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Abstract. Continuous set-valued functions with convex images can be approximated by known

positive operators of approximation, such as the Bernstein polynomial operators and the Schoen-

berg spline operators, with the usual sum between numbers replaced by the Minkowski sum of

sets. Yet these operators fail to approximate set-valued functions with general sets as images.

The Bernstein operators with growing degree, and the Schoenberg operators, when represented

as spline subdivision schemes, converge to set-valued functions with convex images. To obtain

approximating operators for set-valued functions with general images, we use a binary average

between sets, termed the “metric average”, which was introduced by Artstein for the construc-

tion of piecewise linear interpolants to set-valued functions. Representing each of the above

mentioned operators in terms of repeated binary averages, and replacing the binary average be-

tween numbers by the metric average, we obtain operators for set-valued functions with compact

images. In case of the Schoenberg operators, represented either by the de Boor algorithm or by

spline subdivision schemes, the operators are approximating. In case of the Bernstein operators,

the convergence with the increase of the degree is established only for set-valued functions with

1D images, consisting of the same number of intervals.

1. Introduction. The paper surveys our work on the approximation of set-valued func-

tions (SVFs) with compact images in R
n by positive linear operators [9, 10, 11, 13]. The

operators considered are the Schoenberg spline operators in explicit form or as the limit

of subdivision schemes, and extensions of the Bernstein polynomial operators.

The adaption of these operators to set-valued functions requires replacing operations

between numbers by operations between sets. The most natural definition of Minkowski

sum of sets is a proper substitute for addition of numbers, only in case of SVFs with

convex images. In this case, the well-known representation of convex compact sets in

terms of their support functions defines an embedding of the cone of convex compact

subsets of R
n into a Banach space with an addition operation induced by the Minkowski
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sum of sets and a norm generated by the Hausdorff distance between sets. Thus the

approximation of SVFs reduces to the approximation of their support functions. The

application of known approximation results from the case of real-valued functions to the

case of SVFs with convex compact images is possible [18, 7, 2, 9]. The positivity of the

operators ensures that the images of the approximating SVFs do not leave the cone of

convex compact sets, and some of the operators preserve convexity of the graph and

set-inclusion [9].

If the images of the approximated SVF are not convex, it was noticed by Vitale

[18] that the usual approximating positive operators with Minkowski sums of sets fail to

approximate, and a phenomenon of convexification appears in case of the Bernstein oper-

ators [18], and for some Bernstein-type operators [11]. Also positive subdivision schemes

map initial compact sets to a limit SVF with convex images identical to the limit SVF

obtained from the convex hulls of the initial sets [11]. This phenomenon is similar to the

well-known convexity of the Aumann integral, when regarded as a limit of Minkowski-

Riemann sums of sets, even if the integrated SVF does not have convex images (see

e.g. [11]). The obvious conclusion is that operators with Minkowski sums of sets are not

effective for the approximation of SVFs with general compact images.

An alternative operation for the average of two sets is defined by Artstein [1]. This

operation has an important metric property with respect to the Hausdorff metric, which

ensures that the piecewise-linear set-valued interpolant is approximating continuous SVFs

[1]. The lack of associativity in this operation is the reason why it is hard to extend

this binary operation to an average of three or more sets. To use this operation in the

adaptation of positive operators to SVFs, we need to represent these operators in terms

of repeated binary averages. Note that every linear operator, which is exact for constants

and is a linear combination function’s values, can be represented in terms of repeated

binary averages in more than one way [19].

For the evaluation of the Schoenberg operators we use either the de Boor algorithm

([4], Chapter X), or spline subdivision schemes represented in terms of repeated binary

averages [10]. The Bernstein operator may be represented in terms of repeated binary av-

erages by the De Casteljeau algorithm [14]. The Schoenberg operators so defined approx-

imate set-valued functions which are Hölder continuous [10, 13], while for the Bernstein

operators approximation is proved only for Hölder continuous set-valued functions with

images in R all of the same topology [13]. It is not clear whether the so defined Bernstein

operators approximate SVFs with images in R
n for n > 1.

The paper is organized as follows. After presenting definitions and notation in the next

section, we recall some basic facts on positive linear operators for real-valued functions in

Section 3. Section 4 discusses approximations of SVFs with convex images by Schoenberg

operators, spline subdivision schemes and Bernstein-type operators. Section 5 is devoted

to the approximation of SVF with compact (not necessarily convex) images. After showing

that the above operators with Minkowski sums do not approximate, we study them when

defined in terms of metric averages of sets.

2. Preliminaries. First we introduce some notation. The collection of all univariate

polynomials of degree less than or equal to m is denoted by πm, the collection of all
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nonempty compact subsets of R
n is denoted by Kn. Cn denotes the collection of convex

sets in Kn, 〈·, ·〉 is the inner product in R
n, |x| is the Euclidean norm of x ∈ R

n, Sn−1 is

the unit sphere in R
n, coA denotes the convex hull of the set A.

The Hausdorff distance between two sets A and B in R
n is defined by

haus(A,B) = max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

where dist(x,A) = inf{|x − y| : y ∈ A}. By |A| = sup{|x| : x ∈ A} we denote the

“norm” of the set A. Let us recall that Kn is a complete metric space with respect to the

Hausdorff metric [16].

The support function δ∗(A, ·) : R
n → R is defined for A ∈ Kn as

δ∗(A, l) = max
a∈A

〈l, a〉, l ∈ R
n.

The set of all projections of x on the set A ∈ Kn is ΠA(x) = {a ∈ A : |a−x| = dist(x,A)}.
The set difference of A,B ∈ Kn is A \ B = {a : a ∈ A, a 6∈ B}. A linear Minkowski

combination of the sets A1, A2, . . . , Ak is

k∑

i=1

λiAi =
{ k∑

i=1

λiai : ai ∈ Ai, i = 1, . . . , k
}
,

for Ai ∈ Kn and λi ∈ R. The Minkowski sum
∑k

i=1Ai corresponds to a linear Minkowski

combination with λi = 1. A Minkowski average (a Minkowski convex combination) of

sets is a linear Minkowski combination with λi non-negative, summing up to 1.

It is easy to verify that for a general set A,

λA+ (1 − λ)A ⊃ A, λ ∈ R (1)

while for a convex set,

λA+ (1 − λ)A = A, 0 ≤ λ ≤ 1

The notions convergence, continuity, Hölder continuity for set-valued functions are

to be understood with respect to the Hausdorff metric (distance), e.g. the SVF, F (·), is

Hölder continuous with exponent α if

haus(F (t1), F (t2)) ≤ C|t1 − t2|α

with a constant C which depends on F . The collection of Hölder continuous SVFs with

exponent α is denoted by Hα. Clearly, Hα contains the Hölder continuous real-valued

functions with exponent α.

For a real-valued function f : I → R, I ⊂ R, we denote by supp(f) the support of f .

The notions of moduli of continuity and smoothness of such f are central to our paper (

see e.g. [6], Chapter 2). The modulus of continuity of f with a step δ ≥ 0, is

ωI(f, δ) = sup
0<h≤δ

‖∆h,I(f, ·)‖∞, with

∆h,I(f, t) =

{
f(t+ h) − f(t) for t, t+ h ∈ I,

0 otherwise.

ωI(f, δ) is also known as the first modulus of smoothness.
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The second modulus of smoothness is ω2,I(f, δ) = sup{‖∆2
h,I(f, ·)‖∞ : 0 < h ≤ δ},

with ∆2
h,I(f, t) = ∆h,I

(
∆h,I(f, t), t

)
.

We use in this paper the following properties of these moduli:

1. For f ∈ Hα, ωI(f, δ) = O(hα).

2. ωI(f, λδ) ≤ (λ+ 1)ωI(f, δ).

3. If f is differentiable on I, then ω2,I(f, δ) ≤ δωI(f
′, δ).

In the next section we discuss approximation of real-valued functions by certain pos-

itive linear operators. These operators are extended to SVFs in later sections.

3. Some positive linear operators for real-valued functions. In this section we

review results on the approximation of real-valued functions by special positive linear

operators. These results are applied later to the approximation of set-valued functions

with convex compact images. We consider linear operators of the form

AN (f, t) =
N∑

i=0

Ci,N (t)f(tNi ), (2)

applied to real-valued functions on [0, 1], where tN0 < tN1 < . . . < tNN are given points in

[0, 1] and Ci,N (t) ≥ 0. Furthermore, we require that
∑N

i=0 Ci,N (t) = 1 either in [0, 1], or

in most of it. We restrict this class to operators which approximate continuous functions

in [0, 1] or in most of it.

We recall that a linear operator L(f, x) is a positive operator if for a non-negative f ,

L(f, x) is non-negative. Clearly, AN is a positive linear operator. It reproduces the con-

stant functions, namely AN (f, t) = f(t) for f(t) = const for all t such that
∑N

i=0 Ci,N (t) =

1. In fact, AN (f, t) is a weighted average of the function values f(tNi ), i = 0, 1, . . . , N .

Here are some examples of such positive linear operators.

3.1. Schoenberg operators. Let tNi = i
N
, i = 0, 1, . . . , N . Consider the operators (2)

with the coefficients Cm
i,N (t) = Bm(Nt − i) or Cm

i,N (t) = B̃m(Nt − i), where Bm(·) is a

B-spline of degree m (order m+ 1) with integer knots and support [0,m+ 1], and where

B̃m(t) = Bm(t− m+1
2 ). We denote the above spline operators of degree m by

SN
m(f, t) =

N∑

i=0

Bm(Nt− i)f(tNi ), S̃N
m(f, t) =

N∑

i=0

B̃m(Nt− i)f(tNi ), (3)

and call SN
m(f, t) the classical Schoenberg operator, and S̃N

m(f, t) the symmetric Schoen-

berg operator. An important special case is the piecewise-linear interpolant S̃N
1 with

B̃1(t) =

{
1 − |t| for |t| ≤ 1,

0 otherwise.
(4)

Note that the symmetric Schoenberg operators reproduce constant and linear functions,

namely S̃N
m(f, ·) = f(·) for any f ∈ π1, only on the sub-interval [aN , bN ] = [m−1

2N
, 1 −

m−1
2N

]. It is easy to verify that the classical Schoenberg operators reproduce constants on

[aN , bN ] = [m
N
, 1], but not linear functions.
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We recall two results on the approximation by linear operators of local character, and

apply them later to the Schoenberg spline approximation (cp. [6], Chapter 7, Lemma 7.1

and Theorem 7.2). For the sake of completeness we provide short proofs.

Result A. Let f : [0, 1] → R be continuous and let LN (f, t) =
∑N

i=0 f( i
N

)ψ(Nt−i), with

ψ a continuous function of compact support. If ψ is positive on the interior of supp(ψ)

and
∑N

i=0 ψ(Nt− i) = 1 for t ∈ [aN , bN ] ⊂ [0, 1], then

‖f − LN (f, ·)‖∞,[aN ,bN ] ≤ Cω[0,1]

(
f,

1

N

)
, (5)

where C depends on |supp(ψ)|.

Proof. For a fixed t ∈ [aN , bN ], ψ(Nt− i) > 0 for i ∈ It = {i ∈ Z : t− i
N

∈ 1
N

supp(ψ)},
and we get

LN (f, t) − f(t) =
∑

i∈It

(
f

(
i

N

)
− f(t)

)
ψ(Nt− i)

≤ ω[0,1]

(
f,

|supp(ψ)|
N

)
≤ Cω[0,1]

(
f,

1

N

)
.

Result B. Under the conditions of Result A, if LN reproduces also linear functions on

[aN , bN ], then, for f ∈ C2[0, 1],

‖f − LN (f, ·)‖∞,[aN ,bN ] ≤
C

N2
‖f ′′‖∞,[0,1], (6)

where C depends on |supp(ψ)|.

Proof. For a fixed t ∈ [aN , bN ], let g(x) = f(t)+ (x− t)f ′(t) be the linear Taylor approx-

imation of f at t. Then f(x)− g(x) = f ′′(ξ) (x−t)2

2 with ξ in the interval with end points

x, t. Since LN (g, ·) = g and g(t) = f(t), we get by the linearity of LN ,

LN (f, t) − f(t) = LN (f − g, t) =
∑

i∈It

(f − g)

(
i

N

)
ψ(Nt− i).

Since |t − i/N | ≤ |supp(ψ)|/N , we get |(f − g)(i/N)| ≤ 1
2 |f ′′(ξi)|(|supp(ψ)|/N)2, with

ξi ∈ (0, 1), and (6) follows.

For the Schoenberg operators applied to Hölder continuous real-valued functions, it

follows from Result A that

|SN
m(f, t) − f(t)| = O

(
1

Nα

)
, t ∈

[
m

N
, 1

]
, (7)

|S̃N
m(f, t) − f(t)| = O

(
1

Nα

)
, t ∈

[
m− 1

2N
, 1 − m− 1

2N

]
, (8)

where α is the Hölder exponent of f .

From Result B one gets for the symmetric Schoenberg operators applied to a real-

valued function with a bounded second derivative that

|S̃N
m(f, t) − f(t)| = O

(
1

N2

)
. (9)
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A weaker approximation result holds for f such that f ′ ∈ Hα, namely

|S̃N
m(f, t) − f(t)| = O

(
1

N1+α

)
. (10)

3.2. Spline subdivision schemes. For real-valued functions the Schoenberg operators can

be evaluated by subdivision schemes (see e.g. [8]).

Given the initial sequence f0
i = f( i

N
), i = 0, . . . , N of values in R, with f0

i = 0 for

i ∈ Z \ {0, 1, . . . , N}, the spline subdivision scheme for the evaluation of SN
m(f, ·) is given

by the refinement steps

fk
i =

∑

j∈Z

a
[m]
i−2jf

k−1
j , i ∈ Z, k = 1, 2, . . . (11)

with the mask a
[m]
i =

(
m+1

i

)
/2m, i = 0, 1, . . . ,m+1 and a

[m]
i = 0 for i∈Z\{0, 1, . . . ,m+1}.

At the k−th refinement level one defines the piecewise linear function

f [k](t) =
∑

i∈Z

fk
i B̃1(2

kt− i), t ∈ R, (12)

where {fk
i , i ∈ Z} are the values generated by the subdivision scheme at refinement level

k. The scheme (11) is uniformly convergent, namely the sequence {f [k](·)}k≥0 is a Cauchy

sequence, and its limit function is of the form (see e.g. [8])

f∞(t) = SN
m(f,N−1t). (13)

For m odd and the shifted spline weights ã
[m]
i = a

[m]

i−m+1
2

, i = 0, 1, . . . ,m+1, the limit

of the subdivision scheme is S̃N
m(f,N−1 · ).

3.3. Bernstein-type operators. Bernstein-type operators of a function f : [0, 1] → R are

defined by

Bχ
N (f, t) =

N∑

i=0

P (χN
t = i)f

(
i

N

)
, (14)

where for a given N ∈ N and t ∈ [0, 1], χN
t is a discrete random variable with values

i ∈ {0, 1, . . . , N}, and expectation

E(χN
t ) = Nt. (15)

In the classical Bernstein polynomials of degree N , χN
t is a binomially distributed random

variable with Ci,N (t) in (2) given by P (χN
t = i) =

(
N
i

)
ti(1 − t)N−i. Thus

BN (f, t) =

N∑

i=0

(
N

i

)
ti(1 − t)N−if

(
i

N

)
. (16)

Another example of a Bernstein-type operator is the polynomial approximation of de-

gree N , defined by χN
t the random variable with the hypergeometric distribution with

parameters M ≥ N ,

P (χN
t = i) =

{
(Mt

i )(M(1−t)
N−i )

(M

N)
, for N −M(1 − t) ≤ i ≤Mt,

0 otherwise.
(17)

Here the real binomial coefficients are
(
y
k

)
= y(y−1)...(y−k+1)

k! .
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Note that the requirement (15) implies that the Bernstein-type operators reproduce

linear functions. The following approximation theorem is applicable in this case.

Result C (see [6], Chapter 9, Theorems 4.3, 4.4). Let LN (f, ·), N = 1, 2, . . . be a

sequence of positive linear operators on the space of continuous functions defined on

[0, 1], which reproduce linear functions. Denote u2(x) = x2, and

λN (x) = |LN (u2, x) − u2(x)|. (18)

Then, for any continuous function f : [0, 1] → R,

|f(x) − LN (f, x)| ≤ Kω2,[0,1](f,
√
λN (x)), (19)

where K does not depend on N .

Now, suppose that λN (x) ≤ Λ(x)/Nβ for the operator in (14). If f ∈ Hα, then by

Result C,

|f(x) − Bχ
N (f, x)| ≤ 2K

(
Λ(x)

)α
2

N
αβ

2

. (20)

If f ′ ∈ Hα, then by (19) and by property 3 of moduli of smoothness,

|f(x) − Bχ
N (f, x)| ≤ K

(
Λ(x)

Nβ

) 1+α
2

, x ∈ [0, 1]. (21)

From the mean and the variance of the binomial and hypergeometric distribution, one

gets for the classical Bernstein operator λN (x) = x(1−x)/N , and for the “hypergeomet-

ric” operator

λN (x) =
x(1 − x)

N

(
1 − N − 1

M − 1

)
≤ x(1 − x)

N
.

In the next section we apply the results of this section to the approximation of SVFs

with convex compact images.

4. Set-valued functions with convex images—approximations with Minkowski

averages. Let F : [0, 1] → Cn be a given SVF with convex compact images. For the given

data points in [0, 1], 0 ≤ t0 < t1 < . . . < tN ≤ 1, consider the approximating operator

(2) with Ci,N (t) ≥ 0 and with Minkowski sums of sets replacing addition of numbers.

Clearly, AN satisfies

AN (λF + µG, ·) = λAN (F, ·) + µAN (G, ·), λ, µ ≥ 0. (22)

Moreover, by the positivity of Ci,N (t), the images of AN (F, ·) remain in the cone Cn. Also,

if AN preserves monotonicity of real-valued functions, then AN preserves set-inclusion of

SVFs.

The approximation property of such operators, as well as their shape-preservation

properties, follow from the parametrization of convex compact sets by their support

functions. The following properties of the support functions δ∗ are well known ([15]).

For A,B ∈ Cn,

1. δ∗(A+B, ·) = δ∗(A, ·) + δ∗(B, ·),
2. δ∗(λA, ·) = λδ∗(A, ·), λ ≥ 0,
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3. A ⊆ B ⇐⇒ δ∗(A, l) ≤ δ∗(B, l) for each l ∈ R
n,

4. haus(A,B) = max
l∈Sn−1

|δ∗(A, l) − δ∗(B, l)|.

Thus, for the operator AN in (2),

δ∗(AN (F, t), l) = AN (δ∗(F, l), t), l ∈ R
n. (23)

Also, F (·) ∈ Hα iff δ(F (·), l) ∈ Hα, uniformly in l ∈ Sn−1. The above two observations

enable to extend approximation results for positive operators from the case of real-valued

functions to the case of set-valued functions with compact convex images.

Schoenberg operators. In analogy to (3), we define for a SVF F (·), the set-valued Schoen-

berg spline approximation of degree m by

SN
m(F, t) =

N∑

i=0

Bm(Nt− i)F

(
i

N

)
, S̃N

m(F, t) =
N∑

i=0

B̃m(Nt− i)F

(
i

N

)
, (24)

where Σ stands for a Minkowski sum of sets.

Applying (7),(8),(10) to the support functions δ∗(F (t), l), we conclude from (23) that

Theorem 4.1. (a) If F ∈ Hα, then

haus(F (t), SN
m(F, t)) = O(1/Nα) and haus(F (t), S̃N

m(F, t)) = O(1/Nα).

(b) If the support function δ∗(F (t), l), as a function of t, has first derivative in Hα,

uniformly in l ∈ Sn−1, then

haus(F (t), S̃N
m(F, t)) = O

(
1

N1+α

)
.

Spline subdivision schemes. Consider the spline subdivision schemes given by (11) with

Minkowski sums of sets replacing addition. Thus for F : [0, 1] → Cn we take F 0
i =

F ( i
N

), i = 0, 1, . . . , N , and define F 0
i = {0} for i ∈ Z \ {0, 1, . . . , N}. The subdivision

refinement step has the form

F k
i =

∑

j∈Z

a
[m]
i−2jF

k−1
j , i ∈ Z , k = 1, 2, . . . (25)

At the k-th refinement level (k ≥ 0) we construct as in (12) a piecewise-linear SVF

F [k](t) =
∑

i∈Z

F k
i B̃1(2

kt− i), t ∈ R. (26)

Using (12) for the data generated by the subdivision scheme applied to the samples

of δ∗(F [0](·), l), the following set-valued analog of (13) is obtained [9]:

Theorem 4.2. The set-valued functions {F [k](·)}∞k=1 converge uniformly on any compact

subset of R to the SVF

F∞(t) = SN
m(F,N−1t), t ∈ R. (27)

This implies that in the case of SVFs with convex images, similarly to the case of real-

valued functions, the Schoenberg operators are equivalent to the limit of the correspond-

ing spline subdivision schemes performed with Minkowski sums of sets.

Moreover, set inclusion and convexity of the graph are preserved by the spline subdi-

vision schemes [9].
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Bernstein-type approximations. The Bernstein-type approximation Bχ
N (F, ·) : [0, 1] → Kn

of F, defined as in (2) with Minkowski sums of sets, has the form

Bχ
N (F, t) =

N∑

i=0

P (χN
t = i)F

(
i

N

)
, (28)

Applying (20), (21) for the support function δ∗(F (·), l), we get

Theorem 4.3 (cf. [18], [11]). Let λN (x) be defined as in (18) and satisfy λN (x) ≤
Λ(x)/Nβ. If F ∈ Hα, then

haus
(
F (x),Bχ

N (F, x)
)
≤ 2K

Λ(x)
α
2

N
αβ

2

. (29)

If d
dt
δ∗(F (·), l) ∈ Hα, uniformly in l ∈ Sn−1, then

haus(F (x),Bχ
N(F, x)) ≤ K

(
Λ(x)

Nβ

) 1+α
2

, x ∈ [0, 1]. (30)

Note that the error estimates for the classical Bernstein approximation and the “hy-

pergeometric” approximation of set-valued functions with convex compact images are

given by (29) and (30) with β = 1, Λ(x) = x(1 − x).

Remark 4.4. Moduli of smoothness of SVFs with compact convex images are defined

in [7] in terms of the corresponding moduli of their support functions. Analogs of results

A, B and C for the approximation of set-valued functions with convex compact images

can be obtained in terms of these moduli. See also [9] for the use of finite differences of

convex compact sets to the study of shape-preserving properties of the spline subdivision

schemes.

5. The non-convex case. It was noticed by Vitale [18] that the piecewise-linear ap-

proximation constructed with Minkowski sums does not converge to the constant SVF

F (t) = {0, 1} with non-convex images in R. Indeed, if F (t) ≡ A with A ⊂ Rn a compact,

non-convex set, then, as in (1),

F (t) ⊂ S̃N
m(F, t) = SN

m(F, t), F (t) 6= S̃N
m(F, t).

For approximation operators of the form (2), as the Bernstein-type operators, where the

number of summands grows with N , the Shapley-Folkman-Starr Theorem (see Appendix

2 in [17] and Theorem 2 in [5]) yields

haus(AN (F, t), coAN (F, t)) ≤
√
n max

0≤i≤N
Ci,N (t) max

s∈[0,1]
|F (s)|,

for any SVF with compact images in Rn. Note that coAN (F, t) = AN (coF, t) and that by

the results of the previous section limN→∞ AN (coF, t)=coF (t). If limN→∞ max{Ci,N (t) :

0 ≤ i ≤ N} = 0, then limN→∞ AN (F, t) = coF (t). As a consequence of this ob-

servation, Bernstein-type operators generated by discrete random variables satisfying

limN→∞ max{P (χN
t = i) : 0 ≤ i ≤ N} = 0, when applied to a SVF, F (t), with com-

pact images in Rn, converge to the convex hull of F (t). In particular, this convexification

phenomenon is observed for the Bernstein operators and the “hypergeometric” operators

[18], [11].
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The convexification of the images of the sets obtained by spline subdivision schemes

was proved in [11]. In this case the Shapley-Folkman-Starr Theorem is not applicable

since subdivision schemes are recursive averaging procedures with a fixed finite number

of summands and fixed weights. For this case an inequality, involving a measure of non-

convexity of sets, proved in [5], is invoked to prove that spline subdivision schemes with

Minkowski sums applied to arbitrary initial compact sets in Rn converge to a SVF with

convex images.

Note that the direct calculation of the set-valued spline functions (24) is not neces-

sarily convexifying, since only a fixed number of Minkowski averages are calculated. This

differs from the case of subdivision schemes, which are limiting procedures involving an

unbounded number of Minkowski averages.

5.1. Approximation with metric averages. The lack of approximation by the operators

of Section 4 in case of SVFs with general images is due to the fact that the Minkowski

averages of non-convex sets are too big. To obtain approximating operators in the non-

convex case we apply an operation of averaging between two sets which yields a subset

of the Minkowski average.

This operation between two compact sets was introduced in [1] for the construction

of piecewise-linear approximation of SVFs with compact (not necessarily convex) images.

The same operation was used in [10] for the construction of set-valued subdivision schemes

which are also approximating in the non-convex case. Although this operation, called in

[10] “metric average”, does not possess some essential properties of the Minkowski sum,

it has several properties which make it appropriate for our purposes.

Definition 5.1. Let A,B ∈ Kn and 0 ≤ t ≤ 1. The t-weighted metric average of A and

B is

A⊕tB =
{
t{a} + (1 − t)ΠB(a) : a ∈ A

}
∪

{
tΠA(b) + (1 − t){b} : b ∈ B

}
, (31)

where the linear combinations above are in the Minkowski sense.

The following properties of the metric average are easy to observe [10].

Let A,B,C ∈ Kn and 0 ≤ t ≤ 1, 0 ≤ s ≤ 1. Then

1. A⊕0 B = B, A⊕1 B = A, A⊕t B = B ⊕1−t A.

2. A⊕t A = A.

3. A ∩B ⊆ A⊕t B ⊆ tA+ (1 − t)B.

The metric property of this average [1] is essential for our applications :

4. haus(A⊕t B,A⊕s B) = |t− s|haus(A,B).

The main disadvantage of the metric average, as an operation on sets, is the lack of

associativity, which is the reason why it is hard to extend this binary operation to an

average of three or more sets. Thus we need to represent the positive operators in terms

of repeated binary averages. This is not hard for the Schoenberg spline approximation,

spline subdivision schemes and for the Bernstein approximation. Let us note that the

representation of these operators in terms of repeated binary averages is non-unique [19].

The representations chosen here are successful computationally for real-valued functions

[4, 14] and proved to be adequate theoretically and experimentally for SVFs [10, 13].
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5.2. Metric Schoenberg spline approximation. For the Schoenberg operators we use a

representation in terms of repeated binary averages based on the recurrence formula for

B-splines ([4], chapter 10),

Bm+1 (t) =
t

m+ 1
Bm (t) +

m+ 1 − t

m+ 1
Bm (t− 1) , (32)

where Bm (·) is the B-spline of degree m defined in Section 3.1. This yields the following

algorithm for the evaluation of Sm(t) =
∑

i aiBm (t− i) in terms of repeated binary

averages: For t ∈ [j, j + 1),

Sm(t) =

j∑

i=j−m+k

ak
i (t)Bm−k (t− i) , k = 0, 1, . . . ,m, (33)

with

a0
i (t) = ai, i = j −m, . . . , j,

ak
i (t) =

i+m+ 1 − k − t

m+ 1 − k
ak−1

i−1 (t) +
t− i

m+ 1 − k
ak−1

i (t), i = j −m+ k, . . . , j . (34)

In particular, Sm(t) = am
j (t).

We apply the above recurrence formulae to define SN
m(F, t) for t ∈ [j, j + 1) procedu-

rally by

F 0
i = F

(
i

N

)
, i = j −m, . . . , j, (35)

F k
i = F k−1

i−1 ⊕λk
i
F k−1

i , i = j −m+ k, . . . , j, k = 1, . . . ,m, (36)

with λk
i =

i+m+ 1 − k −Nt

m+ 1 − k
, i = j −m+ k, . . . , j, k = 1, . . . ,m, (37)

and, as above, determine

SN
m(F, t) = Fm

j . (38)

Theorem 5.2 ([13]). Let the set-valued function F : [a, b] → Kn be Hölder continuous

with exponent α, α ∈ (0, 1]. Then SN
m(F, t) defined by (35)-(38) satisfies

haus(SN
m(F, t), F (t)) ≤ C

Nα
. (39)

5.3. Metric spline subdivision schemes. To compute the m-th degree spline subdivision

scheme in terms of metric averages, we represent it by a sequence of repeated binary

averages as follows.

The refinement step (11) can be obtained by one step of refinement of the linear spline

subdivision, followed by m− 1 binary averages. Adapting this representation to sets, the

sequence of steps which replaces (25) consists of first defining

F k+1,0
2i+1 = F k

i , F k+1,0
2i = F k

i−1 ⊕ 1
2
F k

i , i ∈ Z , (40)

and then calculating recursively for 1 ≤ j ≤ m the intermediate averages

F k+1,j
i = F k+1,j−1

i ⊕ 1
2
F k+1,j−1

i−1 . (41)

The values at level k + 1 are

F k+1
i = F k+1,m−1

i , i ∈ Z . (42)
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At the k+1-the refinement level, a metric piecewise-linear SVF, F [k+1](t), is constructed

in analogy to (26),

F [k+1](t) = F k+1
i ⊕λ(t) F

k+1
i+1 , i2−(k+1) ≤ t ≤ (i+ 1)2−(k+1), i ∈ Z

where λ(t) = (i+ 1) − t2k+1.

The following claims are proved in [10].

Theorem 5.3. The sequence {F [k](·)}k∈Z+
converges uniformly to a set-valued function

F∞(·). If L∞ = sup{haus(F 0
α, F

0
α+1) : α ∈ Z}, then F∞ is Lipschitz continuous with

Lipschitz constant L∞.

Theorem 5.4. Let the set-valued function F (·) : R → Kn be Lipschitz continuous with a

Lipschitz constant L, let the initial sets be given by F 0
i = F ( i

N
), i ∈ Z , and let F∞(·) be

as in Theorem 5.3. Then

max
t

haus(F∞(Nt), F (t)) ≤ (7 +m)L

2N
(43)

Remark 5.5. The estimate in (43) can be modified to O(N−α) for F ∈ Hα.

Theorem 5.4 guarantees that F∞(N ·) approximates F (·), also if F has non-convex

images. Thus the subdivision defined by (40)-(42) is not convexifying, in contrast to the

subdivision based on Minkowski averages.

Remark 5.6. Theorem 4.4 and Corollary 4.5 in [10] should be corrected, replacing F k(t)

and F∞(t) there by F k(t/h) and F∞(t/h) respectively.

5.4. Metric Bernstein approximation. For f a real-valued function, the value BN (f, t)

can be calculated recursively by using the de Casteljau algorithm, in terms of repeated

binary averages [14]. The algorithm is based on the recurrence relation

Ci,N (t) = (1 − t)Ci,N−1(t) + t Ci−1,N−1(t), (44)

where Ci,N (t) =
(
N
i

)
ti(1 − t)N−i are the basic Bernstein polynomials.

For t ∈ [0, 1], BN (f, t) in (16) can be presented by a repeated application of (44) as

BN (f, t) =

N−k∑

i=0

(
N − k

i

)
ti(1 − t)N−k−ifk

i , k = 0, 1, . . . , N, (45)

with the values fk
i given recursively by

fk
i = (1 − t)fk−1

i + t fk−1
i+1 , i = 0, 1, . . . , N − k, k = 1, . . . , N, (46)

and with f0
i = f(i/N), i = 0, 1, . . . , N. Obviously BN (f, t) = fN

0 .

For a SVF F (·) this algorithm in terms of repeated metric averages of compact sets

is: Starting with F 0
i = F ( i

N
), i = 0, 1, . . . , N, and a fixed t ∈ [0, 1], calculate

F k
i = F k−1

i ⊕ 1−t F
k−1
i+1 , i = 0, 1, . . . , N − k, k = 1, . . . , N, (47)

and define

BN (F, t) = FN
0 . (48)

This is a procedural definition of BN (F, t).
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It is not known whether BN (F, ·) converges to F (·) for F with general compact images

in Rn, except for the case of set-valued functions with images in R all of the same topology

[13]. The proof of the convergence relies on a measure of minimal separation between the

components of a compact set A ⊂ R. If A consists of a number of disjoint ordered

intervals (some possibly with an empty interior): A =
⋃J

j=1Aj with aj < aj+1 for any

aj ∈ Aj and aj+1 ∈ Aj+1, j = 1, . . . , J − 1., the measure of minimal separation between

the components of A is defined by

s(A) = inf
l,j∈{1,...,J}, l 6=j

{dist(a,Aj) : a ∈ Al} (49)

Theorem 5.7. Let the set-valued function F : [0, 1] → K1 be Lipschitz continuous, such

that for each t, F (t) =
⋃J

j=1 Fj(t), where {Fj(t)} are disjoint ordered intervals such that

s∗ = inf0≤t≤1 s(F (t)) > 0. Then for N large enough

haus(BN (F, t), F (t)) ≤ C̃/
√
N, t ∈ [0, 1]. (50)

In conclusion, the Schoenberg metric operators defined in section 5 in two ways are

approximating operators for SVFs with general compact images, while the Schoenberg

operators defined in terms of Minkowski averages are approximating only when applied

to SVFs with convex images. Yet, the question whether the metric Bernstein operators

defined in terms of the de Casteljau algorithm are approximating, is open.

In our future work we intend to adapt approximating operators to SVFs extending the

metric average to more than two sets. With such an operation on sets, the representation

of the operators in terms of repeated binary averages is not needed anymore. It seems that

in this new adaptation many approximating operators for real-valued functions, including

the Bernstein operators, become approximating operators for SVFs, yet their evaluation

may be much more complicated [12].

Acknowledgements. The authors acknowledge the support of the Israel Science

Foundation – Center of Excellence Program, the Hermann Minkowski Center for Geom-

etry, and the Internal Research Foundation at Tel-Aviv University.

References

[1] Z. Artstein, Piecewise linear approximations of set-valued maps, Journal of Approx. The-

ory 56 (1989), 41–47.

[2] R. Baier, Mengenwertige Integration und die diskrete Approximation erreichbarer Mengen,

Bayreuth. Math. Schr. 50, 1995.

[3] R. Baier, N. Dyn and E. Farkhi, Metric averages of one dimensional compact sets, in:

Approximation Theory X, C. Chui, L. L. Schumaker and J. Stoeckler (eds.), Vanderbilt

Univ. Press, Nashville, TN, 2002, 9–22.

[4] C. de Boor, A Practical Guide to Splines, Springer Verlag, New York, 1978.

[5] J. W. S. Cassels, Measures of the non-convexity of sets and the Shapley–Folkman–Starr

theorem, Math. Proc. Camb. Phil. Soc. (1975), 78, 433–436.

[6] R. DeVore and G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.

[7] T. Donchev and E. Farkhi, Moduli of smoothness of vector-valued functions of a real

variable and applications, Numer. Funct. Anal. Optimiz. 11 (1990), 497–509.



14 N. DYN AND E. FARKHI

[8] N. Dyn, Subdivision schemes in computer-aided geometric design, in: Advances in Numer-

ical Analysis, Vol. II, Wavelets, Subdivision Algorithms and Radial Basis Functions, W.

Light (ed.), Clarendon Press, Oxford, 1992, 36–104.

[9] N. Dyn and E. Farkhi, Spline subdivision schemes for convex compact sets, Journal of

Comput. Appl. Mathematics 119 (2000), 133–144.

[10] N. Dyn and E. Farkhi, Spline subdivision schemes for compact sets with metric aver-

ages, in: Trends in Approximation Theory, K. Kopotun, T. Lyche and M. Neamtu (eds.),

Vanderbilt Univ. Press, Nashville, TN, 2001, 95–104.

[11] N. Dyn and E. Farkhi, Set-valued approximations with Minkowski averages—convergence

and convexification rates, Numer. Funct. Anal. Appl. 25 (2004), 363–377.

[12] N. Dyn, E. Farkhi and A. Mokhov, Approximations of set-valued functions by metric linear

operators, preprint.

[13] N. Dyn and A. Mokhov, Approximations of set-valued functions based on the metric av-

erage, submitted.

[14] H. Prautzsch, W. Boehm and M. Paluszny, Bezier and B-Spline Techniques, Springer,

2002.

[15] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[16] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press,

Cambridge, 1993.

[17] R. Starr, Quasi-equilibria in markets with non-convex preferences, Econometrica 37 (1969),

25–38.

[18] R. Vitale, Approximation of convex set-valued functions, J. Approximation Theory 26

(1979), 301–316.

[19] J. Wallner and N. Dyn, Convergence and C
1 analysis of subdividision schemes on mani-

folds by proximity, to appear in CAGD.


