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1 Introduction

The study of approximation schemes based on translates of a radial function

to a set of points (centers) in IRd, is a central subject in multivariate approxi-

mation theory. Here we study the L∞-approximation orders of such schemes,

first for centers constituting a regular grid, and then for quasi-uniformly scat-

tered centers.

1.1 Radial functions and multivariate interpolation

The interest in radial functions approximation was initiated by the appli-

cations. Radial functions provide a convenient and simple tool for global

interpolation of scattered multivariate data. Given a univariate function

g(t) : IR+ → IR, and a non-negative integer m, the interpolation problem to

the scattered data

(xi, fi), xi ∈ IRd, fi ∈ IR, i = 1, · · · , N ,(1.1)

based on the radial function φ(x) = g(‖x‖), consists of finding a function of

the form

S(x) =
N∑

i=1
viφ(x − xi) + pm(x) ,

pm ∈ πm,
N∑

i=1
viq(x

i) = 0, q ∈ πm ,
(1.2)

satisfying

S(xi) = fi, i = 1, · · · , N .(1.3)
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Here πm is the space of all algebraic polynomials of degree at most m on

IRd, and ‖ · ‖ is the Euclidean norm on IRd. This method of interpolation

reproduces polynomials in πm, whenever (1.3) is uniquely solvable. Classes

of functions g(t) which are well known in the literature include:

(i) “Surface splines”

g(t) =

{
t2k−d log t, d even ,
t2k−d, d odd ,

(1.4)

with k an integer satisfying 2k > d and with m = k−1, studied in a series of

papers (see e.g. [?],[?],[?]). The corresponding interpolant (1.2) minimizes

the functional

Rk(f) =
∫

IRd

∑
|α|=k

(Dαf)2dx ,(1.5)

among all functions interpolating the data in the space

χk = {f ∈ C(IRd), Dαf ∈ L2(IR
d). |α| = k} .(1.6)

Here and hereafter we use the notations

α = (α1, · · · , αd) ∈ ZZd
+, Dα =

∂|α|

∂xα1
1 · · ·∂xαd

d

, |α| =
d∑

i=1

αi .

The functional Rk(f) is rotation invariant, and this choice reflects the as-

sumption that there are no preferable directions in the scattered data (1.1).

The functions (1.4) are fundamental solutions of the k’th iterated Laplacian,

∆kφ = cδ .(1.7)

For d = 1 the surface spline coincides with the natural spline of order 2k.

The variational formulation yields unique solvability of (1.2), (1.3) when-

ever the set X = {x1, · · · , xN} satisfies the geometric condition

dim πm

∣∣∣
X

= dim πm .(1.8)
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In [?] the class of surface splines is extended by considering functionals

of the type (1.5) corresponding to derivatives of fractional orders,

Rs,k(f) =
∫

IRd
‖ω‖2s

∑
|α|=k

(D̂αf)2(ω)dω, 0 < s < 1 , |α| = k ,(1.9)

where f̂ denotes the Fourier transform of f . For 2k + 2s > d, the solution to

the variational problem determined by (1.9) and the scattered data (1.1), is

given by the solution to (1.2), (1.3) with m = k − 1 and

g(t) =

⎧⎪⎨⎪⎩
t2k+2s−d log t, 2k + 2s − d even ,

t2k−2s−d, otherwise .

(1.10)

(ii) “Multiquadrics”

g(t) = (t2 + c2)β, β = ±1

2
, c > 0, d = 2, m = −1 ,(1.11)

introduced in [?] (see also [?]), for geophysical applications. The value m =

−1 in (1.11) corresponds to πm being the empty set in (1.2).

(iii) “Shifted surface splines”

g(t) =

⎧⎪⎨⎪⎩
(t2 + c2)(2k−d)/2 log(t2 + c2)

1
2 , 2k ≥ d, d even ,

(t2 + c2)(2k−d)/2, otherwise, k ≥ 1 ,

(1.12)

with c > 0 and m = k−1, introduced in [?] for d = 2. These functions are the

“shifted” version of the fundamental solutions of the iterated Laplacian of

order k ≥ 1. With the choice c > 0, g(0) is well defined also for 1 ≤ k ≤ d/2,

in contrast to the case c = 0 of the surface splines.

In a comparative study [?], the quality of interpolation of scattered data

in IR2 by radial functions of classes (i), (ii) is found to be superior to other

methods of interpolation.

The classes of radial functions for which the interpolation problem (1.2),

(1.3) is uniquely solvable under condition (1.8) in all IRd, is studied in [?],[?]
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and [?]. This class is characterized by the strict complete monotonicity of

order m + 1 of g(
√

t), namely

dm

dtm
g(
√

t) �≡ const, ε(−1)j dj

dtj
g(
√

t) ≥ 0, t > 0, j ≥ m + 1(1.13)

with ε = 1 or ε = −1.

This allows to extend further the class of radial functions of interest to

g(t) =

⎧⎪⎨⎪⎩
tγ, γ ∈ IR+\2ZZ+ ,

tγ log t, γ ∈ 2ZZ+ ,
(1.14)

in any IRd independent of the parity of d, with m > γ/2 − 1 in (1.2). The

corresponding “shifted” version of the class (1.14) is even wider

g(t) =

⎧⎪⎨⎪⎩
(t2 + c2)γ/2, γ > −d, γ �∈ 2ZZ+ ,

(t2 + c2)γ log(t2 + c2)1/2, γ ∈ 2ZZ+ ,

(1.15)

with c > 0 and where the corresponding m satisfies m > γ/2 − 1 for γ ≥ 0,

and m = −1 otherwise.

For review papers on various aspects of the theory of radial functions see

e.g. [?], [?], [?] and [?].

1.2 The distributional Fourier transform of φ

It is the properties of the distributional Fourier transform of φ(x) = g(‖x‖),
considered as a tempered distribution [?], which are relevant to the solvabil-

ity of the interpolation problem as well as to the theory of approximation

orders of schemes based on translates of such radial functions. While for the

solvability of the interpolation problem many more radial functions can be

considered, such as the Gaussian function g(t) = e−t2/a, a > 0, and the radial

functions of compact support introduced by Wu [?], the analysis in this chap-

ter is confined to radial functions of the class (1.14), (1.15) and to related
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functions with similar properties of their distributional Fourier transform,

such as fundamental solutions of homogeneous elliptic operators, which are

not necessarily radial.

The distributional Fourier transform of φ = g(‖ · ‖), with g as in (1.14),

(1.15), coincides away from the origin with a function φ̂ of the form [?]

φ̂(ω) = aγ,c‖ω‖−γ−dFγ,c(ω) ,(1.16)

where aγ,c is a positive constant which depends on γ and c, and where

Fγ,c(ω) =

⎧⎪⎨⎪⎩
1 , c = 0 ,

K̃(d+γ)/2(c‖ω‖) , c > 0 .
(1.17)

Here K̃ν(t) = tνKν(t), with Kν the modified Bessel function. Relevant prop-

erties of K̃ν to our analysis are [?]

K̃ν ∈ C(IR), K̃ν(t) > 0, t ≥ 0 , ν > 0,

lim
t→∞ K̃ν(t) = 0 exponentially, K̃n ∈ C2n−1(IR) ∩ C∞(IR\0) ,(1.18)

K̃(2n)
n (t) = 0(log t), t → 0+, K̃n+ 1

2
∈ C∞(IR) , n ∈ ZZ+.

A fundamental solution of homogeneous elliptic operator G(D) of or-

der 2m, has a generalized Fourier transform which coincides on IRd\0 with

1/G(ω) up to a multiplicative constant.

The important features of φ̂ are the order m′ of its singularity at the

origin, namely as ‖ω‖ → 0 , and the rate of its decay as ‖ω‖ → ∞. For the

fundamental solutions of homogeneous elliptic operators and for the class

(1.14), the order of the singularity at the origine of φ̂ equals the rate of

its decay at infinity. For the class of radial functions (1.15) the decay of φ̂

at infinity is exponential. For all these functions the distributional Fourier

transform at the origin is a distribution of order less than m′.
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1.3 Outline of the chapter

All the sections in this chapter are concerned with estimating the error mea-

sured in the L∞-norm, incurred by approximation schemes based on trans-

lates of a radial function and its scales.

Sections 2 and 3 study two different types of approximation schemes,

based on shifts of φ(h−1·) to the points of hZZd . The first type, analyzed in

Section 2, consists of quasi-interpolation schemes of the from

Qψ,hf =
∑

α∈ZZd

f(hα)ψ(h−1 · −α) ,(1.19)

where ψ is a finite linear combimation of shifts of φ to points of ZZd near the

origin. The approximation order is the power of h in the error ‖f −Qψ,hf‖∞
for all f in an addmissible set of functions W. Section 2 presents the results in

[?], which apply to a wide class of functions φ. Other results in this direction

for specific radial functions are presented in [?] and [?]. In [?] approximation

orders by qausi-interpolation schemes based on the Gaussian radial function

are derived.

In Section 3 the approximation scheme is an optimal one which achieves

the optimal aprroximation orders possible. This scheme introduced in [?],

uses global information on the approximated function and has the form

Lhf =
∑

α∈ZZd

Λhf(hα)ψ(h−1 · −α) .(1.20)

Here ψ =
∑

α∈ZZd µαφ(· − α) , with {µα : α ∈ ZZd} not necessarily of finite

support, and

Λ̂hf = λ̂(h·)f̂ , λ̂ = η/ψ̂ ,(1.21)

with η any smooth function of compact support which is 1 on a ball centered

at the origin. Approximation orders of optimal schemes in the L2(IR
d) setting

are studied in [?].
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Section 4 extends the results of the previous sections to analog approxi-

mation schemes based on translates of φ to quasi-uniformly scattered centers.

For the quasi-interpolation schemes, the required information on the approx-

imated function is confined to the same set of centers. Section 4 is mainly

based on [?], with some results taken from [?], where the notion of quasi-

uniformly scattered centers is first introduced. Analog results to those in [?]

for approximation in the Lp–norms are derived in [?].

All the results presented in this chapter deal with approximation orders

defined by scaling the function ψ (and therefore φ ) by h−1, and then trans-

lating it to a set of centers with distances of order h between neighbouring

centers. There are other notions of approximation orders, corresponding to

different types of scaling of the function φ (see e.g. [?] [?]).

Another important type of approximation order is based on traslates of

φ, without any scaling, to sets of centers with increasing density. For ”ho-

mogeneous” radial functions this approach yields the same orders as scaling

by h−1, while for the others, qualitatively different results are obtained (see

e.g. [?], [?], [?] ).

2 Quasi-interpolation on regular grids

In this section, we analyze the approximation order of schemes based on

function values on a regular grid hZZd and on the hZZd translates of a scaled

basis function ψ, consisting of a finite linear combination of multi-integer

translates of a radial function or a related function φ. The schemes we study

are quasi-interpolatory of the form

Qψ,hf =
∑

α∈ZZd

f(αh)ψ(h−1 · −α) .

The analysis employs two important ingredients of the scheme: the decay

of ψ(x) as ‖x‖ → ∞ and polynomial reproduction. In case ψ is of compact
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support or decays fast enough the argument for getting the approximation

order is standard and we present it here. We denote by Qψ the operator Qψ,1

and by A any constant appearing in the various bounds.

Theorem 2.1 Assume that

(2.1) |ψ(x)| ≤ A(1 + ‖x‖)−(d+k), k > � + 1 ,

and that

(2.2) Qψp = p, p ∈ π� .

Then for every f with bounded derivatives of order � + 1

(2.3) ‖Qψ,hf − f‖∞ ≤ A‖f‖∞,�+1h
�+1 ,

where ‖f‖∞,�+1 =
∑

|α|=�+1 ‖Dαf‖∞ < ∞.

Proof: First we note that (2.2) also holds for Qψ,h. This is easily seen for

the basis of powers of π�, and hence holds for all π�.

Let Txf be the Taylor polynomial of f of degree � at x, namely Dα(f −
Txf)(x) = 0, |α| ≤ �. Then for g = f − Txf we get by (2.2) that

(2.4) Qψ,hf − f = Qψ,hg − g ,

while by the definition of g,

(2.5) |g(z)| ≤ A‖f‖∞,�+1‖z − x‖�+1 .

Thus

(2.6) |(Qψ,hf − f)(x)| = |Qψ,hg(x)| =
∑

α∈ZZd

|ψ(h−1x − α)| |g(αh)|

≤ A‖f‖∞,�+1

∑
α∈ZZd

‖αh − x‖�+1|ψ(h−1x − α)|

≤ Ah�+1‖f‖∞,�+1

∑
α∈ZZd

‖h−1x − α‖�+1|ψ(h−1x − α)|

≤ Ah�+1‖f‖∞,�+1 ,
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where in the last inequality we used (2.1) to bound the sum above by a

constant independent of h and x. ��
For many of the radial functions and related functions that we consider

in this paper Theorem 2.1 does not yield the optimal approximation orders.

In fact we can show (2.1) for k = �+1 at most, where � is the maximal value

possible in (2.2). A finer analysis is needed then to obtain approximation

orders O(h�+1 log |h|) or sometimes even O(h�+1).

2.1 The general setting

The first step in the presentation of the approximation scheme is the con-

struction of ψ satisfying (2.1) with k = � + 1. This rate of decay is sufficient

for Qψ to be well defined on π�. The next stage is to show that (2.2) holds.

Finally the sum
∑

α∈ZZd |ψ(h−1x − α)| |g(αh)|, has to be estimated.

The class of approximating spaces under investigation is of the form

(2.7) Sh(φ) = span{φ(h−1x − α) : α ∈ ZZd}

with the span standing for the closure of the algebraic span under the topol-

ogy of uniform convergence on compact sets. Here φ is a function which

grows at most as a power of ‖x‖ as ‖x‖ → ∞, and whose distributional

Fourier transforms φ̂ satisfies the equation

(2.8) Gφ̂ = F .

The distributional Fourier transform of φ as a tempered distribution is de-

fined by the equality∫
IRd

φ(ω)s(ω)dω =
∫

IRd
φ̂(ω)ŝ(ω)dω , s ∈ S ,

where S is the space of all C∞ rapidly decaying test functions[?].

There are several assumptions on F and G typical to the class of functions

φ under investigation:
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(a) G(ω) �= 0 if ω �= 0,

(b) G(ω) is a homogeneous polynomial of degree 2m,

(2.9) (c) F (0) �= 0, F (x) − ∑
|α|≤m0

DαF (0)

α!
xα ∈ Fm0+θ for some θ > 0,

(d) F ∈ C∞(IRd\0),

(e) |Dα(F/G)(ω)| ≤ Aα

‖ω‖d+α+ε
for ‖ω‖ ≥ 1, ε > 0, α ∈ ZZd

+,

where in (c) we use the notation

(2.10)

Fr =
{
f ∈ C∞(IRd\0) : Dαf(x) = 0(‖x‖r−|α|) as‖x‖ → 0, α ∈ ZZd

+

}
.

In case of fundamental solutions of homogeneous elliptic operators, F ≡ 1.

Condition (a) in (2.9) guarantees that φ̂ = F/G as functions on IRd\0 .

The behavior of φ̂ at the origin is defined in a distributional sense by

(2.11) φ̂[s] =
∫

IRd
s(ω)

F (ω)

G(ω)
dω , s ∈ S2m−1 ,

where

(2.12) S2m−1 = {s ∈ S : Dαs(0) = 0 , |α| ≤ 2m − 1} .

2.2 The construction of ψ

By (2.9) the behavior of the singularity of φ̂ near the origin is as the reciprocal

of a polynomial of degree 2m, hence by taking a finite linear combination of

shifts of φ

(2.13) ψ =
∑
α∈I

µαφ(· − α) , I ⊂ ZZd ,
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one can get ψ̂ to be defined as an ordinary Fourier transform of ψ, which is

well defined on IRd and is of the form

(2.14) ψ̂ = φ̂e, e(ω) =
∑
α∈I

µαe−iα·ω .

The coefficients {µα : α ∈ I} are so chosen to satisfy

(2.15) Dα(e − G/F )(0) = 0, |α| ≤ 2m + � ,

for some � ∈ [0, m0]∩ZZ . Thus Dαe(0) = 0 for ‖α‖ ≤ 2m− 1 , and the zero

of e at the origin cancels the singularity of φ̂ there. Note that as � increases

in (2.15) the set I that supports the sequence {µα} is bigger, since more

conditions in (2.15) have to be satisfied. Conditions (2.15) together with the

(2π)d- periodicity of e(ω) and assumptions (b),(c) of (2.9), lead to

Proposition 2.2 Let ψ be defined by (2.13)–(2.15). Then ψ̂ ∈ C�(IRd) and

satisfies

(2.16) ψ̂(0) = 1, Dαψ̂(0) = 0, 1 ≤ |α| ≤ � ,

(2.17) p(−iD)ψ̂(2πβ) = 0, β ∈ ZZd\0, p ∈ PG ∩ π�+2m ,

where PG is the kernel of the operator G(D). In particular

(2.18) Dαψ̂(2πβ) = 0, β ∈ ZZd\0, 0 ≤ |α| ≤ 2m − 1 ,

since π2m−1 ∈ PG.

Proposition 2.2 is the key to both the decay of ψ and the polynomial

reproduction property of Qψ. Using the behavior of ψ̂ near zero and its

decay as ‖x‖ → ∞ it is possible to estimate the decay rate of |ψ(x)| as

‖x‖ → ∞ .
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Theorem 2.3 Under assumptions (2.9), (2.11), (2.13) and (2.15) with 0 ≤
� < m0,

(2.19) |ψ(x)| ≤ A(1 + ‖x‖−d−�−1) as ‖x‖ → ∞ ,

and

(2.20) Qψp = p, p ∈ π� ∩ PG

with uniform convergence of Qψp to p on compact sets.

The polynomial reproduction property (2.20) follows from the extended

version (2.16) and (2.17) of the ”Strung-Fix conditions” [?], and from the

uniform convergence of Qψp on compact sets, which allows the use of the

Poisson summation formula.

Since the decay of φ in (2.19) is due to the choice of the sequence {µα} in

(2.15), such a sequence is termed hereafter ”localization sequence”. It defines

a difference operator
∑

α∈I µαf(· − α) , which vanishes on PG ∩ π2m+� .

We conclude from Theorem 2.3 that PG ∩ πm0−1 ⊂ Sh(φ) , and that

� = min(2m−1, m0 −1) is the maximal � such that π� is reproduced by Qψ ,

and therefore by Qψ,h .

For two important classes of radial functions these consequences can be

strengthened.

Corollary 2.4 In case F = 1, namely φ is a fundamental solution of the

elliptic operator G(D), m0 = ∞ in Theorem 2.3 and for any � ∈ ZZ+ there

exists ψ such that (2.19) and (2.20) hold. Thus PG ⊂ Sh(φ). In particular

π2m−1 ⊂ Sh(φ), and for � = 2m − 1, Qψ reproduces π2m−1, which is the

maximal total degree polynomial space contained in PG.

For later reference, we call the class of functions discussed in Corollary 2.4

class A. A second specific class of interest is that of the shifted fundamental
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solutions of the iterated Laplacian, referred to hereafter as class B. For this

class m0 = 2m − 1 , and near the origin F (ω) = H(‖ω‖) has an expansion

of the form

(2.21) H(r) =
∞∑

k=0

akr
2k + (log r)r2m

∞∑
k=0

bkr
2k as r → 0+ ,

with a0 > 0 and b0 �= 0.

The inverse Fourier transform of the first homogeneous 2m + 1 terms in

the expansion of

ψ̂(ω) = 1 +
F (ω)

G(ω)

[
e(ω) − G(ω)

F (ω)

]
,

near the origin can be obtained explicitly, in view of (2.15), from which it is

possible to conclude (2.19) with � = m0 = 2m − 1.

Corollary 2.5 For φ in class B, condition (2.15) with � = 2m − 1 = m0

generates ψ that satisfies (2.19) and (2.20) with � = 2m − 1. Thus π2m−1 is

reproduced by Qψ, implying that π2m−1 ⊂ Sh(φ) .

An important observation about class A, which does not hold for class B,

is that Qψ,hf ∈ span{φ(x− α) : α ∈ hZZd}. This follows since any φ in class

A is a homogeneous function up to a polynomial of degree ≤ 2m − 1, which

is cancelled in (2.13) since
∑

α∈I µαp(· − α) = 0 , for p ∈ π2m−1 .

2.3 The approximation orders on IRd

The approximation order of Qψ,h is now obtained from Theorem 2.3 and

Corollaries 2.4, 2.5. As a first step we use Theorem 2.1 with (2.19) and

(2.20).

Theorem 2.6 Under the assumptions of Theorem 2.3 with any 0 ≤ � ≤
min(2m, m0 − 1)

(2.22) ‖f − Qψ,hf‖∞ ≤ A‖f‖∞,�h
� ,
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for any f ∈ C�(IRd) with bounded derivatives of order �. If φ is in class A

then (2.22) holds for � ≤ 2m, while if φ is in class B, then (2.22) holds for

� ≤ 2m − 1 = m0 .

Under the same conditions as in Theorem 2.6, higher approximation or-

ders than (2.22) for Qψ,h can be achieved. This requires a finer analysis of

the sum Qψ,hg appearing in the proof of Theorem 2.1.

Theorem 2.7 Let ψ satisfy (2.19) for some � ≥ 0 and let

(2.23) Qψp = p, p ∈ π� .

Then for f ∈ C�+1(IRd) with bounded derivatives of orders � and � + 1

(2.24) ‖f − Qψ,hf‖∞ ≤ A(‖f‖∞,� + ‖f‖∞,�+1)h
�+1| log h| .

Proof: Let g be as in the proof of Theorem 2.1. Then by (2.23)

(2.25) (f − Qψ,hf)(x) = Qψ,hg(x) .

To estimate the error in the approximation, we partition Qψ,hg(x) into two

sums:

(2.26) Qψ,hg(x) =
∑

α∈Sx,h

g(αh)ψ(h−1x − α) +
∑

α∈ZZd\Sx,h

g(αh)ψ(h−1x − α) ,

where Sx,h = ZZd ∩ h−1(x + [−1, 1]d).

In the first sum we use (2.5), while in the second we use a bound as (2.5)

but with � there replaced by �−1, which also holds for g by the assumptions

on f . Thus we get

(2.27) |Qψ,hg(x)| ≤ A‖g‖∞,�+1h
�+1

∑
α∈Sx,h

(‖h−1x − α‖ + 1)−d

+ A‖g‖∞,�h
�

∑
α∈ZZd\Sx,h

(‖h−1x − α‖ + 1)−d−1 .
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Applying Lemma 4.2 of [?], stating that the first sum is bounded by A| log h|
while the second sum by Ah, we finally obtain (2.24). ��

Theorem 2.7 and Corollary 2.5, applied to the radial functions of class

B, yield approximation order O(h2m| log h|) for the choice � = m0 = 2m− 1.

Similar approximation orders are obtained for the radial functions of class A

by taking � = 2m − 1 in Theorem 2.7. Yet by Theorem 2.6 with � = 2m,

which is a proper choice for functions in class A (� in (2.15) can be any

positive integer), one gets the better approximation order O(h2m).

It is shown in [?] by quite involved analysis, that the | log h| factor in (2.24)

can be removed for class A also for the choice � = 2m−1 in (2.15), but cannot

be removed for class B. For the latter class there are other approximation

schemes which achieve the approximation order O(h2m), such as the cardinal

interpolation scheme [?] or the optimal approximation scheme of [?]. The

cardinal interpolation scheme also uses the values of f on hZZd, but uses the

shifts of a function ψ which is an infinite linear combination of shifts of φ. On

the other hand, the optimal approximation scheme uses global information

on the approximated function f , but ψ is much simpler than in the quasi-

interpolation case, with a very mild decay, independent of the approximation

order (see Section 3).

2.4 The approximation orders on finite domains

The fast decay of ψ in the quasi-interpolation schemes presented here has a

very important consequence: given function values on hZZd∩Ω, where Ω is an

open bounded region of IRd, it is possible to get the same approximation order

that Qψ,h achieves on IRd, on any closed subdomain of Ω by the restricted

scheme

(2.28) Qψ,h,Ωf =
∑

α∈ZZd∩h−1Ω

f(hα)ψ(h−1x − α) .
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In fact, we can get a somewhat stronger result. We denote

‖f‖∞,Ω = sup
x∈Ω

|f(x)|, ‖f‖∞,�,Ω =
∑
|α|=�

‖Dαf‖∞,Ω ,

and

(2.29) Ωδ = {y ∈ Ω : ‖y − z‖∞ ≤ δ ⇒ z ∈ Ω} .

Theorem 2.8 Let Ω ⊂ IRd be open and bounded, let f ∈ C�+1(Ω) and let ψ

and � be as in Theorem 2.7. Then

(2.30) ‖f − Qψ,h,Ωf‖∞,Ωδ(h)
≤ A(‖f‖∞,�,Ω + ‖f‖Ω,�+1,Ω)h�+1| log h| ,

where

(2.31) δ(h) ≥ A| log h|−1/(�+1) .

Also

(2.32) ‖f − Qψ,h,Ωf‖∞,Ωδ(h)
≤ A‖f‖∞,�,Ωh�

where

(2.33) δ(h) ≥ Ah1/(�+1) .

The idea of the proof is first to show that the main part of the approxi-

mation at x ∈ Ωδ is obtained by the local sum

(2.34) Qψ,h,Ω,δf(x) =
∑

{α∈ZZd:‖hα−x‖∞≤δ}
f(αh)ψ(h−1x − α) ,

and that all the other terms in (2.28) contribute to the sum a magnitude

of the order O((h/δ)�+1). The second important step is to show that the

local scheme (2.34) for f ∈ π� approximates f(x) with error of the order

O((h/δ)�+1).
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3 Optimal approximation schemes on regular

grids

The construction of the optimal approximation schemes in [?] is aimed at

providing schemes which achieve the maximal possible approximation order

from spaces generated by shifts of the h−1-scales of a basis function to hZZd.

The setting in [?] is quite general, and includes also other scales of the basis

function. Here we present the results related to the shift invariant spaces

S(φ) = span{φ(· − α) : α ∈ ZZd} ,(3.1)

and their scales

Sh(φ) = span{φ(h−1 · −α) : α ∈ ZZd} ,(3.2)

where φ is a radial or a related function.

An important ingredient in the analysis is the determination of an up-

per bound for the approximation order from (3.2). Then an approximation

scheme is termed optimal, if the approximation order provided by it is equal

to the upper bound.

3.1 The general setting

The assumptions on φ in this section are such that all the radial functions

and the related functions presented in the Introduction are included. The

function φ grows at most as a power of ‖x‖ as ‖x‖ → ∞, and its distributional

Fourier transform φ̂ satisfies the three conditions

(a) φ̂ ∈ C(IRd\0), φ̂(ω) > 0, ω ∈ IRd\0 ,

(b) for some δ > 0, ‖φ̂(ω)‖∞ = 0(‖ω‖−d−δ) , ‖ω‖ → ∞(3.3)

(c) for some m′ ≥ 0, 0 < A1 ≤ ‖ω‖m′|φ̂(ω)| ≤ A2 < ∞ , ‖ω‖ < ρ .
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Under these conditions there exists a continuous 2π-periodic function

µ(ω), µ(ω) =
∑

α∈ZZd

µαe−iα·ω such that the function

ψ̂(ω) = µ(ω)φ̂(ω) ,(3.4)

is the proper Fourier transform of the L1(IR
d) function

ψ(x) =
∑

α∈ZZd

µαφ(x − α) .(3.5)

Moreover,

ψ̂(0) �= 0 and
∑

α∈ZZd

|ψ(· − α)| ∈ L∞(IRd) .(3.6)

The optimal approximation order from the scales Sh(ψ) of the shift in-

variant space

S(ψ) = span{ψ(x − α) : α ∈ ZZd} ,

is found to be independent of the localization sequence {µα} in (3.5), and

hence is attributed to the spaces (3.2).

The approximation orders in this setting are derived for the following

classes of admissible functions, defined in terms of their distributional Fourier

transforms:

Definition 3.1 A function f of at most polynomial growth at infinity is

termed k-admissible if (1 + ‖ · ‖k)f̂ is a Radon measure such that

‖f‖′k =
∫

IRd

(1 + ‖x‖k)|f̂(x)|dx < ∞ .(3.7)

The collection of these functions is denoted by W̃∞
k (IRd).

It can be shown that any admissible f is bounded. In particular f(x) =

e−iθ·x, θ ∈ IRd, is admissible of any order k, since f̂(ω) = δ−θ(ω), and thus

‖f‖′k = 1+‖θ‖k. If f̂ is a function then f is admissible if (1+‖·‖k)f̂ ∈ L1(IR
d).
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In case k ∈ ZZ+, f is k-admissible if and only if the distributional Fourier

transforms of f and all its k’th-order derivatives are measures of finite total

mass. In this case W̃∞
k (IRd) is continuously embedded into the space of

functions with continuous bounded derivatives of order ≤ k , namely into

W k
∞(IRd)∩Ck(IRd) . In the results on approximation orders, the order of the

admissibility class of f is related to the value m′ in (3.3)(c).

3.2 The upper bound

The main necessary condition on the upper bound of the approximation order

is obtained from the approximation of the exponential function e−iθ·x, θ ∈ IRd

by Sh(ψ), for quite a general class of functions ψ .

Theorem 3.2 The space Sh(ψ) with ψ satisfying (3.6), provides approxima-

tion order k ≥ 0 to f(x) = e−iθ·x, θ ∈ IRd only if

ψ̂(hθ + β) = O(hk), β ∈ 2πZZd\0, θ ∈ IRd .(3.8)

The upper bound for the approximation order from Sh(ψ), for ψ given by

(3.5), is obtained from Theorem 3.2 and assumptions (3.3).

Theorem 3.3 The approximation order provided by the space Sh(ψ) with ψ

given by (3.5), is at most the order of the singularity of φ̂ at the origin, as

defined by m′ of (3.3)(c).

Proof: Properties (3.3) of φ̂ , implies that for small enough h there is a

constant A dependent on β such that∣∣∣∣∣h−m′
φ̂(hθ + β)

φ̂(hθ)

∣∣∣∣∣ ≥ A > 0 , β ∈ 2πZZd \ 0 .(3.9)

Multiplying numerator and denominator by µ(hθ) = µ(hθ + β), for β ∈
2πZZd\0, one obtains ∣∣∣∣∣h−m′

ψ̂(hθ + β)

ψ̂(hθ)

∣∣∣∣∣ ≥ A > 0 ,(3.10)
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and since ψ̂(0) �= 0, |ψ̂(hθ + β)| ≥ Ahm′
for small enough h, implying that

the approximation order from Sh(ψ) is at most m′, independent of {µα}. ��

3.3 The optimal scheme

The scheme, which is shown later to be optimal, has the following form

Lhf =
∑

α∈ZZd

ψ(h−1 · −α)Λhf(hα) ,(3.11)

where

Λ̂hf = λ̂(h·)f̂ , λ̂ = σ/ψ̂ ,(3.12)

with σ any smooth function of compact support Ω, which is 1 on a ball Bρ of

radius ρ centered at the origin. The information on f required by the scheme

is global, as it depends on the values of f̂ in the support of λ̂(h·).
The general result which yields the approximation order of the scheme

Lh is

Theorem 3.4 Assume that ψ satisfies (3.6), and that for some k ≥ 0

∑
β∈2πZZd\0

∥∥∥ ψ̂(· + β)

‖ · ‖kψ̂(·)
∥∥∥∞,Ω

< ∞ .(3.13)

Then for every f ∈ W̃∞
k (IRd)

‖f − Lhf‖∞ ≤ A‖f‖′khk + o(hk) .(3.14)

Proof: The main idea of the proof of Theorem 3.4 is to represent the error

f−Lhf in terms of f̂ , and then to decompose it into two components, namely

(f − Lhf)(x) = (2π)−d
∫

IRd

[1 − σ(hω)]f̂(ω)eiω·xdω +(3.15)

+(2π)−d
∫

IRd

σ(hω)

[
1 − Eh(ω, x)

ψ̂(hω)

]
f̂(ω)eiω·xdω ,
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with

Eh(ω, x) =
∑

α∈ZZd

ψ(h−1x − α)eiω·(αh−x) .

The first integral in (3.15) vanishes for ω such that ‖ω‖ ≤ h−1ρ. Hence

(h−1ρ)k
∣∣∣ ∫
IRd

[1 − σ(hω)]f̂(ω)eiω·xdω
∣∣∣ ≤(3.16)

≤
∫

‖ω‖≥h−1ρ

‖ω‖k|f̂(ω)| |1 − σ(hω)|dω → 0 , h → 0 .

This proves that the first integral in (3.15) is o(hk).

To bound the second integral in (3.15), we note that the function Eh(ω, x)

is h-periodic in the x variable, and can be written in terms of its Fourier series

as

Eh(ω, x) =
∑

β∈2πZZd

ψ̂(hω + β)e−iβ·h−1x ,(3.17)

since (3.17) is uniformly convergent by (3.6). Thus

Eh(ω, x)

ψ̂(hω)
− 1 =

∑
β∈2πZZd\0

ψ̂(hω + β)

ψ̂(hω)
e−iβ·h−1x ,(3.18)

which together with (3.13) and the k-admissibility of f implies that the

second integral in (3.15) is bounded by A‖f‖′khk. ��
As a direct consequence of Theorem 3.4, we get

Corollary 3.5 Let ψ be given by (3.5) with φ satisfying (3.3). Then the ap-

proximation scheme (3.11)-(3.12) provides the optimal approximation order

m′ for m′-admissible functions.

Proof: The first assumption in Theorem 3.4 is satisfied by ψ . To show

(3.13) with k replaced by m′, we use the relation ψ̂ = µφ̂ with µ 2π-periodic,

and assumption (3.3)(c). Thus for β ∈ 2πZZd\0∥∥∥ ψ̂(· + β)

‖ · ‖mψ̂(·)
∥∥∥∞,Ω

=
∥∥∥ φ̂(· + β)

‖ · ‖mφ̂(·)
∥∥∥∞,Ω

≤ A‖φ̂(· + β)‖∞,Ω .(3.19)
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This together with (3.3)(b) yields (3.13), and hence (3.14) with k replaced

by m′. ��

4 Approximation on quasi-uniformly scattered

centers

In this section we construct analog approximation schemes to those studied

in the previous sections, based on the translates of φ(h−1·) to sets of scat-

terd points {Ξh}h>0 . These schemes achieve the same approximation orders

as their regular-grid analogs, provided that the sets {Ξh}h>0 satisfy certain

quasi-uniformity conditions.

4.1 Quasi-uniform sets of points

We start by stating the quasi-uniformity conditions on the sets of points

{Ξh}h>0.

Definition 4.1 A set Ξh of points (centers) is called quasi-uniform of type

ρ at level h if

{y : ‖y − x‖ ≤ ρ} ∩ h−1Ξh �= ∅ for all x ∈ IRd .(4.1)

In fact a weaker implicit condition on Ξh is the key proprety needed in the

forthcoming theory.

Definition 4.2 A set Ξh is called k-approximating of type R, E at level h ,

if there exists a matrix {K(α, ξ) : α ∈ ZZd, ξ ∈ Ξh} with the properties

(a)
∑

ξ∈Ξh

|K(α, ξ)| < E , α ∈ ZZd ,

(b) K(α, ξ) = 0 if ‖α − h−1ξ‖ > R, α ∈ ZZd, ξ ∈ Ξh,(4.2)

(c)
∑

ξ∈Ξh

K(α, ξ)p(h−1ξ) = p(α), p ∈ πk , α ∈ ZZd .
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It is shown in [?] that a quasi-uniform set of points of type ρ at level h

is also k-approximating of type R, E at level h̃ for any k, with R , E , and h̃

depending on ρ and k.

In [?] condition (b) is replaced by the weaker condition

∑
ξ∈Ξh

|K(α, ξ)|(1 + ‖h−1ξ − α‖j) < Ej , α ∈ ZZd , j = 1, . . . , s ,(4.3)

with s > k .

In the following we assume that the set Ξh under investigation is k-

approximating of type R, E at level h for the required k, with fixed R and

E. We denote the “active” subset of Ξh

{ξ ∈ Ξh : K(α, ξ) �= 0 for some α ∈ ZZd} ,(4.4)

as our set Ξh.

4.2 The approximation scheme

The approximation scheme to be constructed is of the form

LΞh
f(x) =

∑
ξ∈Ξh

ψξ(h
−1x)Γhf(ξ) ,(4.5)

where Γh is either the identity for the quasi-interpolatory schemes, or Γh = Λh

for the optimal schemes, and where

ψξ(x) =
∑

η∈Ξh

N(ξ, η)φ(x − h−1η), ξ ∈ Ξh .(4.6)

The matrix N is defined in terms of the matrix K as

N(ξ, η) =
∑

α,β∈ZZd

K(α, ξ)µβ−αK(β, η), ξ, η ∈ Ξh ,(4.7)

with {µα} an appropriate localization sequence, used in the analog scheme

on the regular grid.
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The method for deriving the approximation order provided by LΞh
is by

comparison to the corresponding scheme on the regular grid Lh given by

Lhf(x) =
∑

α∈ZZd

ψ(h−1x − α)Γhf(hα) ,(4.8)

with Γh as above, and with

ψ =
∑

α∈ZZd

µαφ(· − α) .(4.9)

The comparison is aimed at showing that

‖LΞh
f −Lhf‖∞ ≤ Ah� ,(4.10)

with � not smaller than the known approximation order provided by Lh. In

many cases � is greater or equal to the optimal approximation order provided

by the given φ (see Section 3). In fact this method of comparison works for

any scheme derived from one on a regular grid, if the schemes (4.5) and (4.8)

are defined by the same localization sequence {µα} and by the same operator

Γh. This is the general setting in which the results in [?] are derived.

4.3 The pseudo-shifts

To reveal the similarity between Lh and LΞh
we first introduce the “pseudo-

shifts” {φα : α ∈ ZZd}, which approximate the shifts {φ(· −α) : α ∈ ZZd} in

a relevant sense to the comparison (4.10). The pseudo-shifts have the form

φα =
∑

ξ∈Ξh

K(α, ξ)φ(· − h−1ξ), α ∈ ZZd ,(4.11)

and their relation to the shifts is of the following nature

Theorem 4.3 Let φ be one of the radial or related functions introduced in

the Introduction, and denote by m′ ∈ IR+ the order of the singularity of φ̂ at

the origin. Let K be the matrix satisfying (4.2). Then

|Φα(x)| = |φα(x) − φ(x − α)| ≤ A(1 + ‖x − α‖)−nΦ, α ∈ ZZd ,(4.12)
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with A dependent on E, R, k but not on α, and with

nΦ = k − m′ + d + 1 .(4.13)

The proof of this theorem is based on the explicit form of the expansion

of the Fourier transform of Φα near the origin and its decay behavior as

‖ω‖ → ∞. Since

Φ̂α(ω) = eα(ω)φ̂(ω) , eα(ω) =
∑

ξ∈Ξh

K(α, ξ)e−iω·h−1ξ − e−iω·α ,(4.14)

it is the zero of order k+1 of eα(ω) at the origin which cancels the singularity

of φ̂ there in case k ≥ [m′]. For the comparison analysis we assume that in

(4.2) k = [m′] so that nΦ > d .

With the pseudo-shifts of φ we also define the pseudo-shifts of ψ, in an

analog form to (4.9)

ψα =
∑

β∈ZZd

µβ−αφβ .(4.15)

In case the localization sequence {µα} is of finite support, as in Section 2,

we conclude from (4.12) and (4.15) that

|ψα(x) − ψ(x − α)| ≤ A(1 + ‖x − α‖)−nΦ, α ∈ ZZd .(4.16)

A bound as in (4.16) also holds for more general localization sequences {µα}.

Theorem 4.4 Assume

|µα| ≤ A(1 + ‖α‖)−nµ, nµ > d ,(4.17)

|ψ(x)| ≤ A(1 + ‖x‖)−nψ , nψ > d ,(4.18)

and that the sum in (4.9) is uniformly convergent on compact sets of IRd.

Then

|Ψα(x)| = |ψα(x) − ψ(x − α)| ≤ A(1 + ‖x − α‖)−nΨ(4.19)
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with nΨ = min{nµ, nΦ} > d . Also

|ψα(x)| ≤ A(1 + ‖x − α‖)−n′
ψ ,(4.20)

with n′
ψ = min{nµ, nΦ, nψ} > d .

In the proof of (4.19), the sum defining Ψα

Ψα(x) = ψα(x) − ψ(x − α) =
∑

β∈ZZd

µβ−α[φβ(x) − φ(x − β)] ,(4.21)

is estimated, in view of (4.12), by the discrete convolution

∑
β∈ZZd

|µβ|(1 + ‖(y + α′) − β‖)−nΦ , ‖y‖∞ ≤ 1

2
, α′ ∈ ZZd .

The estimate (4.20) is a direct consequence of (4.18) and (4.19).

Using the pseudo-shifts {ψα}, we rewrite ψξ of (4.6) as

ψξ =
∑

α∈ZZd

K(α, ξ)ψα ,(4.22)

which together with (4.20) leads to

Corollary 4.5 Under the conditions of Theorem 4.4,

|ψξ(x)| ≤ A(1 + ‖x − h−1ξ‖)−n′
ψ ,(4.23)

and the approximation scheme (4.5) is well defined for f ∈ C(IRd)∩L∞(IRd).

4.4 Comparison theorem for C�(IRd) ∩ W �
∞(IRd)

One more observation is needed before we can prove the first comparison

result.

26



Lemma 4.6 Let {µα} be a localization sequence such that ψ satisfies (4.18),

and such that the linear functional

µp =
∑

α∈ZZd

µαp(−α) ,(4.24)

is well defined for p ∈ π�. Then µp = 0, p ∈ π� whenever � < m′. Moreover

if µ is well defined on π�+1, then for f ∈ C�+1(IRd) ∩ W �+1
∞ (IRd)

|µf(h(β + ·))| ≤ Ah�+1‖f‖∞,�+1, β ∈ ZZd .(4.25)

Proof: Assume � < m′ . By the conditions on µ , µ̂(ω) =
∑

α∈ZZd µαe−iω·α is

�-time differentiable. It has a zero of order � + 1 at the origin, since ψ̂ = µ̂φ̂

is continuous everywhere. This implies that µp = 0 for p ∈ π�, from which

(4.25) follows by considering the operation of µ on (f −Thβf)(h(β + ·)), with

Txf the Taylor polynomial of f at x of degree �. ��
With the results of Lemma 4.6, it is possible to compare LΞh

f with Lhf in

the case where Lh is a quasi-interpolation scheme or a cardinal interpolation

scheme. For the schemes considered in Section 2 m′ = 2m, {µα} is of

compact support and Lemma 4.6 holds for 0 ≤ � ≤ 2m − 1. For the case

of cardinal interpolation schemes see [?], [?] for the relevant properties of

{µα}, depending on the properties of φ. For these two types of schemes the

relevant comparison theorem is

Theorem 4.7 Let {µα} be a localization scheme satisfying the conditions of

Lemma 4.6, and let Γhf = f . Then for f ∈ C�+1(IRd) ∩ W �+1
∞ (IRd)

‖(LΞh
− Lh)f‖∞ ≤ A‖f‖∞,�+1h

�+1 .(4.26)

In case � is the maximal integer smaller than m′ , LΞh
provides the same

approximation order as Lh.
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Proof: Let us introduce an intermediate scheme between Lh and LΞh
,

L̃hf =
∑

α∈ZZd

f(αh)ψα(h−1·) .(4.27)

Then

(L̃h − Lh)f(x) =
∑

α∈ZZd

f(αh)Ψα(h−1x)(4.28)

=
∑

α∈ZZd

f(αh)
∑

β∈ZZd

µβ−αΦβ(h−1x) .

Since Φβ satisfies (4.12), we can change the order of summation in the right

hand side of (4.28) and apply (4.25) to obtain

|(L̃h − Lh)f(x)| =
∣∣∣ ∑

β∈ZZd

Φβ(h−1x)µf(h(β + ·))
∣∣∣ ≤ Ah�+1‖f‖∞,�+1 .(4.29)

To conclude (4.26) we have still to estimate

(LΞh
− L̃h)f(x) =

∑
ξ∈Ξh

f(ξ)
∑

α∈ZZd

K(α, ξ)ψα(h−1x)(4.30)

− ∑
α∈ZZd

f(αh)ψα(h−1x) .

Again, since ψα satisfies (4.20) with n′
ψ > d, we can change the order of

summation in the first sum in (4.30) to obtain

(LΞh
− L̃h)f(x) =

∑
α∈ZZd

⎡⎣ ∑
ξ∈Ξh

K(α, ξ)f(ξ)− f(αh)

⎤⎦ ψα(h−1x) .(4.31)

Using properties (4.2) of the matrix K with k=[m’], we obtain in analogy to

(4.25) ∣∣∣f(αh) − ∑
ξ∈Ξh

K(α, ξ)f(ξ)
∣∣∣ ≤ A‖f‖∞,�+1h

�+1, � ≤ [m′] .(4.32)

This leads to the estimate

‖(LΞh
− L̃h)f‖∞ ≤ A‖f‖∞,�+1h

�+1 ,(4.33)
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which together with (4.29) yields (4.26). In case � is the greatest integer less

than m′ then � + 1 is equal or greater to the optimal approximation order

possible m′, and the last claim of the theorem follows. ��
The proof of Theorem 4.7 gives another interpretation to the scheme

LΞh
f , namely

LΞh
f =

∑
ξ∈Ξh

f(ξ)ψξ(h
−1x) =

∑
α∈ZZd

f̃(hα)ψα(h−1x) ,(4.34)

where f̃(αh) =
∑

ξ∈Ξh
K(α, ξ)f(ξ) approximates f(αh) with an appropriate

order.

Remark

(i) For the quasi-interpolation schemes in Section 2, {µα} is of compact

support and � in Theorem 4.7 coincides with � of Section 2, thus guaranteeing

that LΞh
provides the same approximation order as Lh for 0 ≤ � ≤ m′ − 1 .

More complicated situations, where �+1 in (4.26) is not the optimal approx-

imation order but equals or exceeds the one achieved by Lh, are analyzed in

[?] in the context of cardinal interpolation.

(ii) The class of approximated functions f in Theorem 4.7 is smaller than that

considered in the regular grid case, when polynomial reproduction arguments

are emplyed. This is due to the mild requirement on the decay of Φα (and

hence on ψα and ψξ) in the comparison analysis. It is possible to obtain by

similar arguments the results of Theorem 4.7 for unbounded f ∈ C�+1(IRd),

with bounded derivatives of order � and � + 1, if Φα is assumed to decay as

fast as ψ in (4.9). This can be obtained by taking a large enough k in condi-

tion (4.2) on the matrix K. In this setting, LΞh
reproduces polynomials in π�

for � < m′, although this property is not needed in the comparison analysis

(see details in [?]).

(iii) The polynomial reproduction property of LΞh
is the key property used

in [?] for obtaining the approximation order provided by quasi-interpolation
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schemes of the form LΞh
f =

∑
ξ∈Ξh

f(ξ)ψξ(h
−1·), for φ satisfying the assump-

tions of Section 2. There the decay of ψξ is obtained directly from properties

of the matrix N in (4.6), (4.7) and from similar arguments to those in [?].

The proof of the polynomial reproduction property in [?] considers a sequence

of sets {Ξh,M : M ∈ ZZ+} such that Ξh,M coincides with Ξh for ‖h−1ξ‖∞ ≤ M

and with an appropriate regular grid for ‖h−1ξ‖∞ ≥ M + A, and shows that

LΞh
p, p ∈ π� depends mostly on that part of the set of points which is regular.

4.5 Comparison theorem for W̃m
∞(IRd)

A second comparison theorem for schemes defined on the function spaces

W̃ m
∞(IRd), as in Section 3, is based on the following analog of Lemma 4.6.

Lemma 4.8 Assume {µα} is such that for some m ∈ IR+, ‖ · ‖−m|µ̂| is

bounded. Let λ̂ ∈ L∞(IRd), and define Γ̂hf = f̂ λ̂. Then for any f ∈ W̃ m
∞(IRd)

|µΓhf(h(β + ·))| ≤ Ahm|f |′∞,m, β ∈ ZZd ,(4.35)

where |f |′m =
∫

IRd

‖ω‖m|f̂(ω)|dω < ∞.

The proof of (4.35) is carried in the Fourier domain and is quite involved.

Lemma 4.8 leads to

Theorem 4.9 Assume {µα} and λ satisfy the requirements of Lemma 4.8.

Then for every f ∈ W̃ m
∞(IRd), m ≤ m′

|(LΞh
− Lh)f‖∞ ≤ Ahm|f |′∞,m .(4.36)

In particular for f ∈ W̃ m′
∞ (IRd) , LΞh

provides the same approximation order

as Lh .

Proof: The proof is similar to that of Theorem 4.7, with Lemma 4.8 replacing

Lemma 4.6. One has also to show that for m ≤ m′∣∣∣ ∑
ξ∈Ξh

K(α, ξ)f(ξ)− f(αh)
∣∣∣ ≤ Ahm|f |′∞,m, α ∈ ZZd ,(4.37)
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for the estimation of (LΞh
− L̃h)f . This follows from the observation that

∑
ξ∈Ξh

K(α, ξ)f(ξ)− f(αh) =
1

(2π)d

∫
IRd

eα(hω)f̂(ω)dω ,(4.38)

with eα(ω) defined as in (4.14). Since eα ∈ C [m′]+1(IRd) and has a zero of

order [m′] + 1 at the origin (by conditions (4.2) on K with k = [m′]), then

‖ω‖−meα(ω) is bounded for m ≤ m′ and (4.37) follows from (4.38). ��
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