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1. Introduction

Subdivision is a powerful tool for the fast construction of smooth curves and surfaces from
a set of control points by means of iterative refinements. In this paper, we consider subdivision
schemes for curves. A univariate binary uniform stationary subdivision scheme defines recursively
new sets of points P k = {pk

j : j ∈ Z} at level k > 0 from a given set of control points at level zero
P 0 = {p0

j : j ∈ Z}, formally by

P k+1 = SP k, k = 0, 1, · · · .

A point of P k is defined by a finite linear combination of points of P k−1 with two different rules,

pk+1
j =

∑

n∈Z
aj−2npk

n, k ∈ Z+, j ∈ Z.

Non-stationary subdivision schemes consist of recursive refinements of an initial sparse sequence
with the use of rules that may vary from level to level but are the same everywhere on the same
level. Therefore, in the binary case, starting with the control points P 0 = {p0

n : n ∈ Z}, we define
new sets of points P k = {pk

n : n ∈ Z} generated by the relation

pk+1
j =

∑

n∈Z
a

[k]
j−2npk

n, k ∈ Z+, j ∈ Z. (1.1)

It is common to assume that for each level k, only a finite number of coefficients a
[k]
n ∈ R are non-

zero so that changes in a control point affect only its local neighborhood. This property clearly
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facilitates the practical implementation of (1.1). A subdivision scheme is said to be stationary
when the masks a

[k]
n are independent of the levels; then we use the notation an := a

[k]
n . Non-

stationary subdivision schemes are useful because they can provide design flexibility and the mask
can be adapted to the geometrical configuration of the given data. Non-stationary subdivision
schemes are studied in [2, 8, 10, 18], while a general treatment of stationary schemes can be found
in [1, 5, 6, 7, 9].

The analysis of a subdivision scheme can be reduced to the case of initial control points in R
since each component of the curve is a scalar function generated by the same subdivision scheme.
Therefore, starting with values f0 = {f0

n ∈ R : n ∈ Z}, we consider fk = {fk
n ∈ R : n ∈ Z}

generated by the relation

fk+1
j =

∑

n∈Z
a

[k]
j−2nfk

n , k ∈ Z+.

Definition 1.1. A binary subdivision scheme is said to be Cν if for the initial data δ = {f0
n =

δn,0 : n ∈ Z}, there exists a limit function φ0 ∈ Cν(R), φ0 6≡ 0, satisfying

lim
k→∞

sup
n∈Z

|fk
n − φ0(2−kn)| = 0. (1.2)

Natural questions in the analysis of subdivision schemes are the conditions for convergence and
the conditions for the limit functions to be Cν . In particular, in this study, we are interested in
the class of interpolatory subdivision schemes which refine data by inserting values corresponding
to intermediate points, using linear combinations of neighboring points. The general form of their
refinement rules is as follows:

fk+1
2j = fk

j ,

fk+1
2j+1 =

∑

n∈Z
a

[k]
2n+1f

k
j−n, j ∈ Z, k ∈ Z+.

Examples of a such stationary schemes are the four-point scheme by Dyn, Gregory, and Levin
([7]) and the Deslauriers-Dubuc schemes ([6]), where finer level points are determined by local
polynomial interpolation of the coarse level points. When the finer level points are determined
by 2m-point interpolation from a space of exponential polynomials the resulting scheme is non-
stationary, and have smoothness properties as the 2m-point Deslauriers-Dubuc scheme [10].

An analysis of the smoothness of non-stationary subdivision schemes is discussed in [8], however,
the conditions given in [8] are too strong. Thus, the first objective of this paper is to provide a
new tool for the regularity analysis, improving the condition in [8]. It can be applied to a wide
class of non-stationary subdivision schemes, interpolatory and non-interpolatory. Further, the
results can be used directly for the smoothness analysis of non-stationary wavelet systems, which
is one of the important issues in wavelet construction. Second, in this paper, we study a new
class of non-stationary interpolatory subdivision schemes, where the value at the inserted point
is obtained by radial basis function (RBF) interpolation to data at 2m points symmetric to the
inserted one. Among the many possible radial basis functions, we employ the Gaussian function
G(x) = e−|x|2/λ2

with λ as a shape parameter. We show that the resulting 2m-point subdivision
scheme converges and has the smoothness CL+µ with L ∈ Z+ and µ ∈ (0, 1), where L is the
integer smoothness order of the 2m-point Deslauiers-Dubuc scheme. The proof of these results
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are based on the new sufficient condition for smoothness of non-stationary schemes. Moreover,
we will see that the scheme itself has its own advantages in view of approximation.

The paper is organized as follows: In section 2, we present known conditions for the convergence
and smoothness of non-stationary schemes, and derive new sufficient conditions for the smoothness
of such schemes. In section 3, along with the basic setting of RBF interpolation, we present a
new family of interpolatory subdivision schemes based on Gaussian interpolation. Next, we show
using the results of section 2 that the new 2m-point schemes have the same integer smoothness
as the 2m-point Deslauriers-Dubuc interpolatory scheme. Finally, in section 4, we illustrate the
performance of the new interpolatory schemes by some numerical examples.

2. Sufficient Conditions for Smoothness of Non-stationary Schemes

In this section, we improve the results in [8] on the smoothness of non-stationary subdivision
schemes. Non-stationary subdivision schemes define recursively values fk := {fk

n : n ∈ Z} by
rules depending on the level k:

fk+1
j =

∑

n∈Z
a

[k]
j−2nfk

n , k ∈ Z+, j ∈ Z, (2.1)

where the set of coefficients a[k] := {a[k]
n } is termed the mask of the rule at level k. We denote this

rule by Sa[k] and the corresponding non-stationary scheme by {Sa[k]}. To simplify the presentation
of a subdivision scheme and its analysis, it is convenient to assign to each rule, defined by a mask
a[k] = {a[k]

n }, the Laurent polynomial

a[k](z) :=
∑

n∈Z
a[k]

n zn.

Assume here that for each level k, supp(a[k]) ⊂ [−N,N ] for some integer N > 0. This implies that
the Laurent polynomials a[k](z) have a finite degree. A stationary uniform subdivision scheme is
a scheme for which a

[k]
n = an for all k ∈ Z+. We denote the rule at each level by Sa and have the

formal relation fk = Sk
af0. The limit function of a C0 stationary scheme is denoted by S∞a f0.

In particular, for the given data δ = {δ0,n : n ∈ Z} at level 0, with the Kronecker delta δn,0, the
basic limit function of {Sa} is defined by

φ = S∞a δ.

For a non-stationary subdivision scheme {Sa[k]}, we have the formal relation

fk = Sa[k−1] · · ·Sa[0]f0.

Further, for a convergent scheme {Sa[k]}, its basic limit function is the function

φ0 := lim
k→∞

Sa[k] · · ·Sa[0]δ.

It clearly follows from the linearity of (2.1) that for any initial data f0 = {f0
n : n ∈ Z} ∈ `∞(Z),

the limit function of {Sa[k]} can be written as

f∞ =
∑

n∈Z
f0

nφ0(· − n).

First we cite a basic result about the smoothness of stationary subdivision schemes.
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Theorem 2.1. (Smoothing factors in stationary schemes [5] ). Consider a stationary subdivision
scheme {Sa} with the Laurent polynomial

a(z) =
1
2
(1 + z)b(z),

where the subdivision scheme {Sb} corresponding to b(z) is Cγ. Then the scheme {Sa} is conver-
gent, and its basic limit function φ is in Cγ+1.

Now, for the analysis of the smoothness of non-stationary schemes, we adopt the notion of
asymptotically equivalent schemes [8]: Two (non-stationary) subdivision schemes {Sak

} and
{Sā[k]} are asymptotically equivalent, {Sak

} ≈ {Sā[k]}, if
∑

k∈Z+

‖Sa[k] − Sā[k]‖∞ < ∞, (2.2)

where

‖Sa[k]‖∞ = max

{∑

n∈Z
|a[k]

2n|,
∑

n∈Z
|a[k]

1+2n|
}

.

Theorem 2.2. [8] Let {Sa} be a C0 stationary subdivision scheme, and let {Sa[k]} ≈ {Sa} with
supp(a) = supp(a[k]) for k ∈ Z+. Then {Sa[k]} is C0, and if

‖Sa[k] − Sa‖∞ ≤ c2−k, k ∈ Z+,

then the basic limit function φ0 of {Sa[k]} is Hölder continuous with some exponent ν > 0.

An analysis of the smoothness of non-stationary subdivision schemes is also discussed in [8],
however, the conditions given in [8] are too strong. Thus, the purpose of this section is to provide
less restrictive sufficient conditions for the smoothness of non-stationary schemes. Furthermore,
we infer results on the smoothness of an interpolatory non-stationary scheme from the smoothness
of a stationary scheme, which is asymptotically equivalent to it.

Let a(z) be the Laurent polynomial associated with a stationary scheme {Sa} with the property
a(`)(−1) = 0 for ` = 0, · · · ,M − 1 and a(M)(−1) 6= 0. Accordingly, it can be written as

a(z) =
∑

n∈Z
anzn = 2−M (1 + z)Mb(z) (2.3)

with b(−1) 6= 0. When a scheme {Sa[k]} is asymptotically equivalent to {Sa}, by definition,
|a[k]

n − an| = o(1) as k tends to ∞. Hence, the Laurent polynomial a[k](z) associated with Sa[k]

has M -roots in the neighborhood z = −1 in the complex plane, and it can be written in the form
of

a[k](z) = b[k](z)
M∏

n=1

1
2
(1 + rk,nz), b[k](−1) = c + o(1), c 6= 0, (2.4)

with rk,n complex numbers such that rk,n → 1 as k tends to ∞. Moreover, since a(`)(−1) = 0 for
` = 0, · · · ,M−1 (see (2.3)), it is easy to see that D`a[k](−1) = o(1) as k →∞ where D` indicates
the differential operator of order `. In this study, we require D`a[k](−1) to satisfy the following
stronger condition:
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Condition A. A non-stationary subdivision scheme {Sa[k]} satisfies Condition A if the corre-
sponding Laurent polynomials {a[k](z)} are of the form (2.4) and if

|D`a[k](−1)| ≤ c2−(M−`)k, ` = 0, · · · ,M − 1, k ∈ Z+.

In what follows, we show that if

a[k](z) = c[k](z)
L∏

n=1

1
2
(1 + rk,nz)

and if {Sc[k]} is CN+µ with N ∈ Z+ and µ ∈ (0, 1), then {Sa[k]} with Laurent polynomials of the
form (2.4) satisfying Condition A has the smoothness CN+L+ν with ν ∈ (0, 1). First we show
that a factor (1+rkz) in the Laurent polynomials of a non-stationary scheme with |1−rk| ≤ c2−k

is a smoothing factor. For this, we cite:

Lemma 2.3. [8] Consider a non-stationary subdivision scheme {Sa[k]} with Laurent polynomials
of the form

a[k](z) =
1
2
(1 + rkz)b[k](z).

Let φa, φb and h are the basic limit functions of {Sa[k]}, {Sb[k]} and {S1+rkz} respectively. Then

φa =
∫

R
φb(· − t)h(t) dt,

For the following analysis, it is necessary to remark that the basic limit function h of {S1+rkz}
is bounded and satisfies the properties:

(a) supph = [0, 1), (2.5)

(b) h
(
(j + 2−1)2−k

)
= rkh(j2−k), k ∈ Z+, j = 0, · · · , 2k − 1;

see Example 2 in [8] for the details.

Lemma 2.4. Let φb and h be the basic limit functions of {Sb[k]} and {S1+rkz} repectively. Suppose
that

|1− rk| ≤ c2−k, k ≥ K ∈ Z+. (2.6)

For each k ∈ Z+, define the sequence of functions

Ik(x) =
∫ x

x−1
φb(t)hk(x− t) dt, (2.7)

where

hk(t) = h(j2−k), j2−k ≤ t < (j + 1)2−k, j = 0, · · · , 2k − 1. (2.8)

If φb is Hölder continuous with some exponent ν > 0, then Ik satisfies the following properties:
(a) For any k, ` ≥ K ∈ Z+ with ` > k,

|I ′`(x)− I ′k(x)| ≤ c2−νk (2.9)

(b) There exists δ0 > 0 such that for any δ < δ0.

|I ′k(x + δ)− I ′k(x)| ≤ cδµ, k ≥ K ∈ Z+,

for some µ ∈ (0, 1).
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Proof. (a) By (2.8), we have

I ′k(x) =
2k−1∑

j=0

h(j2−k)[φb(x− j2−k)− φb(x− (j + 1)2−k)] ∈ C(R), (2.10)

and after some calculations, we get

I ′k+1(x)− I ′k(x) =
2k−1∑

j=0

[h((j + 2−1)2−k)− h(j2−k)]

·[φb(x− (j + 2−1)2−k)− φb(x− (j + 1)2−k)].

Here, since φb is Hölder continuous with exponent ν > 0,

|φb(x− (j + 2−1)2−k)− φb(x− (j + 1)2−k)| ≤ c2−νk (2.11)

with a constant c > 0 independent of j and x. Thus, in view of (2.5), (2.6) and the boundedness
of h, we obtain the expression

|I ′k+1(x)− I ′k(x)| ≤ c2−νk
2k−1∑

j=0

|(rk − 1)h(j2−k)| ≤ c′2−νk. (2.12)

It clearly induces the required result of (a).

(b) For the given Hölder exponent ν > 0 and δ > 0, choose p = 1
ν and an integer τ > 0 such that

(2−4p)τ ≤ δ ≤ (2−2p)τ .

Note that from this inequality we can also obtain,

δ
1
2p ≤ 2−τ ≤ δ

1
4p (2.13)

Then, by the triangle inequality,

I ′k(x + δ)− I ′k(x)| ≤ |I ′k(x + δ)− I ′τ (x + δ)|+ |I ′τ (x + δ)− I ′τ (x)|+ |I ′τ (x)− I ′k(x)|. (2.14)

Assuming k > τ , we apply (2.9) and (2.13) to obtain

|I ′τ (x)− I ′k(x)| ≤ c2−τν ≤ cδ
ν
4p ≤ cδ

ν2

4 , (2.15)

which estimates the first and last terms on the right-hand side of (2.14). Next, recalling that
supph = [0, 1), the summation in (2.10) can be rewritten as follows (with k replaced by τ):

I ′τ (x) =
2τ∑

j=0

[h(j2−τ )− h((j − 1)2−τ )]φb(x− j2−τ ).

Therefore,

|I ′τ (x + δ)− I ′τ (x)| ≤
2τ∑

j=0

|h(j2−τ )− h((j − 1)2−τ )||φb(x + δ − j2−τ )− φb(x− j2−τ )|.

Here, h is bounded and φb is Hölder continuous with exponent ν > 0. Thus, due to (2.13) and
the fact that p = 1/ν, we get

|I ′τ (x + δ)− I ′τ (x)| ≤ c2τδν ≤ c2−τ ≤ cδ
ν
4 .
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Finally combining this bound with (2.14) and (2.15), we conclude that

|I ′k(x + δ)− I ′k(x)| ≤ cδ
ν2

4

Taking µ := ν2

4 , we finish the proof. ¤

Lemma 2.5. Consider a non-stationary subdivision scheme {Sa[k]} with Laurent polynomials of
the form

a[k](z) =
1
2
(1 + rkz)b[k](z).

Suppose that

|1− rk| ≤ c2−k, k ≥ K ∈ Z+, (2.16)

and that the scheme corresponding to {Sb[k]} is CL+ν with L ∈ Z+ and ν ∈ (0, 1). Then {Sa[k]}
is CL+1+µ for some µ ∈ (0, 1).

Proof. Due to Lemma 2.3, we find that

φa =
∫

R
φb(· − t)h(t) dt,

where φa, φb and h are the basic limit functions of {Sa[k]}, {Sb[k]} and {S1+rkz} respectively. Note
that h is bounded and supp{h} = [0, 1) [10]. It is sufficient to prove the lemma for ` = 0, since

D`φa =
∫

R
D`φb(· − t)h(t) dt.

To this end, invoking the definition of the function Ik in (2.7), we find that Ik(x) → φa(x)
uniformly as k → ∞. Further, according to Lemma 2.4 (a), {I ′k} is uniformly convergent, which
means that the limit of {I ′k} is continuous and that is φ′a. Using this fact, we can conclude from
Lemma 2.4 (b) that φ′a is Hölder continuous with exponent µ > 0. It completes the proof. ¤

We now show that Condition A on {Sa[k]} implies the condition (2.16) for all the factors in the
representation (2.4). To prove this we need the following two lemmas. Without loss of generality,
we rearrange the set rk,n in (2.4) such that

|1− rk,n| = max{|1− rk,`| : ` = n, · · · ,M}, n = 1, · · · ,M, (2.17)

that is, |1 − rk,n| ≥ |1 − rk,n+1|. The following lemma shows that if Condition A is satisfied,
|1− rk,n| ≤ c2−k. For this proof, we use the notation

{xk} ³ {yk}
for two sequences of non-zero reals, if there exist some constants c1, c2 > 0 such that c1 ≤
|xk y−1

k | ≤ c2 for all k.

Lemma 2.6. Suppose that Condition A holds for the scheme {Sa[k]}. Then

|1− rk,n| ≤ c2−k, k ≥ K ∈ Z+. (2.18)

Proof. Denote |1 − rk,1| =: ωk. Since |1 − rk,n| ≤ ωk for any n ≤ M , it is sufficient to show
that supk |2kωk| ≤ c for a constant c > 0. Now, suppose that supk |2kωk| = ∞, which means that
there exists a sequence {k`} such that

|2k`ωk`
| ≤ |2k`+1ωk`+1

| → ∞, as k` →∞. (2.19)
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Then, recalling |1−rk,n+1| ≤ |1−rk,n|, we will derive a contradiction by considering the following
two cases:
Case 1: {ωk`

} ³ {|1− rk`,n|}, for n = 1, · · · ,M .
In this case, it is clear from (2.4) that {ak`

(−1)} ³ {ωM
k`
}. By Condition A, |ak`

(−1)| ≤ c2−k`M ,
we get the bound |2k`ωk`

| ≤ c for any k`, in contradiction to (2.19).
Case 2: {ωk`

} ³ {|1− rk`,n|}, for n = 1, · · · , s < M .
That is, there exists a subsequence {kj} ⊂ {k`} such that for any n > s, |1 − rkj ,n|ω−1

kj
→ 0 as

kj →∞, i.e.,

|1− rkj ,n| = o(ωkj ), n > s. (2.20)

Then we use the lemma:

Lemma 2.7. Let

Fkj
(z) :=

M∏

n=1

1
2
(1 + rkj ,nz).

Under the condition of Case 2, we have

{F (M−s)
kj

(−1)} ³ {ωs
kj
} and |F (M−s−`)

kj
(−1)| = o(ωs+`

kj
), ∀` > 0.

Proof. For the given s < M , denote Is := {1, 2, · · · , s} and let Λs be the collection of all subsets
of {1, 2, · · · ,M} = IM with cardinality s, i.e.,

Λs := {I ⊂ IM : #I = s}.
Then,

F
(M−s)
kj

(−1) =


 ∏

n∈Is

(1− rkj ,n) +
∑

I∈Λs\Is

∏

n∈I

(1− rkj ,n)




(
1

2M
+ o(1)

)
. (2.21)

Since |1− rkj ,n| ≥ |1− rkj ,n+1|,{ ∏

n∈Is

|1− rkj ,n|
}
³ {ωs

kj
} and

∏

n∈I

|1− rkj ,n| = o(ωs
kj

).

Thus,
{F (M−s)

kj
(−1)} ³ {ωs

kj
}.

In a similar way, we can prove the relation |F (M−s−`)
kj

(−1)| = o(ωs+`
kj

) for all ` > 0. ¤
Now, we turn to the proof of Lemma 2.6 in Case 2. It follows from (2.4) that for some suitable

constants c` with ` = 0, · · · ,M − s, we have

a
(M−s)
kj

(−1) =
M−s∑

`=0

(
2m− s

`

)
b
(`)
kj

(−1)F (M−s−`)
kj

(−1) (2.22)

= bkj (−1)F (M−s)
kj

(−1) +
M−s∑

`=1

(
2m− s

`

)
b
(`)
kj

(−1)F (M−s−`)
kj

(−1).

Since bkj (−1) = c+o(1) with a constant c 6= 0, the identity (2.22) leads to {a(M−s)
kj

(−1)} ³ {ωs
kj
}

by Lemma 2.7. Also, from Condition A, |a(M−s)
kj

(−1)| ≤ c2−kjs, yielding |2kjωkj
| ≤ c for any kj ,

in a contradiction to (2.19). (Here c is a generic constant). ¤
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We are now ready to provide the main theorem of this section.

Theorem 2.8. (Smoothing factor in non-stationary subdivision schemes). Consider a non-
stationary subdivision scheme {Sa[k]} satisfying Condition A. If

a[k](z) =
1
2
(1 + rkz)c[k](z), k > K ∈ Z+,

where {Sc[k]} is of compact support and CL+ν with L ∈ Z+ and ν ∈ (0, 1), then {Sa[k]} is CL+1+µ

for some µ ∈ (0, 1).

Proof. From Lemma 2.6 and Lemma 2.5, the proof is immediate. ¤

For interpolatory schemes, we have the stronger result.

Theorem 2.9. Let {Sa[k]} be a non-stationary interpolatory subdivision scheme satisfying Condi-
tion A. Assume that {Sa[k]} is asymptotically equivalent to a stationary subdivision scheme {Sa}.
Then if {Sa} is CL+ν with L ∈ Z+ and ν ∈ (0, 1), then {Sa[k]} is CL+µ for some µ ∈ (0, 1).

Proof. Assume that {Sa} is CL+ν . Since Sa is interpolatory a(z) = 2−L(1 + z)Lc(z) with {Sc}
a Cν with ν ∈ (0, 1) ([5]). From the fact that {Sa} and {Sa[k]} are asymptotically equivalent, we
conclude that L < M , and we can write

a[k](z) =
L∏

n=1

1
2
(1 + rk,nz)c[k](z)

with {Sc[k]} symptotically equivalent to {Sc}. By [8], the scheme {Sc[k]} is Hölder continuous
with some positive exponent. From Condition A and Lemmas 2.5, 2.6, we conclude that {Sa[k]}
is CL+µ with µ ∈ (0, 1). ¤

In what follows, we use the results of this section to analyze a new family of interpolatory
schemes.

3. Subdivision Schemes based on Gaussian-interpolation and their Analysis

3.1 Construction

Radial basis function (RBF) interpolation is a very strong and convenient tool for interpolation
in the multivariate setting ([4, 12, 13, 15]). In this section, we apply RBF interpolation in
the univariate setting to construct interpolatory subdivision schemes. Given data (xj , f(xj)),
j = 1, · · · , n, where X := {x1, · · · , xN} is a subset of R and f : R→ R, we consider interpolants
to the data of the form

Rf,X(x) :=
N∑

n=1

αnG(x− xn), (3.1)

where G is the Gaussian function
G(x) = e−|x|

2/λ2
,

with λ a parameter (λ can serve as a shape parameter in the resulting subdivision scheme). The
coefficients α1, · · · , αN are determined by the interpolation condition

Rf,X(xj) = f(xj), j = 1, · · · , N. (3.2)
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It is well-known ([13]) that the linear system (3.2) is non-singular for any choice of X consisting
of distint points. The interpolant Rf,X in (3.1) has a Lagrange-type representation:

Rf,X(x) :=
N∑

n=1

un(x)f(xn), un(x`) = δn,`, (3.3)

where un are the Lagrange functions from the space GX := span{G(· − x1), · · · , G(· − xN )}. The
coefficients un(x), n = 1, · · · , N , can be obtained as the solution of the linear system

N∑

n=1

un(x)G(xn − x`) = G(x− x`), ` = 1, · · · , N. (3.4)

We study interpolatory subdivision schemes based on interpolation at symmetric 2m-points
to the inserted point. By (3.4) and since G(x) = G(−x), the subdivision schemes considered
are non-stationary and uniform in the sense that their refinement rules depend on the level of
refinement but are the same everywhere on the same level. Let

Xk,j := {(j + n)2−k : n = −m + 1, · · · ,m},

which is the local set of symmetric 2m-points around (j + 2−1)2−k. Then, the value fk+1
2j+1 is

defined by the Gaussian-based interpolation to the data {(j +n)2−k, fk
j+n) : n = −m+1, · · · ,m},

denoted by Rk,j . Thus,

fk+1
2j+1 = Rk,j(2−k(j + 2−1))

=
m∑

n=−m+1

u[k,j]
n (2−k(j + 2−1))fk((j + n)2−k)

with the Lagrange function u
[k,j]
n as in (3.4). Here and in the sequel, we use the notation

X0 := X0,0 := {−m + 1, · · · ,m}. (3.5)

It is easy to verify from (3.4) that the u
[k,j]
n (2−k(j + 2−1)) with n ∈ X0 are independent of the

location j. Thus we can define

a
[k]
1−2n := u[k,j]

n (2−k(j + 2−1)), j ∈ Z, (3.6)

and the mask at level k of the 2m-point Gaussian-based interpolatory subdivision scheme by

a
[k]
1−2n := u[k,0]

n (2−k−1), a
[k]
2n = δn,0, n ∈ X0, k ∈ Z+. (3.7)

Note that by construction,
∑

n∈X0

a
[k]
1−2nG((n− `)2−k) = G((2−1 − `)2−k), ` ∈ X0. (3.8)

We denote the non-stationary scheme with mask defined in (3.7) by {SG
a[k]}. To study the con-

vergence and smoothness of {SG
a[k]}, we use the results of section 2 and compare {SG

a[k]} with the
2m-point Deslauriers-Dubuc interpolatory subdivision scheme, which we denote by {Sa}.
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The 2m-point Deslauriers-Dubuc interpolatory subdivision scheme defines the values at the
inserted point by using polynomial interpolation of degree 2m − 1 through the symmetric 2m-
points. Define the Lagrange polynomials on the set X0 in (3.5) by

Ln(x) =
∏

` 6=n
`∈X0

x− `

n− `
, n ∈ X0. (3.9)

It is obvious that Ln(`) = δn,` with ` ∈ X0. Then, the mask of the 2m-point Deslauriers-Dubuc
interpolatory subdivision scheme is given by

a2n = δ0,n, a1−2n := Ln(2−1), n ∈ X0. (3.10)

One should keep in mind that Sa reproduces polynomials of degree ≤ 2m− 1. In particular, for
any k ∈ Z+,

p(2−k−1) =
∑

n∈X0

a1−2np(n2−k), p ∈ Π<2m. (3.11)

where Π<n stands for the space consisting of all univariate algebraic polynomials of degree less
than n.

3.2 Analysis of Convergence

The goal of this section is to prove that the 2m-point Gaussian-based interpolatory subdivi-
sion scheme {SG

a[k]} is asymptotically equivalent to the 2m-point Deslauriers-Dubuc interpolatory
scheme {Sa}, which implies that {SG

a[k]} is convergent ([8]).

Theorem 3.1. Let {a[k]
n } be the mask at level k of {SG

a[k]}, and let {an} be the mask of {Sa}.
Then, there exists a constant c2m > 0 such that

max
n∈Z

|a[k]
n − an| ≤ c2m2−2k k ≥ K ∈ Z+.

Proof. Since a2n = a
[k]
2n = δn,0, we need to estimate only the difference a1−2n − a

[k]
1−2n. Recall

from (3.7) that a
[k]
1−2n = u

[k,0]
n (2−k−1), n ∈ X0, with u

[k,0]
n the Lagrange function of the Gaussian-

based interpolation on Xk,0 = {`2−k : ` ∈ X0}, satisfying

u[k,0]
n (2−k`) = δn,`, ` ∈ X0. (3.12)

Further, since u
[k,0]
n (x) ∈ span{G(· − `2−k) : ` ∈ X0}, there exist constants α

[k]
` , ` ∈ X0, such that

uk,n(x) := u[k,0]
n (2−kx) =

∑

`∈X0

α
[k]
` G(2−k(x− `)), (3.13)

yielding uk,n(`) = δn,` for any ` ∈ X0. Thus, uk,n(x) can be considered as the RBF interpolant to
the data {δn,` : ` ∈ X0} on X0 by G(2−k·). On the other hand, the mask of Deslauriers-Dubuc
scheme is given by a1−2n = Ln(2−1), where the function Ln(x) is also a polynomial interpolant
to the data {δn,` : ` ∈ X0} on X0, which means

uk,n(`) = Ln(`) = δn,`, ` ∈ X0.

Very recently, it has been proved in [16] that the Gaussian interpolant of the form uk,n(x) converges
uniformly to the polynomial interpolant Ln(x) as k →∞, with the convergence rate O(2−2k). In
particular,

|uk,n(2−1)− Ln(2−1)| = O(2−2k).
11



Thus, since a
[k]
1−2n = uk,n(2−1) and a1−2n = Ln(2−1), we arrive at the required conclusion. ¤

Corollary 3.2. The scheme {SG
a[k]} is convergent and is C0.

3.3 Analysis of Smoothness

First, we give a simple proof of C1 smoothness based on a result from [8]:

Result A: The scheme {Sa[k]} is in Cγ if a scheme {Sa} is in Cγ and
∑

k∈Z+

2γk‖Sa − Sa[k]‖∞ < ∞. (3.14)

Theorem 3.3. Let {SG
a[k]} be the 2m-point Gaussian-based interpolatory subdivision scheme.

Then, if m ≥ 2, {SG
a[k]} is at least C1.

Proof. Let Sa be the 2m-point Deslauriers-Dubuc interpolatory scheme, it is clear from Theorem
3.1 that ∑

k∈Z+

2k‖Sa − SG
a[k]‖∞ < ∞.

Since Sa is at least C1 for m ≥ 2, the C1-smoothenss of {SG
a[k]} is an immediate consequence of

Result A. ¤

Next, we show that if the 2m-point Deslauriers-Dubuc interpolatory scheme {Sa} is CL+ν

with L ∈ Z+ and ν ∈ (0, 1), then the non-stationary 2m-point Gaussian-based interpolatory
subdivision scheme {SG

a[k]} is CL+µ for some µ ∈ (0, 1). It implies that both 2m-point schemes
have the same integer smoothness as the 2m-point Deslauriers-Dubuc interpolatory scheme. This
is proved by Theorem 2.9 and by verifying first that {SG

a[k]} satisfies Condition A of section 2.
Our proof relies on the following property of the Gaussian function [11]

det
(
G(`+n)(0)

) 6= 0, `, n = 0, · · · , 2m− 1 (3.15)

and on the three auxiliary lemmas.

Lemma 3.4. Let TG(`) be the Taylor polynomial of G(`) of degree 2m− 1 around zero, i.e.,

TG(`)(x) :=
2m−1∑

n=0

xn

n!
G(`+n)(0). (3.16)

Then, TG(`), ` = 0, · · · , 2m− 1, are linearly independent.

Proof. It is sufficient to prove that for any distinct points t0, · · · , t2m−1, the 2m × 2m matrix
T with entries

T(`, n) = TG(`)(tn), `, n = 0, · · · , 2m− 1
is non-singular. We see that the matrix T can be decomposed as

T = B ·V,

where
B(`, n) = G(`+n)(0) and V(`, n) = t`n/`!.

Since both matrices B and V are invertible, the non-singularity of T is immediate. ¤
12



To prove the next lemma, we recall that the (n − 1)-th order divided difference of a function
f ∈ Cn−1 at the points (−m + 1), · · · , (−m + n) is given by

(n− 1)!f [−m + 1, · · · ,−m + n] =
n−1∑

α=1

cn,αf(−m + α) = f (n−1)(ξ) (3.17)

with ξ ∈ [−m + 1,−m + n] and where

cn,α := (n− 1)!
n∏

j 6=α
j=1

1
α− j

, α = 1, · · · , n (3.18)

Lemma 3.5. Let Pk be the 2m× 2m matrix with entries

Pk(`, n) := Pk,x(`, n) := G(`)(x− (n−m + 1)2−k), (3.19)

where `, n = 0, · · · , 2m− 1. Then there exist η > 0 and K ∈ Z+ such that for any x ∈ [−η, η],

detPk = O(2−km(2m−1)) and ‖P−1
k ‖∞ = O(2(2m−1)k), k ≥ K.

Here ‖A‖∞ indicates the ∞-norm of the matrix A.

Proof. Denote by pn, n = 1, · · · , 2m, be the column vectors of the matrix Pk. Since the
determinant of a matrix is invariant under elementary column operations, we perform the following
column operations:

p′n := pn +
n−1∑

α=1

cn,αpα, n = 2m, 2m− 1, · · · , 1,

with cn,α defined as in (3.17). Defining P′
k to be the matrix with columns (p′1, · · · ,p′2m), we

observe that det(Pk) = det(P′
k). Further, applying (3.17), we get

P′
k(`, n) = 2−nkG(`+n)(x− ξ`,n2−k), (3.20)

with 0 ≤ `, n ≤ 2m−1 and ξ`,n ∈ [−m+1,−m+1+n]. Thus, from (3.15), we can deduce that there
exist η > 0 and K ∈ Z+ such that detPk = O(2−km(2m−1)) 6= 0 for any x ∈ [−η, η] and k ≥ K.
Further, a direct calculation from (3.20) easily leads to the estimate ‖P−1

k ‖∞ = O(2(2m−1)k) as
k →∞. ¤

For any β = 0, · · · , 2m− 1, define the function

Φk,β(x) :=
∑

n∈X0

g[k]
β

(n)G(x− 2−kn) (3.21)

so that the coefficient vector g[k]
β

:= (g[k]
β

(n) : n ∈ X0) is obtained by solving the linear system

Φ(`)
k,β(2−k−1) = δβ,`(−1)``! (3.22)

which can be written in the matrix form

Pk · g[k]
β

= c.

where Pk = Pk,2−k−1 with Pk,x defined in (3.19) and c(`) := δβ,`(−1)``! with ` = 0, · · · , 2m− 1.
The following estimates are central to the proof that {SG

a[k]} satisfies Conditon A.

13



Lemma 3.6. For all β = 0, · · · , 2m− 1,

(i) ‖g
β
‖∞ = O(2k(2m−1)) ask →∞, (3.23)

(ii) ‖Φ(`)
k,β(2−k−1)| ≤ c, ` = 2m, · · · , 4m− 2.

Proof. Since g[k]
β

= P−1
k · c, the estimate ‖g[k]

β
‖∞ = O(2k(2m−1)) follows immediately from

Lemma 3.5. Next, recall that TG(`) indicates the Taylor polynomial of degree 2m − 1 of G(`)

around zero with ` = 2m, · · · , 4m − 2. By Lemma 3.4, there exist some suitable constants
γ

`,0
, · · · , cγ

`,2m−1
such that TG(`) =:

∑2m−1
α=0 γ

`,α
TG(α) . Thus, we get from (3.21),

Φ(`)
k,β(2−k−1) =

∑

n∈X0

g[k]
β

(n)G(`)(2−k−1 − n2−k)

=
∑

n∈X0

g[k]
β

(n)
(
TG(`)(2−k−1 − n2−k) + O(2−2mk)

)

=
2m−1∑

α=0

γ
`,α

∑

n∈X0

g[k]
β

(n)
[
TG(α)(2−k−1 − n2−k) + O(2−2mk)

]
.

Note that

TG(α)(2−k−1 − n2−k) = G(α)(2−k−1 − n2−k) + O(2−2mk), α = 0, · · · , 2m− 1.

Applying this identity to (3.21), we get in view of (3.23)
∣∣ ∑

n∈X0

g[k]
β

(n)TG(`)(2−k−1 − n2−k)
∣∣ ≤ ∣∣Φ(`)

k,β(2−k−1)
∣∣ + O(2−k)

≤ `! + O(2−k),

as a consequence of (3.22). Also, by (i), the property |Φ(`)
k,β(2−k−1)| ≤ c for ` = 2m, · · · , 4m− 2 is

obvious. ¤

Now, we are ready to prove that {SG
a[k]} satisfies Condition A with M = 2m.

Theorem 3.7. Let a[k](z) =
∑

n∈Z a
[k]
n zn be the Laurent polynomial at level k associated with

{SG
a[k]}. Then, for any β = 0, · · · , 2m− 1, we have

|Dβa[k](−1)| ≤ c2−k(2m−β), k ≥ K

for some K ∈ Z+.

Proof. Since

Dβa[k](−1) =
β∑

`=0

γ
β,`

∑

n∈Z
a[k]

n n`(−1)n

for some constants γ
β,`

, ` = 0, · · · , β, it is sufficient to prove that for any β = 0, · · · , 2m− 1,

sβ :=
∑

n∈Z
(−1)nnβa[k]

n = O(2−k(2m−β)), k →∞,

in order to conclude Condition A. Recalling that a
[k]
2n = δn,0, observe that

2−β(k+1)sβ = δβ,0 −
∑

n∈X0

a
[k]
1−2n

(
(−n + 2−1)2−k

)β
. (3.24)

14



Invoking (3.8) and (3.22), we get

δβ,0 = Φk,β(2−k−1) =
∑

n∈X0

a
[k]
1−2nΦk,β(n2−k). (3.25)

This together with (3.24) lead to

2−β(k+1)sβ =
∑

n∈X0

a
[k]
1−2n

(
Φk,β(n2−k)− ((−n + 2−1)2−k)β

)
. (3.26)

In the following, we replace Φk,β(n2−k) by its Taylor polynomial of degree 4m − 2 plus the
remainder term. The Taylor expansion of Φk,β around 2−k−1 of degree 4m− 2 is

Φk,β(n2−k) =
4m−2∑

`=0

(
(n− 2−1)2−k

)` Φ
(`)
k,β(2−k−1)

`!
+ Rk,β,m (3.27)

where the remainder Rk,β,m is given by

RΦβ ,4m−1 =
(
(n− 2−1)2−k

)4m−1 Φ(4m−1)
k,β (ξ2−k)

(4m− 1)!

with ξ a point between 2−1 and n. Noting that by (3.22)

2m−1∑

`=0

(
(n− 2−1)2−k

)` Φ
(`)
k,β(2−k−1)

`!
=

(
(−n + 2−1)2−k

)β

,

we get from (3.25) and (3.26)

2−β(k+1)sβ =
∑

n∈X0

a
[k]
1−2n

( 4m−2∑

`=2m

(
(n− 2−1)2−k

)` Φ
(`)
k,β(2−k−1)

`!
+ Rk,β,m

)
.

By Lemma 3.6, |Φ(`)
k,β(2−k−1)| ≤ c for any ` = 2m, · · · , 4m− 2. Consequently,

∣∣∣
∑

n∈Z
(−1)nnβa[k]

n

∣∣∣ ≤ c2−k(2m−β)
(
1 + 2−k(2m−1)‖Φ(4m−1)

k,β ‖L∞[−η,η]

)
. (3.28)

Since ‖g
β
‖∞ = O(2k(2m−1)) and G(4m−1) is bounded,

2−k(2m−1)‖Φ(4m−1)
β ‖L∞[−η,η] ≤ c,

which completes the proof of theorem. ¤

We are now ready to state and prove the main theorem of this section.

Theorem 3.8. If the 2m-point Deslauriers-Dubuc interpolatory scheme {Sa} is CL+ν with L ∈
Z+ and ν ∈ (0, 1), then the non-stationary 2m-point Gaussian-based interpolatory subdivision
scheme {SG

a[k]} is CL+µ for some µ ∈ (0, 1).

Proof. Due to Theorem 3.1, both 2m-point schemes {SG
a[k]} and {Sa} are asymptotically equiv-

alent. As a consequence of Theorem 3.7 and Theorem 2.9, this theorem is immediate. ¤

Corollary 3.9. The non-stationary 2m-point Gaussian-based interpolatory subdivision scheme
has the same integer smoothness as the 2m-point Deslauriers-Dubuc interpolatory scheme.
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FIGURE 4.1: Interpolating curves generated by the 4-point Gaussian-based in-
terpolation with λ−1 = .5, (solid) and the 4-point DD scheme (dotted).

Remark: In this section, the Gaussian function has been used. We believe that the same results
can be obtained by using other smooth radial basis functions such as multiquadrics.

4. Examples

In this section, we illustrate the performance of the 4-point Gaussian-based interpolatory sub-
division schemes with some numerical examples. Recall that the Gaussian function is of the
form

G(x) = e−|x|
2/λ2

, λ > 0.

Here λ serves as a shape parameter. Having tried several alternatives for the parameter λ, we
found out that good choices of λ are in the range 0 < λ−1 ≤ 1.0. The solid curves in Figure 4.1
are generated by a 4-point Gaussian-based interpolatory subdivision scheme using the parameter
λ−1 = .5. The dotted curves in Figure 4.1 are generated by the 4-point Deslauriers-Dubuc scheme.
It is known that the 4-point Deslauriers-Dubuc scheme has the smoothness C1. Hence, due to
Theorem 3.8, the 4-point Gaussian-based interpolatory subdivision scheme is also C1. On the
other hand, the 4-point Gaussian-based scheme is a first step towards the design and analysis of
bivariate Gaussian-based schemes extending the interpolatory butterfly scheme. However, this
requires much heavier analysis, especially at extraordinary points.

In addition, the Gaussian-based schemes have an advantage over polynomial based schemes,
especially in signal processing. The following example shows an application of the 4-point Gaussian
based scheme as compared to the 4-point Deslauriers-Dubuc scheme. We approximate oscillatory
signals of the form [3]

f(t) = cos(2πFt + β sin(2πFst)).

We choose F = 0.5, β = 5.75, Fs = 0.0062 and use 311 data samples in the domain [0, 30]
as initial data for the subdivision. The solid curve in Figure 4.2 indicates the approximation
errors by the 4-point Gaussian-based schemes as a function of λ. The dotted line is the error by
the Deslauriers-Dubuc 4-point scheme. We find that by choosing a suitable parameter λ in the
Gaussian g(x) := e−x2/λ2

(around λ = 2π in this example), the 4-point Gaussian-based scheme
provides much better accuracy than the polynomial based 4-point scheme. For this reason, a
future project would be to find an algorithm for choosing the appropriate λ for a given signal.
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