 , α = 0 or 1 (mod 2), (1.11)

The condition in (1.11) is derived easily from the refinement step

(Sk+1
a P)α =

∑

β∈Z

aα−2β(Sk
aP)β , α ∈ Z,

for k large enough so that for all ` ≥ k , ‖S`
aP−S∞

a P‖∞ is small enough.

The necessary condition (1.11) implies that we have to consider sym-

bols satisfying

a(1) = 2 , a(−1) = 0 . (1.12)

Condition (1.12) is equivalent to

a(z) = (1 + z)q(z) with q(1) = 1 . (1.13)

The scheme with symbol q(z), Sq, satisfies Sq∆ = ∆Sa, where ∆ is the

difference operator

∆P =
{

(∆P)i = Pi − Pi−1 , i ∈ Z
}

. (1.14)

A necessary and sufficient condition for the convergence of Sa is the

contractivity of the scheme Sq, namely Sa is convergent if and only

if S∞
q P ≡ 0 for any P . The contractivity of Sq is equivalent to the

existence of a positive integer L, such that ‖SL
q ‖∞ < 1. This condition

can be checked for a given L by algebraic operations on the symbol q(z).
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For practical geometrical reasons, only small values of L have to be

considered, since a small value of L guarantees “visual convergence” of

{Pk} to S∞
a P0, already for small k, as the distances between consecutive

control points contract to zero fast. A good scheme corresponds to L = 1

as the B-spline schemes, or to L = 2 as the 4-point scheme.

The smoothness analysis relies on the result that if the symbol of a

scheme has a factorization

a(z) =

(

1 + z

2

)ν

b(z) , (1.15)

such that the scheme Sb is convergent, then Sa is convergent and its

limit functions are related to those of Sb by

Dν(S∞
a P) = S∞

b ∆νP , (1.16)

with D the differentiation operator.

Thus, each factor (1 + z)/2 multiplying a symbol of a convergent

scheme adds one order of smoothness. This factor is termed smoothing

factor.

The relation between (1.15) and (1.16) is a particular instance of the

“algebra of symbols” (see e.g. Dyn & Levin (1995)). If a(z), b(z) are

two symbols of converging schemes, then Sc with the symbol c(z) =
1
2a(z)b(z) is convergent, and

φc = φa ∗ φb . (1.17)

Example (B-spline schemes). In view of (1.6), the symbol of the

scheme generating B-spline curves of degree m is

a(z) = (1 + z)m+1/2m. (1.18)

The known smoothness of the limit functions generated by the m-th de-

gree B-spline scheme, can be concluded easily, using the tools of analysis

presented in this subsection. The factor b(z) = (1+z)
2

2
corresponds to

the scheme Sb generating the initial control polygon as the limit curve,

which is continuous, while the factors
(

1+z
2

)m−1
add smoothness, so that

S∞
a[m]P0 ∈ Cm−1.

Example (the 4-point scheme). The analysis sketched above , is the

tool by which the following results were obtained for the interpolatory

4-point scheme with the insertion rule (1.9). The symbol of the scheme

can be written as

aw(z) =
1

2z
(z + 1)2

[

1 − 2wz−2(1 − z)2(z2 + 1)
]

. (1.19)
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The range of w for which Saw(z) is convergent is the range for which

Sqw(z) with symbol qw(z) = aw(z)/(1 + z) is contractive. The condition

‖Sqw(z)‖∞ < 1 holds in the range −3/8 < w < (−1 +
√

13)/8, while the

condition ‖S2
qw(z)‖∞ < 1 holds in the range −1/4 < w < (−1 +

√
17)/8.

Thus Saw(z) is convergent in the range −3/8 < w < (−1 +
√

17)/8. In

fact it was shown by M.D. Powell that the convergence range is |w| ≤ 1
2 .

To find a range of w where Saw(z) generatesC1 limits, the contractivity

of Scw(z) with cw(z) = 2aw(z)/(1 + z)2 has to be investigated. It is easy

to check that ‖Scw(z)‖∞ ≥ 1, but that ‖S2
cw(z)‖∞ < 1 for 0 < w <

(
√

5− 1)/8. Only a year ago the maximal positive w for which the limit

is C1 was obtained in Hechler, Mößner & Reif (2008).

The limit of Saw(z) is not C2 even for w = 1/16, although for w = 1/16

the symbol is divisible by (1+z)3. It is shown in Daubechies & Lagarias

(1992), by other methods, that the basic limit function for w = 1/16,

restricted to its support, has a second derivative only at the non-dyadic

points there.

The conditions for smoothness given above are only sufficient. Yet,

there is a large class of convergent schemes for which the factorization in

(1.15) is necessary for generating Cν limit functions. This class contains

the B-spline schemes and the interpolatory schemes. See e.g. Dyn &

Levin (2002).

1.2.3 Subdivision schemes and the construction of wavelets

Any convergent subdivision scheme Sa defines a sequence of nested

spaces in terms of its basic-limit-function φa. For every k ∈ Z define the

space

Vk = span{φa(2k(· − i)) , i ∈ 2−k
Z}

= span{φa(2k · −i) , i ∈ Z} . (1.20)

Then in view of the refinement equation (1.4) satisfied by φa, these

spaces are nested, namely

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . (1.21)

Such a bi-infinite sequence of spaces is the framework in which wavelets

are constructed. It is called a multiresolution analysis when the integer

translates of φa constitute a Riesz basis of V0 (see Daubechies (1992)). In

the wavelets literature one starts from a solution of (1.4), termed scaling
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function, which is not necessarily the limit of a converging subdivision

scheme, as indicated by Remark 1.2.

The choise of the mask coefficients for the construction of wavelets

depends on the properties required from the wavelets. For example the

orthonormal wavelets of Daubechies are generated by masks (filters)

that are related to the masks of the DDN schemes. The symbols of

these masks, denoted by ãN (z), satisfy |ãN (z)|2 = aN (z), with aN (z)

the symbol of the scheme DDN . This relation between the symbols can

be expressed in terms of the corresponding scaling functions as

φãN
∗ φãN

(−·) = φaN
,

showing that the integer translates of φãN
constitute an orthonormal

system due to the interpolatory nature of φaN
, which vanishes at all

integers except at zero where it is 1.

The next sections bring several constructions of non-linear schemes,

based on linear schemes. In §1.3.1 more information on linear schemes,

needed for the construction of schemes on manifolds, is presented.

1.3 Curve subdivision schemes on manifolds

To design subdivision schemes for curves on a manifold, we require that

the control points generated at each refinement level are on the manifold,

and that the limit of the sequence of corresponding control polygons is

on the manifold. Such schemes are nonlinear.

The first approach to this problem is presented in Rahman, Drori,

Stodden, Donoho & Schröder (2005). It is based on adapting a linear

univariate subdivision scheme Sa. Given control points {Pi} on the

manifold, let P = {Pi} denote the corresponding control polygon, and

let T denote the adaptation of Sa to the manifold. Then the point

(TP)i is defined by first executing the linear refinement step of Sa on

the projections of the points {Pj , ai−2j 6= 0} to a tangent plane at a

chosen point P ∗
i , and then projecting the obtained point to the manifold.

This can be written as

(TP)i = ψ−1
P∗

i

(

∑

j∈Z

ai−2jψP∗

i
(Pj)

)

, (1.22)

where P ∗
i is some chosen “center” of the points {Pj , ai−2j 6= 0}, and

ψP∗

i
is the projection from the manifold to the tangent plan at P ∗

i .

Recently it was shown in Xie & Yu (2008) and Xie & Yu (2008a), that

with a proper choise of the ”center” point many properties of the linear
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scheme, such as convergence, smoothness and approximation order, are

shared by the nonlinear scheme derived from it.

Here we discuss two other constructions of subdivision schemes on

manifolds from converging linear schemes. These constructions are based

on the observation that the refinement rules of any convergent linear

scheme can be calculated by repeated binary averages (see Wallner &

Dyn (2005)).

1.3.1 Linear schemes in terms of repeated binary averages

A linear scheme for curves, S, is defined by two refinement rules of the

form,

(SP)j =
∑

i

aj−2iPi , j = 0 or 1(mod 2) , (1.23)

where P = {Pi}. As discussed in §1.2.2, any convergent linear scheme

is affine invariant, namely
∑

i aj−2i = 1. It is shown in Wallner &

Dyn (2005), that for a convergent linear scheme, each of the refinement

rules in (1.23) is expressible, in a non-unique way, by repeated binary

averages. A reasonable choice is a symmetric representation relative to

the topological relations in the control polygon.

For example, with the notation Avα(P,Q) = (1 − α)P + αQ , α ∈
R, P,Q ∈ R

d, the insertion rule of the interpolatory 4-point scheme

(1.9) can be rewritten as

P k
2j+1 = Av 1

2

(

Av(−2w)(Pj , Pj−1) , Av(−2w)(Pj+1, Pj+2)
)

,

or as

P k
2j+1 = Av(−2w)

(

Av 1
2
(Pj , Pj+1) , Av 1

2
(Pj−1, Pj+2)

)

.

Refinement rules represented in this way are termed hereafter refinement

rules in terms of repeated binary averages.

Among the linear schemes there is a class of factorizable schemes for

which the symbol a(z) =
∑

i aiz
i, can be written as a product of linear

real factors. For such a scheme, the control polygon obtained by one

refinement step of the form (1.1), can be computed by several simple

global steps, uniquely determined by the factors of the symbol.

To be more specific, let us consider a symbol of the form

a(z) = (1 + z)
1 + x1z

1 + x1
· · · 1 + xmz

1 + xm

. (1.24)

Note that this symbol corresponds to an affine invariant scheme since
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a(1) = 2, and a(−1) = 0. In fact, the form of the symbol in (1.24) is

general for converging factorizable schemes.

Let Pk denote the control polygon at refinement level k, corresponding

to the control points {P k
i }. Each simple step in the execution of the

refinement SaPk corresponds to one factor in (1.24). The first step in

calculating the control points at level k + 1 corresponds to the factor

1 + z, and consists of elementary refinement:

P k+1,0
2i = P k+1,0

2i+1 = P k
i . (1.25)

This step is followed by m averaging steps corresponding to the factors
1+xjz

1+xj
, j = 1, . . . ,m. The averaging step dictated by the factor

1+xjz

1+xj

is,

P k+1,j
i =

1

1 + xj

(P k+1,j−1
i + xjP

k+1,j−1
i−1 ) , i ∈ Z . (1.26)

The control points at level k + 1 are P k+1
i = P k+1,m

i , i ∈ Z .

The execution of the refinement step by several simple global steps is

equivalent to the observation that

Sa(z)Pk = R 1+x1z

1+x1

· · ·R 1+xmz

1+xm

S(1+z)Pk , (1.27)

with (Rb+czP)i = bPi + cPi−1. The equality (1.27) follows from the

representation of (1.1) as the formal equality
∑

i

(SaP)iz
i = a(z)

∑

j

Pjz
2j , (1.28)

with P = {Pi}. The formal equality in (1.28) is in the sense of equality

between the coefficients of the same power of z in both sides of (1.28).

We term the execution of the refinement step by several simple global

steps, based on the factorization of the symbol to linear factors, global

refinement procedure by repeated averaging.

An important family of factorizable schemes is that of the B-spline

schemes, with symbols given by (1.18). Note that the factors in (1.18)

corresponding to repeated averaging are all of the form 1+z
2 . Thus the

global refinement procedure by repeated averaging is equivalent to the

algorithm of Lane & Riesenfeld (1980). Also, it follows from the fact that

all factors in (1.18) except for the factor 1 + z are smoothing factors,

that any B-spline scheme is optimal, in the sense that it has a mask of

minimal support among all schemes with the same smoothness.

The interpolatory 4-point scheme given by the insertion rule (1.9) with
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Fig. 1.2. Geodesic B-Spline subdivision of degree three. From left to right:
Tp, T 2p,T 3p, T∞p.

w = 1
16 (which is the DD2 scheme) is also factorizable. Its symbol has

the form (see e.g. Dyn (2005))

a(z) = (1 + z)4(3 +
√

3z)(3 −
√

3z)/48. (1.29)

1.3.2 Construction of subdivision schemes on manifolds

The two constructions of nonlinear schemes on manifolds in Wallner &

Dyn (2005), start from a convergent linear scheme, S, given either by

local refinement rules in terms of repeated binary averages, or by a global

refinement procedure in terms of repeated binary averages.

The first construction of a subdivision T on a manifold M , analogous

to S, replaces every binary average in the representation of S, by a

corresponding geodesic average on M . Thus Avα(P,Q) is replaced by

gAvα(P,Q), where gAvα(P,Q) = c(ατ), with c(t) the geodesic curve

on M from P to Q, satisfying c(0) = P and c(τ) = Q. The resulting

subdivision scheme is termed geodesic subdivision scheme.

The second construction uses a smooth projection mapping onto M ,

and replaces every binary average by its projection onto M . The result-

ing nonlinear scheme is termed a projection subdivision scheme. In case

of a surface in R
3, a possible choice of the projection mapping is the

orthogonal projection onto the surface.

Note that for a factorizable scheme the analoguous manifold schemes

obtained from its representation in terms of the global refinement pro-

cedure by repeated averaging, depend on the order of the linear factors

corresponding to binary averages in (1.24). Yet for the B-spline schemes

there is one geodesic analoguous scheme, and one projection analogous

scheme obtained from this representation, since all the factors in (1.18),

except the factor (1 + z), are identical.

Example. In this example the linear scheme is the Chaikin algorithm
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of (1.8)

P k+1
2j = Av 1

4
(P k

j−1, P
k
j ) , P k+1

2j+1 = Av 3
4
(P k

j−1, P
k
j ) , (1.30)

with the symbol

a(z) = (1 + z)3/4 . (1.31)

The different adaptations to the manifold case are:

(i) Chaikin geodesic scheme, derived from (1.30):

P k+1
2j = gAv 1

4
(P k

j−1, P
k
j ) , P k+1

2j+1 = gAv 3
4
(P k

j−1, P
k
j ) .

(ii) Chaikin geodesic scheme, derived from (1.31):

P k+1,0
2i = P k+1,0

2i+1 = P k
i , P k+1,j

i = gAv 1
2
(P k+1,j−1

i , P k+1,j−1
i−1 ) , j = 1, 2 .

(iii) Chaikin projection scheme derived from (1.30):

P k+1
2j = G(Av 1

4
(P k

j−1, P
k
j )) , P k+1

2j+1 = G(Av 3
4
(P k

j−1, P
k
j )) .

(iv) Chaikin projection scheme derived from (1.31):

P k+1,0
2i = P k+1,0

2i+1 = P k
i , P k+1,j

i = G(Av 1
2
(P k+1,j−1

i , P k+1,j−1
i−1 ) , j = 1, 2 .

In the above G is a specific smooth projection mapping to the manifold

M . Figure 1.2 displays a curve on a sphere, created from a finite number

of initial control points on the sphere, by a geodesic analoguous scheme

to a third degree B-spline scheme.

1.3.3 Analysis of convergence and smoothness by proximity

The analysis of convergence and smoothness of the geodesic and the

projection schemes we present, is based on their proximity to the linear

scheme from which they are derived, and on the smoothness properties

of this linear scheme. We limit the discussion to C1 and C2 smoothness.

To formulate the proximity conditions we introduce some notation.

For a control polygon P = {Pi}, we define

∆P = {Pi −Pi−1}, ∆`P = ∆(∆`−1P), d`(P) = max
i

‖(∆`P)i‖. (1.32)

The difference between two control polygons P = {Pi}, Q = {Qi}, is

P −Q = {Pi −Qi}.
With this notation the two proximity relations of interest to us are

the following:
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Definition 1.1

(i) Two schemes S and T are in 0-proximity if

d0(SP − TP) ≤ Cd1(P)2,

for all control polygons P with d1(P) small enough.

(ii) Two schemes S and T are in 1-proximity if

d1(SP − TP) ≤ C[d1(P)d2(P) − d1(P)3],

for all control polygons P with d1(P) small enough.

In these definitions C is a generic constant.

From the 0-proximity condition we can deduce the convergence of T

from the convergence of the linear scheme S. Furthermore, under mild

conditions on S, we can also deduce that if S generates C1 limit curves

then T generates C1 limit curves whenever it converges.

In Wallner (2006), results on C2 smoothness of the limit curves gen-

erated by T are obtained, based on 0-proximity and 1-proximity of T

and S, and some mild conditions on S, in addition to S being C2.

The 0-proximity and the 1-proxiomity conditions hold for the manifold

schemes of subsection 1.3.2, when S is a convergent linear subdivision

scheme and when M is a smooth manifold. Moreover, for M a compact

manifold or a surface with bounded normal curvatures, the two prox-

imity conditions hold uniformly for all P such that d1(P) < δ, with a

global δ.

Examples. The B-spline schemes with symbol (1.18) for m ≥ 3,

generate C2 curves and satisfy the mild conditions necessary for deduc-

ing that the limit curves of their manifold analoguous schemes are also

C2. On the otherhand the linear 4-point scheme generates limit curves

which are only C1, a property that is shared by its manifold analoguous

schemes.

Further analysis of manifold-valued subdivision schemes can be found

in a series of papers by Wallner and his collaborators, see e.g. Wallner,

Nava Yazdani & Grohs (2007), Grohs & Wallner (2008), and in the

works Xie & Yu (2007), Xie & Yu (2008), Xie & Yu (2008a).

1.4 Geometric 4-point interpolatory subdivision schemes

The refinement step of a linear scheme (SaP)j =
∑

i aj−2iPi , j ∈ Z , is

applied separately to each component of the control points. Therefore

these schemes are insensitive to the geometry of the control polygons.
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For control polygons with edges of similar length, this insensitivity is

not problematic. Yet, the limit curves generated by linear schemes, in

case the initial control polygon has edges of significantly different length,

have artifacts, namely geometric features which do not exist in the initial

control polygon. This can be seen in the upper right figure of Figure 1.3

and in the second column of Figure 1.4. Data dependent schemes can

cure this problem.

Here we present two geometric versions of the 4-point scheme, which

are data dependent. The first is based on adapting the tension parameter

to the geometry of the 4-points involved in the insertion rule, the second

is based on a geometric parametrization of the control polygon at each

refinement level.

1.4.1 Adaptive tension parameter

In this section we present a nonlinear version of the linear 4-point in-

terpolatory scheme, introduced in Marinov, Dyn & Levin (2005), which

adapts the tension parameter to the geometry of the control points.

It is well known that the linear 4-point scheme with the refinement

rules

P k+1
2j = P k

j , P k+1
2j+1 = −w(P k

j−1 +P k
j+2)+ (

1

2
+w)(P k

j +P k
j+1) , (1.33)

where w is a fixed tension parameter, has the following attributes:

• It generates “good” curves when applied to control polygons with

edges of comparable length.

• It generates curves which become smoother (have greater Hölder

exponent of the first derivative), the closer the tension parameter

is to 1/16.

• Only for very small values of the tension parameter, it generates

a curve which preserve the shape of an initial control polygon

with edges of significantly different length. (Recall that the con-

trol polygon itself corresponds to the generated curve with zero

tension parameter.)

We first write the refinement rules in (1.33) in terms of the edges

{ek
j = P k

j+1 − P k
j } of the control polygon, and relate the inserted point

P k+1
2j+1 to the edge ek

j . The insertion rule can be written in the form,

Pek
j

= Mek
j

+ wek
j
(ek

j−1 − ek
j+1) (1.34)
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Fig. 1.3. Curves generated by the linear 4-point scheme: (Upper left) the
effect of different tension parameters, (upper right) artifacts in the curve gen-
erated with w = 1

16
, (lower left) artifact-free but visually non-smooth curve

generated with w = 0.01. Artifact-free and visually smooth curve generated
in a nonlinear way with adaptive tension parameters (lower right).

with Mek
j

the midpoint of ek
j and wek

j
the adaptive tension parameter.

Defining dek
j

= wek
j
(ek

j−1 − ek
j+1) as the displacement from Mek

j
, we

control its size by choosing wek
j

according to a geometrical criterion.

In Marinov, Dyn & Levin (2005) there are various geometrical criteria,

all of them guaranteeing that the inserted control point Pek
j

is different

from the boundary points of the edge ek
j , and that the length of each

of the two edges replacing ek
j is bounded by the length of ek

j . This is

achieved if wek
j

is chosen so that

‖dek
j
‖ ≤ 1

2
‖ek

j ‖ . (1.35)

All the criteria restrict the value of the tension parameter wek
j

to the

interval (0, 1
16 ], such that a tension close to 1/16 is assigned to regular

stencils namely, stencils of four points with three edges of almost equal

length, while the less regular the stencil is, the closer to zero is the

tension parameter assigned to it.

A natural choice of an adaptive tension parameter obeying (1.35) is

wek
j

= min

{

1

16
, c

‖ek
j ‖

‖ek
j−1 − ek

j+1‖

}

, with a fixed c ∈ [
1

8
,
1

2
) . (1.36)

In (1.36) c is restricted to the interval [18 ,
1
2 ) to guarantee that wek

j
=

1
16 for stencils with ‖ek

j−1‖ = ‖ek
j ‖ = ‖ek

j+1‖. Indeed in this case, ‖ek
j−1−

ek
j+1‖ = 2 sin θ

2‖ek
j ‖, with θ, 0 ≤ θ ≤ π, the angle between the two

vectors ek
j−1, e

k
j+1. Thus ‖ek

j ‖/‖ek
j−1 − ek

j+1‖ = (2 sin θ
2 )−1 ≥ 1

2 , and
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if c ≥ 1
8 then the minimum in (1.36) is 1

16 . The choice (1.36) defines

irregular stencils (corresponding to small wek
j
) as those with ‖ek

j ‖ much

smaller than at least one of ‖ek
j−1‖, ‖ek

j+1‖, and such that when these

two edges are of comparable length, the angle between them is not close

to zero.

The convergence of this geometric 4-point scheme, and the continuity

of the limits generated, follow from a result in Levin (1999). There it

is proved that the 4-point scheme with variable tension parameter is

convergent, and that the limits generated are continuous, whenever the

tension parameters are restricted to the interval [0, w̃], with w̃ < 1
8 .

But we cannot apply the result in Levin (1999), on C1 limits of the

4-point scheme with variable tension parameter to the geometric 4-point

scheme defined by (1.34) and (1.36), since the tension parameters used

during this subdivision process, are not bounded away from zero.

Nevertheless, many simulations indicate that the curves generated by

this scheme are C1 (see Marinov, Dyn & Levin (2005)).

1.4.2 Geometric parametrization of the control polygons

In this subsection we present a geometric 4-point scheme, which is intro-

duced and investigated in Dyn, Floater & Hormann (2008). The idea for

the geometric insertion rule of the point P k
2i+1, comes from the insertion

rule of the DD2 scheme (see §1.2.1).

The insertion rule of the DD2 scheme is obtained by sampling the

vector cubic polynomial, interpolating the data {((i + j), P k
i+j), j =

−1, 0, 1, 2}, at the point i+ 1
2 . From this point of view, the linear scheme

corresponds to a uniform parametrization of the control polygon at each

refinement level. This approach fails when the initial control polygon

has edges of significantly different length. Yet the use of the centripetal

parametrization, instead of the uniform parametrization, leads to a ge-

ometric 4-point scheme with artifact-free limit curves, as can be seen in

Figure 1.4.

The centripetal parametrization, which is known to be effective for in-

terpolation of control points by a cubic spline curve (see Floater (2008)),

has the form tcen(P) = {ti}, with

t0 = 0, ti = ti−1 + ‖Pi − Pi−1‖
1
2
2 , (1.37)

where ‖ · ‖2 is the Euclidean norm, and P = {Pi}.
Let Pk be the control polygon at refinement level k, and let {tki } =
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uniform chordalcentripetalcontrol polygon

Fig. 1.4. Comparisons between 4-point schemes based on different
parametrizations.

tcen(Pk). The refinement rules for the geometric 4-point scheme, based

on the centripetal parametrization are:

P k+1
2i = P k

i , P k+1
2i+1 = πk,i

(1

2
(tki + tki+1)

)

,

with πk,i the vector of cubic polynomials, satisfying the interpolation

conditions

πk,i(t
k
i+j) = P k

i+j , j = −1, 0, 1, 2.

Note that this construction can be done with any parametrization.

In fact in Dyn, Floater & Hormann (2008) the chordal parametrization

(ti+1 − ti = ‖Pi+1 − Pi‖2) is also investigated, but found to be inferior

to the centripetal parametrization (see Figure 1.4).

In contrast to the analysis of the schemes on manifolds, the method of

analysis of the geometric 4-point schemes, based on the chordal and cen-

tripetal parametrizations is rather ad-hoc. It is shown in Dyn, Floater

& Hormann (2008) that both schemes are well defined, in the sense that

any inserted point is different from the end points of the edge to which it

corresponds, and that both schemes are convergent to continuous limit

curves. Although numerical simulations indicate that both schemes gen-

erate C1 curves, as the linear 4-point scheme, there is no proof of such

a property there.

Another type of information on the limit curves, which is relevant

to the absence or presence of artifacts, is available in Dyn, Floater &

Hormann (2008). Bounds on the Hausdorff distance from sections of a

limit curve to their corresponding edges in the initial control polygon

are derived. These bounds give a partial qualitative understanding why

the limit curves corresponding to the centripetal parametrization are

artifact free.
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Let C denote a curve generated by the scheme based on the centripetal

parametrization from an initial control polygon P0. Since the scheme

is interpolatory, C passes through the initial control points. Denote by

C|e0
i

the section of C starting at P 0
i and ending at P 0

i+1. Then

haus(C|e0
i
, e0i ) ≤

5

7
‖e0i ‖2.

Thus the section of the curve cannot be too far from a short edge. On

the other hand the corresponding bound in the linear case has the form

haus(C|e0
i
, e0i ) ≤

3

13
max{‖e0j‖2 , |j − i| ≤ 2},

and a section of the curve can be rather far from its corresponding short

edge, if this edge has a long neighboring edge. In case of the chordal

parametrization the bound is even worse

haus(C|e0
i
, e0i ) ≤

11

5
max{‖e0j‖2 , |j − i| ≤ 2}.

Comparisons of the performance of the three 4-point schemes, dis-

cussed in this section, are given in Figure 1.4.

1.5 Geometric refinement of curves

The scheme discussed in this section is designed and invesigated in Dyn,

Elber & Itai (2008). It is a nonlinear extension of the quadratic B-spline

scheme Sa, corresponding to the symbol given by (1.18) with m = 2.

Sa is a linear scheme generating a curve from a set of initial control

points, yet its extension presented here generates surfaces, as the refined

objects are not control points but control curves. This new nonlinear

scheme repeatedly refines a set of control curves, taking into account

the geometry of the curves, so as to generate a limit surface, which is

related to the geometry of the initial control curves.

Infact, a surface can be generated from an initial set of curves {Ci}n
i=0,

using Sa in a linear way. The initial curves have to be parametrized

in some reasonable way to yield the set {Ci(s), s ∈ [0, 1]}n
i=0 , and

then Sa is applied to each control polygon of the form Ps = {Ci(s)}n
i=0

corresponding to a fixed s in [0, 1]. This is equivalent to refining the

curves with Sa, to obtain the refined set of control curves SaPs, s ∈ [0, 1].

The limit surface is obtained by repeated refinements of the control

curves, and has the form

(S∞
a Ps)(t), s ∈ [0, 1] , t ∈ R
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The quality of the generated surface depends on the quality of the

parametrization of the initial curves, as a reasonable prametrization for

each set of refined curves at each refinement level:

{Sk
aPs , s ∈ [0, 1]} k = 0, 1, 2, . . .

In the nonlinear scheme the control curves at each refinement level

are parametrized, taking into account their geometry, and Sa is applied

to all control polygons generated by points on the curves corresponding

to the same parameter value.

The parametrization of the curves at refinement level k, {Ck
i }nk

i=0 is in

terms of a vector of correspondences τ = (τ0, . . . , τnk−1) between pairs

of consecutive curves. A correspondence between two curves is a one-to-

one and onto, continuous map from the points of one curve to the points

of the other. Thus τ determines a parametrization of the curves in terms

of the points of Ck
0 , in the sense that all the points P0, . . . , Pnk

, with

P0 ∈ Ck
0 and Pi+1 = τi(Pi) ∈ Ci+1, correspond to the same parameter

value.

The convergence of the nonlinear scheme is proved for initial curves

contained in a compact set in R
3. This condition is also satisfied by all

control curves generated by the nonlinear scheme, due to the refinement

rules of the curves. The correspondence used is a geometrical correspon-

dence τ∗ defined by,

τ∗i = arg min
τ∈T k(Ck

i
,Ck

i+1)
max{‖τ(P ) − P‖2 , P ∈ Ck

i },

where T k(Ck
i , C

k
i+1) is a set of allowed correspondences. This set de-

pends on all the curves at refinement level k in a rather mild way. We

ommit here the technical details. It is shown in Dyn, Elber, & Itai

(2008) that if the initial curves are admissible for subdivision, namely

the sets T 0(C0
i , C

0
i+1) for i = 0, . . . , n0 − 1 are nonempty, then the sets

T k(Ck
i , C

k
i+1) for i = 0, . . . , nk − 1 are also nonempty for all k > 0.

With the above notation, the refinement step at refinement level k

can be written as:

• for i = 0, . . . , nk − 1,

(i) compute τ∗i

(ii) for each P ∈ Ck
i , define

Qi(P ) =
3

4
P +

1

4
τ∗i (P ), Ri(P ) =

1

4
P +

3

4
τ∗i (P )
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(iii) define two refined curves

Ck+1
2i = {Qi(P ), P ∈ Ci}, Ck+1

2i+1 = {Ri(P ), P ∈ Ci}

• nk+1 = 2nk − 1

For the convergence proof we need an analoguous notion to the control

polygon in the case of schemes refining control points. This notion is

the control piecewise-ruled-surface, defined at refinement level k by

PRk = ∪nk−1
i=0 {P = λPi + (1 − λ)τ∗i (Pi), Pi ∈ Ck

i , λ ∈ [0, 1]}

Fig. 1.5. Geometric refinement of curves. From left to right: initial curves,
the refined curves after two and three refinement steps.

It is shown in Dyn, Elber & Itai (2008) that if the initial curves are sim-

ple, nonintersecting, and admissible for subdivision, then the sequence

of control piecewise-ruled-surfaces {PRk}k≥0 is well defined, and con-

verges in the Hausdorff metric to a set in R
3. Also it is shown there, that

if the initial curves are sampled densly enough from a smooth surface,

then the limit of the scheme approximates the surface.

From the computational point of view, the refinements are executed

only a small number of times (at most 5), so the ”limit” is represented by

the surface PRk with 3 ≤ k ≤ 5. All computations are done discretely.

The curves are sampled at a finite number of points, and τ∗ is computed

by dynamical programming.

An example demonstrating the performance of this scheme on an ini-

tial set of curves, sampled from a smooth surface, is given in Figure

1.5.
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