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Abstract

The paper is an updated survey of our work on the approximation of univariate set-
valued functions by samples-based linear approximation operators, beyond the results
reported in our previous overview. Our approach is to adapt operators for real-valued
functions to set-valued functions, by replacing operations between numbers by oper-
ations between sets. For set-valued functions with compact convex images we use
Minkowski convex combinations of sets, while for those with general compact images
metric averages and metric linear combinations of sets are used. We obtain general
approximation results and apply them to Bernstein polynomial operators, Schoenberg
spline operators and polynomial interpolation operators.

Key words: compact sets, set-valued functions, linear approximation operators, Minkowski
sum of sets, metric average, metric linear combinations

1 Introduction

In this paper we present the progress of our work on the approximation of univariate set-
valued functions (multifunctions) by linear approximation operators, beyond the results re-
ported in [11]. We adapt linear samples-based approximation operators for real-valued func-
tions to set-valued functions (SVFs) with compact images in R

n, by replacing operations
between numbers by operations between sets. For this purpose, the well-known Minkowski
sum of sets is a proper substitute for addition of numbers, only in case of SVFs with convex
images. For such multifunctions, the representation of convex compact sets in terms of their
support functions allows to reduce approximation of SVFs by linear positive operators to
the approximation of the corresponding support functions. The application of known ap-
proximation results from the case of real-valued functions to the case of SVFs with convex
compact images is studied in [19, 6, 2, 8]. The positivity of the operators is necessary for
the approximants to be well defined.

It was noticed by Vitale [19] that positive approximation operators with Minkowski sums
of sets fail to approximate multifunctions with general compact images (not necessarily
convex). Vitale also observed that the images of the Bernstein approximants of increasing
degree tend to convex sets. Similarly, limits of spline subdivision schemes are convex-valued
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SVFs for any initial data [10]. The obvious conclusion is that operators with Minkowski sums
of sets are not appropriate for the approximation of SVFs with general compact images.

In [1] a binary operation between sets, the ”metric average”, is introduced, and the piece-
wise linear interpolant based on it is shown to approximate continuous SVFs with general
images. The use of this operation in the adaptation of known positive approximation oper-
ators to SVFs, requires a representation of the approximation operators by repeated binary
averages. Such a representation exists for any samples-based linear operator, which repro-
duces constants, but is not unique [20]. This non-uniqueness leads to different operators
for SVFs which are not necessarily approximating. Yet, spline subdivision schemes repre-
sented by repeated binary averages [9], and the Schoenberg operators defined in terms of
the de Boor algorithm [13], approximate SVFs with general compact images. On the other
hand, for the adaptation of the Bernstein operators based on the de Casteljau algorithm, an
approximation result was obtained only for a certain clas of SFVs with images in R [13].

The lack of associativity of the metric average is the reason why it is hard to extend this
binary operation to an average of three or more sets. Yet, in [12] a set-operation on a finite
sequence of compact sets, termed ”metric linear combination”, which extends the metric
average, is devised. With this operation, linear approximation operators are successfully
adapted to univariate SVFs. It should be emphasized that this adaptation method is not
restricted to positive operators. To the best of our knowledge so far only positive operators
were applied to SVFs.

We apply the different adaptations to two classes of positive operators, Bernstein oper-
ators and Schoenberg spline operators. Adaptation of polynomial interpolation operators is
constructed only with metric linear combinations of sets. Such interpolation operators at the
zeros of the Tchebyshev polynomials of growing degree are shown to converge to Lipschitz
continuous SFVs [12].

The outline of the paper is as follows. Section 2 contains definitions and notation. Sec-
tion 3 discusses operators based on Minkowski averages of sets; their applicability for the
approximation of convex-valued multifunctions, and their failure in the case of SVFs with
general compact images. In Section 4 two metric operations on sets are presented, and used
in Section 5 to construct approximating operators for multifunctions with general compact
images. In Section 6 error estimates for specific approximation operators are presented.

2 Preliminaries

First we introduce some notation. The collection of all nonempty compact sets in R
n is

denoted by Kn, Cn denotes the collection of convex sets in Kn.
〈

·, ·
〉

is the inner product, | · |
is the Euclidean norm and Sn−1 is the unit sphere in R

n. We use coA for the convex hull of
A ∈ Kn and dist(x,A) = infa∈A |x− a| for the distance from a point x ∈ R

n to A.
We define the set of metric pairs of A,B ∈ Kn by

Π(A,B) =
{

(a, b) ∈ A× B : |a− b| = dist(a,B) or |a− b| = dist(b, A)}.

For A,B ∈ Kn the Hausdorff metric is

haus(A,B) = sup{ |a− b| : (a, b) ∈ Π(A,B) }.
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The space Kn is a complete metric space with respect to this metric. [17].
The support function δ∗(A, ·) : R

n → R is defined for A ∈ Kn as

δ∗(A, l) = max
a∈A

〈

l, a
〉

, l ∈ R
n.

A linear Minkowski combination of sets is

k
∑

i=1

λiAi = {
k
∑

i=1

λiai : ai ∈ Ai, i = 1, ..., k}, Ai ∈ Kn, λi ∈ R.

In particular, A+B = {a+b, a ∈ A, b ∈ B} is the Minkowski sum of two sets. A Minkowski
average (a Minkowski convex combination) of sets is a linear Minkowski combination with
λi non-negative, summing up to 1.

We consider functions defined on [0, 1] with images in a metric space (X, ρ), with X
either R

n or Kn, and ρ either the Euclidean metric or the Hausdorff metric respectively. The
notions of convergence, continuity, Hölder/Lipschitz continuity are to be understood with
respect to the appropriate metric, e.g. f(·) is Hölder continuous with exponent α if

ρ(f(x), f(y)) ≤ L|x− y|α, x, y ∈ [0, 1],

where the constant L depends on f . The collection of Hölder continuous multifunctions with
exponent α and constant L is denoted by Hα(L). For α = 1 the notation is Lip(L).

We recall that the modulus of continuity (see e.g. [5], Chapter 2) of a function f : [0, 1] → X
with a step δ ≥ 0 is

ω(f, δ) = sup
0<h≤δ

‖∆h(f, ·)‖∞,

where

∆h(f, x) =

{

ρ(f(x+ h), f(x)) for x, x+ h ∈ [0, 1],

0 otherwise.

ω(f, δ) is also known as the first modulus of smoothness. The k−th modulus of smoothness
is defined by

ωk(f, δ) = sup{‖∆k
h(f, ·)‖∞ : 0 < h ≤ δ},

with ∆1
h = ∆h and ∆k

h(f, x) = ∆h

(

∆k−1
h (f, x), x

)

.
Note that for f ∈ Hα(L), ωk(f, δ) = O(δα), k ≥ 1 and for f k−times continuously

differentiable ωk(f, δ) = O(δk).
In this paper we discuss the adaptation to univariate SVFs of certain linear operators

approximating real-valued functions. We consider linear operators based on samples at a set
of points χ = {x0, ..., xN}, 0 ≤ x0 < x1 < ... < xN ≤ 1 of the form

Aχ(f, x) =
N
∑

i=0

ci(x)f(xi). (1)

We restrict this class to operators which approximate continuous functions in [0, 1] or in
most of it. Thus, we require that

∑N

i=0 ci(x) = 1 either in [0, 1], or in most of it. We
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denote by |χ| = max{xi+1 − xi : i = 0, ..., N − 1}. χN denotes the set of equidistant points
{i/N : 0 ≤ i ≤ N}, with |χN | = 1/N . An operator based on χN we denote by AN .

We recall that a linear operator L(f, x) is called positive if for a non-negative f , L(f, x)
is non-negative. Obviously, Aχ is a positive linear operator if ci(x) ≥ 0, i = 0, ..., N . It
reproduces the constant functions, namely Aχ(f, x) = f(x) for f(x) = Const at all x such
that

∑N

i=0 ci(x) = 1. At all such points, Aχ(f, x) is a weighted average of the function values
f(xi), i = 0, 1, ..., N .

3 Approximation based on Minkowski averages

The first adaptations of operators of type (1) to SFVs were done with the help of Minkowski
sum of sets. In this section we survey some general results for such adaptations [19, 2, 6, 8].

For given data points χ, a positive operator of the form (1) with Minkowski sums of sets
replacing addition of numbers is

Aχ(F, x) =
N
∑

i=0

ci(x)F (xi), x ∈ [0, 1], ci(x) ≥ 0. (2)

3.1 The case of convex-valued multifunctions

Here we consider SVFs with images in Cn, and the operation of Aχ defined by (2) on such
multifunctions. It is clear, that

Aχ(λF + µG, ·) = λAχ(F, ·) + µAχ(G, ·), λ, µ ≥ 0. (3)

Moreover, by the positivity of ci(x), the images of Aχ(F, ·) remain in the cone Cn.
The approximation and the shape-preservation properties of such operators follow from

the parametrization of convex compact sets by their support functions. The well known
properties of the support functions δ∗, relevant to our investigation, are [16]:

for A,B ∈ Cn,

1. δ∗(A+B, ·) = δ∗(A, ·) + δ∗(B, ·),

2. δ∗(λA, ·) = λδ∗(A, ·), λ ≥ 0,

3. A ⊆ B ⇐⇒ δ∗(A, l) ≤ δ∗(B, l) for each l ∈ R
n,

4. haus(A,B) = max
l∈Sn−1

|δ∗(A, l) − δ∗(B, l)|.

Thus, the operator Aχ in (2) is related to the operator Aχ in (1) by,

δ∗(Aχ(F, t), l) = Aχ(δ∗(F, l), t), l ∈ R
n. (4)

Also, F ∈ Hα(L) iff δ∗(F (·), l) ∈ Hα(L), uniformly in l ∈ Sn−1.
By the above two observations, approximation results for positive operators can be ex-

tended from the case of real-valued functions to the case of set-valued functions with compact
convex images. Here we formulate a general result of this type.
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Theorem 3.1. Let Aχ approximate continuous real-valued functions with the error estimate

|Aχ(f, x) − f(x)| ≤ Cωk(f, ψ(x, |χ|)),

where ψ : [0, 1] × R+ → R+ is a continuous real-valued function, non-decreasing in its second
argument, satisfying ψ(x, 0) = 0.

Then for a continuous convex-valued multifunction F : [0, 1] → Cn

haus(Aχ(F, x), F (x)) ≤ C sup
l∈Sn−1

ωk(δ
∗(F, l), ψ(x, |χ|)).

As in the real-valued case, the adapted positive operators (2) have shape preservation
properties in the convex-valued case. The positivity of Aχ preserves the order between two
multifunctions in the sense of set-inclusion: F (x) ⊆ G(x) ⇒ Aχ(F, x) ⊆ Aχ(G, x).

Moreover, by Property 3 of support functions, if Aχ preserves monotonicity of real-
valued functions, then Aχ preserves monotonicity of multifunctions. Here monotonicity
of SVFs is in the sense of set-inclusion, namely if F (x) ⊆ F (x+ h) for all h > 0, then
Aχ(F, x) ⊆ Aχ(F, x+ h) for all h > 0 (see [8] for more details).

3.2 The general case – convexification

Vitale [19] noticed that for the constant multifunction F (x) = {0, 1}, the piecewise-linear
approximation constructed with Minkowski sums does not converge to F (x) when |χ| → 0 .
He also observed that the Bernstein approximants of a multifunction with general compact
images converge, when increasing their degree, to a convex-valued multifunction.

More generally, if the number of summands in (2) grows with N , as for the Bernstein
operators, the Shapley-Folkman-Starr Theorem (see Appendix 2 in [18] and Theorem 2 in
[4]) yields

haus(Aχ(F, x), coAχ(F, x)) ≤
√
n max

0≤i≤N
ci(x) max

s∈[0,1]
sup{|y| : y ∈ F (s)},

for any multifunction with compact images in R
n. Since coAχ(F, x) = Aχ(coF, x), by Theo-

rem 3.1, lim
N→∞

Aχ(coF, x) = coF (x). Thus, if lim
N→∞

max
i
ci(x) = 0, as in the case of Bernstein

operators, then lim
N→∞

Aχ(F, x) = coF (x) (see [10] for other operators with this property).

Another type of operators for which convexification occurs are spline subdivision schemes.
For these operators the Shapley-Folkman-Starr Theorem is not applicable. Subdivision
schemes are recursive averaging procedures with a fixed finite number of summands and
fixed weights. For this case an inequality, involving a measure of non-convexity of sets,
introduced in [4], is used to prove that spline subdivision schemes with Minkowski aver-
ages applied to arbitrary initial compact sets in R

n converge to a multifunction with convex
images [10].

The convexification occuring with Minkowski averages, motivated the search for alterna-
tive operations on sets.
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4 Metric operations on general sets

The lack of approximation by operators of type (2) in case of SVFs with general images, is
due to the fact that the Minkowski averages of non-convex sets are too big. For example,
the convex combination λA + (1 − λ)A, λ ∈ [0, 1] equals A if A is convex, but is a superset
of A for general A. Two operations on sets are introduced in [1] and [12] which produce
subsets of the Minkowski average or linear Minkowski combination respectively. With these
operations it is possible to avoid convexification and to achieve approximation for SVFs with
general images.

4.1 The metric average of two sets

A binary operation between sets was constructed in [1] and used for piecewise-linear approx-
imation of SVFs with compact (not necessarily convex) images. This binary operation is
termed in [9] ”metric average”.

Definition 4.1. Let A,B ∈ Kn, t ∈ [0, 1]. The t-weighted metric average of A and B is

A⊕ t B = {ta+ (1 − t)b : (a, b) ∈ Π(A,B)}.

The following properties of the metric average are important for our applications. The
first three are easy to observe [9], and the fourth is the metric property proved in [1].

Let A,B,C ∈ Kn and 0 ≤ t ≤ 1, 0 ≤ s ≤ 1. Then

1. A⊕0 B = B, A⊕1 B = A, A⊕t B = B ⊕1−t A.

2. A⊕t A = A.

3. A ∩ B ⊆ A⊕t B ⊆ tA + (1 − t)B.

4. haus(A⊕t B,A⊕s B) = |t− s|haus(A,B).

Note that the analogues of properties 2 and 4 are true in the case of Minkowski averages
only for convex sets, while with the metric average these essential properties are valid for
general compact sets.

Although the metric average is a non associative binary operation, there exists an exten-
sion of this operation to a finite number of ordered sets.

4.2 The metric linear combination of sets

In [12] a new operation on a finite sequence of sets is introduced. It is based on the notion
of a metric chain, which is an extension of a metric pair.

Definition 4.2. For {A0, ..., AN} with Ai ∈ Kn, a vector (a0, ..., aN) is called a metric

chain of {A0, ..., AN}, if ai ∈ Ai, i = 0, ..., N , and there exists j, 0 ≤ j ≤ N such that

ai−1 ∈ ΠAi−1
(ai), 1 ≤ i ≤ j and ai+1 ∈ ΠAi+1

(ai), j ≤ i ≤ N − 1.

Here ΠA(b) = { a ∈ A : |a− b| = dist(b, A) } for b ∈ R
n.
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An illustration of such a metric chain is given in Figure 4.1.

a0 ∈ ΠA0
(a1) aj−1 ∈ ΠAj−1

(aj) aj ∈ Aj aj+1 ∈ ΠAj+1
(aj) aN ∈ ΠAN

(aN−1)

Figure 4.1.

Thus each element of each set Ai, i = 0, ..., N generates at least one metric chain. We
denote by CH(A0, ..., AN) the collection of all metric chains of {A0, ..., AN}. The set
CH(A0, ..., AN) depends on the order of the sets Ai, i = 0, ..., N . With this notion of metric
chains we can define,

Definition 4.3. A metric linear combination of a sequence of sets A0, ..., AN with
coefficients λ0, ..., λN ∈ R, is

N
⊕

i=0

λiAi =

{

N
∑

i=0

λiai : (a0, ..., aN) ∈ CH(A0, ..., AN)

}

. (5)

The following distributive laws are easily derived from the definition,

(i)

N
⊕

i=0

λiA =

(

N
∑

i=0

λi

)

A , (ii)

N
⊕

i=0

λAi = λ

(

N
⊕

i=0

1 · Ai

)

.

Note that λ0, ..., λN can be any real numbers, and that if
N
∑

i=0

λi = 1, then by (i),
N
⊕

i=0

λiA = A.

5 Metric approximation operators

In this section we describe our general approach to the adaptation of operators of type (1)
to the set-valued setting, based on the metric operations of Section 4. The discussion of the
adaptation of specific operators is postponed to Section 6.

5.1 Operators based on the metric average

The metric average was successfully used in [9] for the construction of set-valued subdivision
schemes and in [13] for the adaptation of the Schoenberg spline operators to multifunctions.
Also in [13] the Bernstein operators based on the metric average are shown to approximate
a certain class of SVFs with images in R.

The main disadvantage of the metric average, as an operation on sets, is the lack of
associativity. Hence it is not directly extendable to several sets. This is the reason why the
adaptation of (1) based on the metric average requires to represent it in terms of repeated
binary averages. Let us note that a representation by repeated binary averages exists for any
samples-based linear operator, which reproduces constants, but it is not unique [20]. The
non-uniqueness leads to a variety of operators, which are not necessarily approximating.
Therefore general approximation results are not available. Yet, the representations chosen
in [9, 13], for concrete approximation operators, are proved to be adequate theoretically and
experimentally.
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5.2 Operators based on the metric linear combinations

All the results of this subsection are cited from [12].
We use the metric linear combination (5) to define the metric analogue of the linear

operator (1).

Definition 5.1. For F : [0, 1] → Kn, we define a metric linear operator AM
χ by

AM
χ (F, x) =

N
⊕

i=0

ci(x)F (xi). (6)

In contrast to the adaptations of positive operators based on the metric average, the
metric analogues (6) of two linear operators of the form (1), which are identical on single-
valued functions, are identical on SVFs.

Here we formulate a general error estimate for these operators.

Theorem 5.2. Let Aχ be of the form (1), then for a continuous F : [0, 1] → Kn

haus(AM
χ (F, x), F (x)) ≤ 2ω(F, |χ|) + sup

ϕ∈CH

|Aχ(s(χ, ϕ), x) − s(χ, ϕ)(x)|, (7)

where s(χ, ϕ) is a piecewise-linear single-valued function interpolating the data (xi, fi),
i = 0, ..., N , with ϕ = (f0, ..., fN) ∈ CH(F (x0), ..., F (xN)) .

In case F ∈ Lip(L), then also s(χ, ϕ) ∈ Lip(L), and we have

Corollary 5.3. Let F ∈ Lip(L) and let Aχ be of the form (1), satisfying

|Aχ(f, x) − f(x)| ≤ C Lψ(x, |χ|), f ∈ Lip(L),

where ψ is as in Theorem 3.1. Then

haus(AM
χ (F, x), F (x)) ≤ 2L|χ|+ CLψ(x, |χ|), (8)

6 Adaptation of specific approximation operators

The approximation results from Sections 3,5 are specialized here to two classes of positive
operators: the Schoenberg spline operators and the Bernstein polynomial operators. We
also present the adaptation of polynomial interpolation operators to SVFs as examples of
non-positive operators.

Error estimates for the various types of adapted approximation operators are provided,
using C as a generic constant.
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6.1 Bernstein operators

The Bernstein operator BN(f, x) for a real-valued function f : [0, 1] → R is

BN(f, x) =

N
∑

i=0

(

N

i

)

xi(1 − x)N−if

(

i

N

)

. (9)

It is known (see [5], Chapter 10) that there exists a constant C independent of f such that
for a continuous f

|f(x) − BN(f, x)| ≤ Cω[0,1](f,
√

x(1 − x)/N).

The value BN(f, x) can be calculated recursively by repeated binary averages, using the
de Casteljau algorithm [15],

f 0
i = f(i/N), i = 0, ..., N, (10)

fk
i = (1 − x)fk−1

i + xfk−1
i+1 , i = 0, 1, ..., N − k, k = 1, ..., N,

BN(f, x) = fN
0 .

This algorithm is commonly used in CAGD.
Next we present three different adaptations of the Bernstein operators to SVFs .
The adapted Bernstein operator of the form (2) is

BMn
N (F, x) =

N
∑

i=0

(

N

i

)

xi(1 − x)N−iF

(

i

N

)

, (11)

and by Theorem 3.1 we have,

Theorem 6.1. For a convex-valued multifunction F ∈ Hα(L)

haus
(

F (x), BMn
N (F, x)

)

≤ C

(

x(1 − x)

N

)
α

2

.

In the adaptation of (9), based on the metric average with the de Casteljau algorithm,
starting with F 0

i = F (i/N), we replace in (10) the average fk
i = (1 − x)fk−1

i + xfk−1
i+1 by

the metric average F k
i = F k−1

i ⊕ 1−x F
k−1
i+1 and obtain the approximant BMA

N (F, x) = FN
0 ,

x ∈ [0, 1]. It is not known whether these operators approximate multifunctions with general
compact images in R

n, yet for a certain class of SVFs with compact images in R, the following
approximation result holds [13],

Theorem 6.2. Let F ∈ Lip(L) be such that for ∀x ∈ [0, 1] , F (x) =
⋃J

j=1 Fj(x), where Fj(x)
are disjoint compact intervals. Then for sufficiently large N

haus
(

BMA
N (F, x), F (x)

)

≤ C/
√
N, x ∈ [0, 1].

The metric analogue of the Bernstein operator for set-valued functions is [12],

BM
N (F, x) =

N
⊕

i=0

(

N

i

)

xi(1 − x)N−iF

(

i

N

)

=

{

N
∑

i=0

(

N

i

)

xi(1 − x)N−ifi : (f0, ..., fN) ∈ CH

}

,
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where CH = CH(F (0), F (1/N), ..., F (1)).

It follows from Corollary 5.3 that

Corollary 6.3. Let F ∈ Lip(L), then

haus
(

BM
N (F, x), F (x)

)

≤ 2L/N + CL
√

x(1 − x)/N.

6.2 Schoenberg operators

For the Schoenberg operators we have four successful adaptations to SVFs. The approxima-
tion results in this case are numerous.

6.2.1 The real-valued case

The Schoenberg spline operator of order m with uniform sampling points χN , for a real-
valued function f , is

Sm,N(f, x) =
N
∑

i=0

f(i/N)bm (Nx − i) , x ∈ [0, 1], (12)

where bm (x) is the B-spline of order m (degree m−1) with integer knots and support [0, m].
By the known approximation result (see [3], Chapter XII),

|Sm,N(f, x) − f(x)| ≤
⌊

m+ 1

2

⌋

ω[0,1](f, 1/N), x ∈
[

m− 1

N
, 1

]

, (13)

where bxc is the maximal integer not greater than x.
Note, that the rate of approximation of the Schoenberg operators can be improved if bm

in (12) is replaced by the centered B-spline b̃m = bm(· +m/2). We omit the details here.
In [3], Chapter X it is shown that (12) can be evaluated recursively in terms of repeated

binary averages. For x ∈ [j, j + 1] let

f 1
i = f (i/N) , i = j −m+ 1, ..., j, (14)

fk
i = λk

i f
k−1
i−1 +

(

1 − λk
i

)

fk−1
i , i = j −m+ k, ..., j, k = 2, ..., m,

Sm,N (f, x) = fm
j .

with λk
i =

i+m+ 1 − k −Nt

m+ 1 − k
, i = j −m+ k, ..., j, k = 2, ..., m.

For real-valued functions the Schoenberg operators can be also evaluated by subdivision
schemes (see e.g. [7]). Given the initial sequence f 0

i = f( i
N

), i = 0, . . . , N of values in R,
with f 0

i = 0 for i ∈ Z \ {0, 1, ..., N}, the spline subdivision scheme for the evaluation of
Sm,N(f, ·) is given by the refinement steps

fk+1
i =

∑

j∈Z

a
[m]
i−2jf

k
j , i ∈ Z, k = 0, 1, 2, ... (15)
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where a
[m]
i =

(

m+1
i

)

/2m, i = 0, 1, ..., m+ 1 and a
[m]
i = 0 for i ∈ Z \ {0, 1, ..., m+ 1}. At the

k−th refinement level one defines the piecewise-linear function

f [k](x) =
∑

i∈Z

fk
i b̃2(2

kx− i), x ∈ R, (16)

where {fk
i , i ∈ Z} are the values generated by the subdivision scheme at refinement level k.

The scheme (15) is uniformly convergent, namely the sequence {f [k](·)}k≥0 is a Cauchy
sequence, and its limit function is of the form (see e.g. [7])

f∞(x) =

N
∑

i=0

f 0
i bm(x− i), x ∈ R.

Therefore
Sm,N (f, x) = f∞(Nx), x ∈ [0, 1]. (17)

The refinement step (15) can be computed by repeated binary averages as follows:

fk+1,0
2i = fk

i , fk+1,0
2i−1 = (1/2)fk

i−1 + (1/2)fk
i , i ∈ Z, (18)

fk+1,j
i = (1/2)fk+1,j−1

i + (1/2)fk+1,j−1
i+1 , j = 1, ..., m− 1

fk+1
i = fk+1,m−1

i+bm−1

2
c
, i ∈ Z.

6.2.2 The convex-valued case

To define Schoenberg operators for a multifunction with convex images F , one can use
the direct formula (12), the evaluation procedure (14) or spline subdivision schemes with a
refinement step given by (15) or by (18), replacing f by F and sums of numbers by Minkowski
sums of sets. By the results obtained for the real-valued case and by (4), all methods of
computation lead to the same SVF, denoted by Sm,N (F, ·) [8],[11]. By Theorem 3.1 we have
for F ∈ Hα(L)

haus (Sm,N(F, x), F (x)) ≤
⌊

m+ 1

2

⌋

1

Nα
, x ∈

[

m− 1

N
, 1

]

. (19)

6.2.3 Schoenberg operators based on the metric average

In [13] the Schoenberg operator for a multifunction F , SMA
m,N (F, ·), is defined in terms of

algorithm (14) with the binary averages between numbers replaced by the corresponding
metric averages between sets. It is shown there that

Theorem 6.4. For a set-valued function F : [0, 1] → Kn, F ∈ Hα(L), the Schoenberg
operator SMA

m,N(F, x) satisfies

haus
(

SMA
m,N (F, x), F (x)

)

≤ C

Nα
. (20)
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Another way to adapt the Schoenberg operators using the metric average as a basic
operation is to adapt the m-th degree spline subdivision scheme, represented by the sequence
of repeated binary averages (18). Starting with F 0

i = F (i/N), i = 0, ..., N and F 0
i = {0}

otherwise, we replace in (18) the averages of numbers by corresponding metric averages of
sets to obtain {F k+1

i : i ∈ Z} from {F k
i : i ∈ Z}

At the (k+1)−th refinement level, a metric piecewise-linear SVF, F [k+1](t) is defined by

F [k+1](t) = F k+1
i ⊕λ(t) F

k+1
i+1 , i2−(k+1) ≤ t ≤ (i+ 1)2−(k+1), i ∈ Z (21)

with λ(t) = (i+ 1) − t2k+1.

The following results are proved in [9].

Theorem 6.5. Let {F 0
i : i ∈ Z} be compact sets with L = sup{haus(F 0

i , F
0
i+1) : i ∈ Z} <∞.

Then the sequence {F [k](·)}k∈Z+
in (21) converges uniformly on R to a set-valued function

F∞(·) ∈ Lip(L).

Theorem 6.6. Let the initial sets for the subdivision be the samples F 0
i = F (i), i ∈ Z, with

F ∈ Lip(L) on R, and let F∞(·) be as in Theorem 6.5. Then

max
x∈R

haus(F∞(x), F (x)) ≤ L(7 +m)/2.

Applying these results to the initial data relevant to the evaluation of the Schoenberg
operator of functions defined on [0, 1] we obtain,

Corollary 6.7. Let F ∈ Lip(L) on [0, 1], and let

F 0
i =

{

F (i/N) 0 ≤ i ≤ N,

{0} otherwise.

Then F∞ ∈ Lip(L/N) on R, and

haus
(

F∞(Nx), F (x)
)

≤ L(7 +m)

2N
, x ∈

[

m− 1

N
, 1

]

.

Corollary 6.7 can be extended to F ∈ Hα(L) to obtain error of order O(N−α).

6.2.4 Metric analogues of Schoenberg operators

The metric analogue of the Schoenberg operator of order m for a multifunction F and a set
of equidistant points χN is

SM
m,N(F, x) =

N
⊕

i=0

bm (Nx− i)F

(

i

N

)

=

{

N
∑

i=0

bm (Nx− i) fi : (f0, ..., fN) ∈ CH

}

,

where CH = CH(F (0), F (1/N), ..., F (1)).
By Corollary 5.3 and the known approximation result (13), we have for Lipschitz contin-

uous SVFs

Corollary 6.8. Let F ∈ Lip(L) on [0, 1]. Then

haus
(

SM
m,N(F, x), F (x)

)

=

(

2 +

⌊

m+ 1

2

⌋) L
N
, x ∈

[

m− 1

N
, 1

]

.
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6.3 Polynomial Interpolants

For a real-valued function f the polynomial interpolation operator at the set of points χ is

Pχ(f, x) =
N
∑

i=0

li(x)f(xi), with li(x) =
N
∏

j=0,j 6=i

x− xj

xi − xj

, i = 0, ..., N.

For N > 1, Pχ is not a positive operator. Thus the only possible adaptation of Pχ to SVFs
is the metric analogue of Definition 5.1.
For a multifunction F , the metric polynomial interpolation operator at χ, is given by

PM
χ (F, x) =

N
⊕

i=0

li(x)F (xi) =

{

N
∑

i=0

li(x)fi : (f0, ..., fN) ∈ CH

}

,

with CH = CH(F (x0), ..., F (xN)), i = 0, 1, ..., N .
To illustrate the metric set-valued polynomial interpolants, and to see the geometry of

metric linear combinations of sets with negative coefficients, we present in Figure 6.1 an
example of a metric parabolic interpolant to three sets in R. The parabolic interpolant
interpolates the data (xi, Ai), i = 0, 1, 2 with x0 = 0, x1 = 1/2, x2 = 1 and A0 = [1/4, 1/2]∪
[3/4, 1] , A1 = [9/16, 11/16] , A2 = A0.

Figure 6.1. Metric parabolic interpolant

In the above figure the interpolated sets are depicted in black. The gray curves in the
left figure are parabolic interpolants to the data (xi, ai), i = 0, 1, 2 for some metric chains
(a0, a1, a2) ∈ CH(A0, A1, A2). The right figure is the graph of the set-valued interpolant.

Next we consider a specific sequence of interpolation operators which, when operating on
F ∈ Lip(L), converges to F . Let the interpolation points χ be the roots of the Tchebyshev
polynomial of degree N + 1 on [0, 1]. It is known (see e.g. [14]) that for these points

N
∑

i=0

|li(x)| ≤ C logN.

For a real-valued function f ,

|f(x) −
N
∑

i=0

li(x)f(xi)| ≤ (1 +

N
∑

i=0

|li(x)|)EN(f),

13



with EN (f) the error of the best approximation by polynomials of degree N on [0, 1]. Since
EN(f) ≤ Cω(f, 1/N) (see [5], Chapter 7), we obtain for a Lipschitz continuous function f

|f(x) −
N
∑

i=0

li(x)f(xi)| ≤
C logN

N
, x ∈ [0, 1],

and the error in the interpolation of such a function at the roots of the Tchebyshev polyno-
mials tends to zero as N → ∞.

When adapting these interpolation operators to Lipschitz continuous SVFs, we get by
Corollary 5.3 and by the observation that |χ| ≤ π/(2N),

Corollary 6.9. Let F : [0, 1] → Kn, F ∈ Lip(L), and let the points χ be the roots of the
Tchebyshev polynomial of degree N + 1 on [0, 1], then

haus(PM
χ (F, x), F (x)) ≤ 2L|χ| + C logN

N
= O

(

logN

N

)

.

To the best of our knowledge this result is the first convergence result of non-positive
operators to the approximated set-valued functions.

Although we get approximation results for adapted operators based on metric linear
combinations, the direct computation of the approximants according to definitions (5), (6)
is of high complexity. From Figure 6.1 it is clear that such a computation is redundant. Our
aim is to devise efficient algorithms for the computation of these operators.
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