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1. Introduction

Computer Aided Geometric Design (CAGD) is a branch of applied mathematics con-
cerned with algorithms for the design of smooth curves and surfaces and for their efficient
mathematical representation. The representation is used for the computation of the curves
and surfaces, as well as geometrical quantities of importance such as curvatures, intersec-
tion curves between two surfaces and offset surfaces.

The general setup is the following: The designer produces a set of points with con-
nectivity relations between them, termed control points. Where the points are arranged
according to a univariate index set py, pa, ..., pr € R®, the set of points is termed a control
polygon and is identified with the piecewise linear curve going through the points. It is
then required to represent mathematically a smooth curve in R* which has a similar shape
to the control polygon. This curve can pass through the points or be in some other sense
close to the control polygon.

The control points for the design of a surface can be given in various ways. The
simplest connectivity is that of a regular grid, namely each point has two indices: p;;,
1 =1,...,N1,7 =1,..., Ny. Thus the four points p;;, pit1,j,pi j+1 and p;41 ;41 constitute
a “face”. Another possible topology of the connectivity relations is that of a triangular grid,
where each face is determined by three control points and each pair of control points can
belong to at most two triangles. In this case the control polyhedron consists of the planar
faces determined by the triangulation. The most general type of connectivity relation
is that of a set of “faces” with a variable number of vertices. The set of control points

together with the connectivity relations constitute the control net.
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Given the control net it is then required to construct a smooth surface approximating
it. Thus to each “face” there corresponds a patch which is determined by the vertices of
that “face” and perhaps by several of their direct neighbors.

As a general principal the methods of construction are required to be local, so that
changes in a control point affect only a limited number of patches. The functions used in
the construction of the curves and surfaces are mainly piecewise polynomials or piecewise
relational functions. Polynomials and rational functions of low degree are easily computed
and their piecewise nature yields the required flexibility.

One common approach to the design of curves and surfaces which is of great rele-
vance to subdivision is based on the existence of a family of smooth compactly supported

functions B,,(t) termed B-splines, with the following properties:
(a) B(t) € C™ ! is a piecewise polynomial of degree m,

(b) B

(¢) Dz Bml(t—1)=1, teR.

(d) span{B (t—1) ‘ZEZ} Sm—{f|f€Cm L f‘(”_i_l)EFm , ZEZ}

Here 7, denotes the space of all polynomials over R of degree < m.

m(t) > 0 inside its support, (0,m + 1),

The curve
1) C(t) =Y piBalt —1) .

has the properties

(i) for t € (j.j + 1), C(t) € (Pjmms---pj)’
where (py---p) = {:L' € R3 ‘ r = Zk:bipi , by >0, Zk:bi = 1} 1s the convex hull of
pi,...,pr and Q0 denotes the interiolrzcl)f Q. =

(ii) The curve C(t) has its components in C™~1.
If ||C'(t)]]2 # 0, t € I CR, then C(t ‘I € C™~!. The condition HC”(tO)HZ # 0 guarantees
that C!(tg) # 0 for : = 1 or 2 or 3. Hence by the Implicit Functions Theorem t = ¢(C;) €
C™~1 for some [t —to| < e and Cj(t) = C;(+H(Cy)), j # 1.

For control points with the topology of a regular grid, the definition of a B-spline
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surface is very similar
1 2
12 =SS Bl = Bl - 1)
=1 j=1

This surface has the following properties:

(i) for (u,v) € (k,k4+1) x ((,0+1),

0
S(u,v)€<piji:k—m,...,k,jzﬁ—m,...,£> .

(ii)) The components of S(u,v) are in C™~1.
If the Jacobian matrix (%, %) is of rank 2 for (u,v) € Q then S(u,v) € C™71(Q). Again,

using the Implicit Functions Theorem, it is possible to obtain the points of {S(u,v) :
lu — o, Jv —vo| < e} as S;(u(Ss, Se),v(Si, Se)) = F(Si,S¢)) € C™1(Q) where {i,5,(} =
{1,2,3}, and £ is a neighborhood of (Si(uo,vo), Sg(uo,v0)>.

Sufficient conditions on the control points can be given to guarantee that the B-spline

curve/surface of the form (1.1)/(1.2) is C™~ 1.

The simplest continuous B-spline is
(1.3) Bi(t)=1-1]t-1], te€10,2].

Bi(t) is a positive, continuous, piecewise linear function on its support (0,2), and has also
properties (¢),(d) of B-splines.

The curve C(t) = Ef\;l piBi1(t—1) is the control polygon of py,...,pn fort € [2, N+1]:
it is linear for ¢t € (4,74 1) and Cli+1)=p;,i=1,...,N.

The surface S(u,v) = E pijBi(u — 1)By(v — j) passes through the control points:
h,j=1

S(i—l—l,j—l—l):pi]‘, 1,7 =1,....,N .
Higher order B-splines are obtained from lower order ones by repeated integration

(1.4) B () = /H Bo(r)dr .

It is easy to verify that if B, has properties (a)-(d) of B-splines then B,,+1 as given by
(1.4) has these properties as well. Since By given by (1.3) is symmetric with respect to
t =1, then by (1.4), By, is symmetric relative to t = (m + 1)/2.
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The computation of a given B-spline curve/surface can be done in several ways de-
pending on the representation used.
1. Computation based on the polynomial representation of the curve/surface is each
interval /square.
2. Computation based on the B-spline representation using recurrence relations for the
evalutation of B-splines.
3. Computation of the representations of the curve/surface relative to the sequence of

bases
(1.5) {Bn(2" —j):jez}, E=1,2,...
The last method termed “Subdivision” is based on the observation that
(1.6) By, € span{ B (2(- = j)) :j € 32} = {f :  (5) € Sm} -
It requires the computation of a sequence of control points. Expressing (1.6) explicitly

(1.7) Bu(t) =) ajmB(2t —j) .
JEL
we get a sequence of representations of C(t),
C(t)=> p{Bm(t—i)=> piBm(2t—i)=---=> piBn(2*t—i),
1EZ 1EZ 1EZ
where the control points at stage k + 1 are obtained from those at stage k by the rule
(1.8) Pt =D aiampf, i€l
JEL
The coefficients in (1.8) constitute the mask of the subdivision scheme. In particular the

curve segment corresponding to ¢ € 27%(j, 7 + 1) in the k’th-stage representation is given

by

J
(1.9) COlyegsiiny = S PEBu(2t— i) .

1=j—m
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and the point p¥ is related to the parameter value 27%. For ¢, € 27 and k& > ¢,

the points {p’;k_[ . ,p’;k_[j} determine the curve segment in (tg,%o + 27%), and as &

j—mo

becomes larger these points tend to C(tg). Hence for k large enough the control polygon
approximates closely the curve C(t). The surface case is similar.
The equality (1.7) for m = 1 is easily derived by choosing {a;1 , j € Z} so that both

sides agree on %Z. Thus

(1.10) Bi(t) = iBi(2t) 4+ B1(2t — 1) + 3 B (2t — 2) ,

and by integrating (1.10) from ¢ — 1 to ¢ and using (1.4) we set

(1.11) Bs(t) = $B2(2t) + 3B3(2t — 1) + 2 Bo(2t — 2) + 1 B,(2t — 3) .
In view of (1.10), for By-curves the subdivision rule (1.8) has the form
(1.12) Pyt = Epi FEPE . Phi =)

and the control points at stage k + 1 stay on the control polygon of stage k& and hence on
the initial one, namely on the limit curve. This scheme is interpolatory: all the points at

all stages are on the limit curve.
For B;y-curves, by (1.11) the mask is a2 = as2 = 1/4, a12 = az2 = 3/4, and the

subdivision scheme (1.8) has the form
k+1 k k k+1 k k
(1'13) Py = %pi—l + ipi ) Poiy1 = ipi—l + %pi .

This scheme is known as Chaikin’s algorithm [C]. One step of this shceme is depicted in
Figure 1.

Figure 1. Corner cutting with the Chaikin’s algorithm
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The Chaikin’s algorithm is a geometric process of “corner cutting”: the control points
are cut away at each stage.
Equation (1.8) consists of two rules, one for ¢ odd involving the odd coefficients of the

mask and one for ¢ even involving the even coefficients of the mask. It is easy to verify

that (1.7) together with (1.4) yields

(1.14) ajmi1 = 35(Gj—1m + ajm), JEL,

and since aj; # 0 only for j € {0,1,2} = supp By N Z, we get

(1.15) ajm#0 onlyfor j€{0,1,....m+1} =suppB,, N7

Also by (1.14) and the initial values ag1 =1/2, a11 =1, a2 1 = 1/2, we conclude that

m+1

1.16 Qim =277
(1.16) . ( j

), j=01,....m+1.

The subdivision shemes (s.s.) for B-spline curves given by (1.8) and (1.16) are prototypes
for general s.s. for curves determined by masks of compact support a = {a; : j € Z}.
In this paper we analyze s.s. for curves and surfaces given by a rule of the form (1.8)
with a general mask of compact support a. Our aim is to give conditions on the mask
which guarantee the convergence of the s.s. to a limit curve/surface and to analyze the
smoothness of this limit.

In Section 2 we discuss the relation between the convergence of a s.s. and the existence
of a related compactly supported function (the analogue of the B-spline), satisfying a
functional equation of the form (1.7). This is done in the multivariate setting which
applies to curves and surfaces.

The analysis of the convergence and smoothness is first done for the curve case (uni-
variate case), since it is simpler conceptually and closer to being complete. In Section 3
sufficient conditions for convergence to curves with C¥ components are given, in terms
of a polynomial formalism. In Section 4, a matrix formalism is introduced and necessary
conditions for convergence to curves with C'” components are given, together with refined

sufficient conditions. Section 5 deals with interpolatory s.s., and shows the necessity of the
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sufficient conditions of Section 3 for such schemes. Examples of s.s. with their concrete
analysis are given in Sections 3 and 4.

Subdivision schemes for surfaces, determined by control points with the topology of a
regular grid, are discussed in Sections 6-8. The convergence is analyzed in Section 6 and
the smoothness of the components of the limit surfaces in Section 7, with special results for
interpolatory s.s., extending those of Section 5. The analysis of the general multivariate
case requires the introduction of s.s with matrix masks and the extension of the analysis
to such schemes.

The tools developed for the multivariate setting are much harder to apply to concrete
examples, due to non-unicity in certain reductions as well as the order of magnitude of com-
plicated involved algebraic manipulations required. Yet one example of an interpolatory
s.s. 1s presented and analysed in Section 8.

This paper is mainly a review paper, which tries to present the results taken from
several sources in a unified and easy to follow way. Each section ends with bibliographical
notes, pointing to references for the material in the section and for related material. Some

of the results and proofs in Sections 6 and 7 appear here for the first time.

Bibliographical notes.

General methods in CAGD are reviewed in [BFK]. Regularity conditions for B-spline
curves/surfaces are derived in [DLY]. Computation methods for B-spline representations
are given in [B]. Subdivision techniques for B-spline curves/surfaces are first discussed
in [CLR1] and [LR]. Subdivision schemes with non-standard limit functions were first
analyzed in [R] and in recent years in many works, e.g. [CDM]. [DL1], [D2], [DD], [DGL1-
3], [DL2,3], [DLL], [DLM], [MP1-3], [W]. The main sources for the material in this paper
are [CDM], [DGL1-3], [DHL], [DL3], [DLM].

2. The Subdivision Mask and the Functional Equation

A subdivision scheme is defined in terms of a mask consisting of a finite set of non-

zero coefficients a = {a, : @ € Z°}, where s = 1 in the curve case, and s = 2 in the case
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of surfaces defined by control nets with the topology of a regular grid. Other topologies
require a different approach.

The scheme is given by

(2.1) PEFY = aaappl,  ac€l’.
pez:
Here we use the multi-index notation & = (aq,...,a) € Z° and © = (21,...,25) € R®. We

assume for the sake of simplicity that the control points are defined for all Z°. In practice
the set of initial control points {p? : @ € Jo} is finite, and the set of control points at level

k +1, denoted by {p**!:a € Jiy1}, is the maximal set for which the rule

k E k
BeJy

coincides with (2.1). Thus

Jk_|_1:2,]k—|—supp(a):{aEZS:a:2ﬂ—I—7, geJg, vesupp(a)}.

Where s = 1 there are two rules for defining new control points

k k k
(2-2) szy—l = Z a20—-28P3 = Z A29Poy—~ s ael,
BEZ ~yEZ
and
k k k
(2'3) pzjyil = Z A20+1-28P3 = Z A2+ 1P — ael.
Bel ~EZ

In the surface case s = 2, there are 4 rules depending on the parity of each component of
the vector o € Z2. Thus, defining Fy = {’y cy €40,1}, 0= 1,2}, namely F5 consists of
the extreme points of [0, 1]?, we get for each v € F5 a different rule:

(2.4) Pt = Z (yt20—24Pf = Z yt28D0_ 5 yEE, acl”.

Bez? Bez?

For general s the number of rules is 2°, as the cardinality of the set E, of the extreme
points of [0,1]°. As in the case of the B-spline functions, the control point p* is related
to the parameter value 2 ¥ a. The analysis of the s.s. determines the smoothness of each
component of the generated curve/surface. Since each component is a scalar function

generated by the same s.s., it is sufficient to analyse control points in R®.



Definition. A subdivision scheme S is a convergent subdivision scheme if for every set
of control point % = {f% € R | a € Z*°}, there exists a continuous function f € C(R?®) such
that

(2.5) kllim (S* f)qr-t0 — F(27a)| =0, a€els, el

and such that for some initial data the above function f % 0. The function f is denoted
by S f%. S is a uniformly convergent s.s., if for any bounded domain @ C R®* and ¢ > 0
there exists I{(e, ) such that

(2.6) (5% e — fF27"a) <, k>K(,9Q), a€eZ®°n2'Q.
This is equivalent to the requirement that for all fO € (°°(Z*),

i [ = ()]l =0

where f(z—k> denotes the sequence {f(;%) fo € ZS} .

A simple necessary condition for S to be uniformly convergent is the following:

Proposition 2.1. Suppose S is a uniformly converent s.s., then

(2.7) Y ayaa=1, y€E,.
aEZl®

Proof: Let f° be such that S>®f° # 0. By the continuity of f there exist ¢ € Z and
a € 7°, such that f(27%a) # 0.
Now for k > ¢,

k k— k—
(28) f2k—(oz—|—'y = Z a2k—[oz—|—'y—2ﬁfﬂ t= Z a7+2ﬁf2k—11—[oz—ﬁ :
Bezs Bgezs

Let Q be a neighborhood of 27¢a. For k large enough 2 ¢a 4+ 27%+ € Q for v € E,
and 27 ‘a4 — 2713 ¢ Q for B € A where A = {3 : ay425 # 0, v € E,}.
Hence by the uniform convergence of S, given ¢ > 0 there exists K = K(¢,Q), such

that

fzkk—za+ =2 a+27" ) + e, v € Es,
(2.9) !

fzkk_—ll—(a_ﬁ - f(2_£05 - 2_k+1ﬂ) + ek,ﬂ 3 ﬂ €A )

9



with |ng| <e, |0k s| < e, k> K(e,82). Substitution of (2.9) into (2.8) yields

FR a2 ) dp = D o f2T e =278 + Y T a0
pez: pez:

Taking k — oo we get

TEC D AN (0 oy

pezs Bezs

Since ¢ can be chosen arbitrarily small, and since f(27¢a) # 0, we conclude that

Y =1, A€EE,. :
e

The next lemma gives necessary and sufficient conditions for the uniform convergence

of a s.s.

Lemma 2.2. Let ¢» € C(R®) be of compact support and satisfy

(2.10) Y dlr—a)=1, zeR’,

aEZls

and let S be a s.s. with a mask satistying (2.7). If S is a uniformly convergent s.s., then

Jim Y (SH a2 —a) = 570
aEZs

Moreover, if v satisfies the stability condition

ciflfllos = , fet=(),

Z fa¢(x - a)

aEZl®

(. @)

then uniform convergence of the sequence

{3 (S avizte oy ez,

aEZls

for any initial data f°, implies the uniform convergence of S.
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Proof: To prove the first claim, observe that

exl(e) = a;(s’“f%w@’“x—a>—5°°f0<x> =
= ; [(S* %) = (5= O)(@)] (2"e — @)
< ; (5% F%)a = (5= f)2 7 a) | [(2%2 — a)
+€§Fj [0 (27 a) = %0 (@)||[v (25 — a)| |

where I'yr, = {a c 2k —a € supp(¢)} N Z%. The cardinality of T'yr,, [Ty, |, satisfies
[Tare| < supyepo, e H[:L' + supp(¢)] N ZS}‘ = M, and for & € Ty, 2 — 2% =y €
27* supp(¥).

By the uniform convergence of S in

Qap={y:llz -yl <p}.
and by the continuity of S f°, for any ¢ > 0 there exists K(e,Q, ,) such that
eh(@) S 2Mll s k> K6, 0,)

To prove the converse direction, denote

flo)y = lim > (S22 —a) .

k—oo

aEZl®

Then for k > K(¢,Q) and « € Q

S (Fla) = (S5 £)a )2t — o)

a€F2km

o> Hf(w) = 3 (84 (2Fe - a)

aEZl®

(. @) (. @)

Z _

S (2 a) — (SF a2t — a)

a€F2km

Y (fla) = f27 )2k — @)

a€F2km

(. @) (. @)

Since by continuity of f(x), ‘f(:z;) — f(2_k0z)‘ < 5/“;/}“00 for a € Tyiy, k > IN&’(e,Q), we

obtain

Y (fFa) = (S )a) (2 s — )] S (M + 1),  zEQ,

a€F2km
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and from the stability of ¢» we conclude that ‘f(Z_koz) — (Skfo)a‘ < c9e for k >

max {K(e,Q),IN&’(e,Q)} and o € |J T'gr,, proving the uniform convergence of S for any
x€Q

initial data f°. Condition (2.7) guarantees that S f% =1 for {f0 =1 : « € Z*}. Hence
S 1s a uniformly convergent s.s. o

In most applications we use the above sufficient condition with the symmetric hat-

function ¢(x) = [[;—; Bi(1 + ;).

Lemma 2.3. Let S be a s.s with a mask a, and define the linear operator

(2.11) T = aa(2
aEZl®
Then

(2.12) D (S a2z —a) = > FUTRE) (@ —a) .

aEZl® aEZl®

Proof: It is sufficient to prove (2.12) for the case k = 1, and apply it repeatedly.
Writing (Sf°)s in terms of the mask a and changing the order of summation in the

lefthand sum we obtain

D (5fatb@r—a)y= 3 f§ Y Ga2st(2e —a) =

=y A BEZ® a€Zs
=Y 3> ap(2e-28-7)= > TNz -p). o
BEZ: ~ELZ*® BEZ:

We can now prove a theorem relating the s.s. with a unique function satisfying a

corresponding functional equation.

Theorem 2.4. Let S be a uniformly convergent s.s. Then its mask a = {a,
« € 1°} determines a unique compactly supported continuous function ¢ with the fol-

lowing properties

(2.13) ole)=Te(x) = Z age(2r — o), reR®,

(2.14) Y plz—a)=1, 2eR.



0
Moreover, for any f

(2.15) S =Y flel -

aEZl®

Proof: Choose f° = §, namely, f) = 84,0, @ € Z%, and denote S f° = ¢. By assump-
tion on S, ¢ € C(R®). By the relation (S6)q = > aa—23063,0 we conclude that (56)q = aq.
B

Thus supp(S6) = supp(a).

Now

= aa—23(5¥718)s
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hence

supp(S¥6) = {a : B € supp(S¥716) , a — 23 € supp(a)}
= {a: a € supp(a) & 2supp(S*16)} .
Since supp(Sé) = supp(a), we conclude that if supp(a) is convex then supp(S*s) =
(2¥ — 1)supp(a). Otherwise supp(S*§) C (2% — 1) (supp(a)). The values S*§ are at-
tached to the parameter values 27%supp(S*§) C (1 — 27%) (supp(a)). Hence the limit
function ¢ satifies supp(¢) C (supp(a))’.
Since ¢ is of compact support and S is a linear operator

S*f =Y flel -

aEl*
Similarly, we get S®f0 = 3 ;. fap(2- —a) = 3 oz fEp(2F - —a). Specializing to
f° = & and recalling that (S6)a = aq, o € Z%, we obtain
(5%6)(e) = o) = 3 aapl2e —a)
aEl*
Thus ¢ is a solution of the functional equation. Now for f) =1, a € 7%, S*f° =1 by
(2.7), and (2.14) follows from (2.15).

To conclude the proof it remains to show that ¢ is the unique continuous, compactly
supported solution of (2.13) satisfying (2.14). Suppose @ is a continuous compactly sup-
ported function satisfying (2.13) and (2.14). Then by (2.13) and (2.12), for all k& > 1,

> favle—a)= 3 (5" a2z —a).

aEZl® aEZl®
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This together with the first part of Lemma 2.2 yields

> Fb(e—a)=5%F(x).

aEZl®

In particular for f* = 6 we get

(r) =576 = p(z) ,

and the unicity of ¢ is established.

O

Corollary 2.5. Let po € C(R®) be of compact support and satisfy ) 7. wo(- —a) =1,

and let a be a mask of a converging s.s. Then
lim TMpg = ¢,
where ¢ is the unique solution of ¢ = T'p guaranteed by Theorem 2.4.

Proof: By Lemma 2.2 applied to f° = §, and by Lemma 2.3,

e(x) = lim Z (S* ) apo(2z —a) = lim Z 60.0(T o)z — a)

k—oo
aEZl® aEZs
= lim TFpo(x) .

k—oo

The function ¢ defined by S is called the S-refinable function. It can be computed

from the mask in several ways.

Methods to compute .
(i) Apply repeatedly S starting with f° = &.

(ii) Choose g a continuous compactly supported function satisfying > cz. wo(-—a) = 1,

and apply T repeatedly (the cascade algorithm).
This method is equivalent to (i) since by (2.12)

Theo(e) = (5% 8)apa(2te — a) .

«

(iii) Compute the values of ¢ at the diadic points recursively by the relation ¢ = T,

namely,

Pp(27ma) = > agp(27 e - ).

pez:
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In order to start the process, the values {(SOO(S)(Oé) Ca € ZS} are needed. Corollary
4.3 gives a simple formula for the computation of {Soofo(oz) fo € ZS} from the initial
data f°.
Note that if p(a) = 0, a € Z° then (27 %a) = 0 for all k € Z4 and by continuity ¢ = 0.
Thus ¢(a) # 0 for at least one o € Z°.
(iv) Starting with arbitrary ¢°, 3" 4% =1, compute
o= apys iy, €IS,
Bel:
and define or(x) = 3, cz: Yhoo(2Fx — «) for any o satisfying the requirements of
Corollary 2.5. Then kh—>Holo or(z) = p(x).
Method (iv) works since

pr(r) = Tor(r) = - = T () ,

and hence by Corollary 2.5 ¢(z) = klim or(x).

Next, we relate the existence of ¢ € C(R?) solving the functional equation with the

convergence of the corresponding s.s.

Theorem 2.6. Let ¢ € C(R®) be of compact support and satisfy the functional equation
(2.13) corresponding to a mask a of compact support, with property (2.7). If the integer
translates of ¢ satisfy the stability condition
(2.16) Al flloe < || DY farel- —a)|| ., fECT),

aEl*

then the s.s. associated with the above mask is uniformly convergent.

Proof: Consider the one-periodic function
(2.17) o)=Y pla—a).
aEls
We claim that ¢(x) is constant. Let ¢° = 1, o € Z°. Then by (2.7) S*¢° = ¢°, while by
(2.12) and (2.13)

6(2f0) = Y ww—a)= Y (S'°), w2 e —a)= ) ¢UT e)(z —a) = é(a) .

aEZl® aEZl® aEZl®
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Hence ¢(x) is constant on diadic points. By continuity ¢(x) is constant. The stability

condition guarantees that ¢(x) # 0 and hence we get after normalization

(2.18) d plr—a)=1.

aEZl®

Applying Lemma 2.3 with ¢» = ¢, we conclude that

Y (S ap2 e —a)= > LT e —a)= > flple —a).

a€Zs a€’ls® a€”ls

Hence

lim Z(Skfo)acp r— ) Zfo r—a),

k—oo

a€Zl* agZs
and it follows from the second part of Lemma 2.2 with v = ¢ that S is a uniformly

convergent s.s. o

Remark. The stability condition (2.16) for ¢ of compact support implies the (°°(Z°)-
linear independence of {c,o(:z; —a):a€ ZS}, namely ) cz. bap(- —a) =0, b € (*(2°) =
b = 0. In the reverse direction we have the implication that the stability condition (2.16)
follows from the local linear independence of {¢(- —a) : a € Z°} , namely > 7. ba(z —
a)=0, 2 €Q=0b, =0,a € g, where Q is any bounded open domain in R® and
Fo={a€Z®:supp(e(-—a))NQ #£0} . To see this , define

c :inf{H Z boo(x —oz)Hoo 6] oo = 1} )

aEZl®

If ¢ # 0 then the stability condition holds. Suppose ¢ = 0, then there exists a sequence
{bF - k€ 74} € 0°°(Z°), ||b¥|| = 1, such that

lim HZbacpx—oz =0.
k—o0 aczs

For each k there exists ay, such that [b% | > 1. Consider

= D bisaple—a)= ) dip(r—a),

aEZl® aEZl®
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where d¥ = b%_ | and|d§| > § forall k. Since ¢p = > bEo(-+ar—a), klim |¢k|loc = 0.
aEls 0

Now let Q¢ be a bounded open domain in R*, such that supp(¢) C Q. Since ||d*||- = 1
for all k, there exists a subsequence {dk/} satisfying k/h_r}noo d’c‘;/ =d°, a € I'g,. Thus by the
compact support of ¢
Y dYe(r—a)=0, e, |d°| =1,
aEFQO
in contradiction to the assumption of local linear independence. In fact it is sufficient to
require only ”"weak-local linear independence”, namely for each o« € 7Z° | there exists an

open bounded domain Q, C R* , such that ) ;. bap(z —a) =0, 2 € Qs = by =0.

Theorem 2.6 suggests an indirect way for the analysis of the convergence of a given
s.s., namely analysis of the functional equation and the nature of its solutions. Here we
present a direct analysis of the s.s., and of the convergence of the control points generated
by it. We start with the curve case s = 1, where the analysis of convergence and of the
smoothness of the limit functions generated by s.s. is simpler. Then extensions to the case

s > 1 will be given.

Bibliographical notes.

Most of the results in this section are taken from [CDM], with considerable changes
in the proofs. Methods (ii) and (iii) for the computation of ¢ are suggested in [DLI1].
Analysis of the solutions of the functional equations is done in several papers, see e.g.

[CDM],[D2],[DD],[DL1]. It is also done in the contex of orthonormal wavelets [D1].

3. Analysis of Convergence and Smoothness — the case s =1

It has been observed in Proposition 2.1, that a necessary condition for the uniform
convergence of a s.s. given by a compactly supported mask a = {ay : « € Z} is
(31) Z a9 — 1 5 Z ad2a41 = 1.
a€l ac”?
This condition guarantees the existence of a related s.s. for the divided differences of the

original control points.

17



Proposition 3.1. Let S be a s.s. defined by a mask satisfying (3.1). Then there exists a
s.s. S1 with the property

(3.2) dft = Sydft

where f¥ = S*f° and (dfk) = (a—i—l fk)

Proof: Let £ denote the set of all Laurent polynomials and define the characteristic
L-polynomial of S by a(z) = >, aaz® € L. Then by (3.1) a(—1) = 0, and therefore
aM(z) = Zza(z) € L. We now show that the mask determined by a'!)(z) defines a s.s.
Sy with the requlred properties. Let Fr(z) =3 <z f¥2% be a formal generating function

associated with the control points f*. The relation

(33) fatt = aa-spfs

pez:

is written formally in terms of the generating functions by

(3.4) Frii(z) = G(Z)Fk(zz) )

Indeed comparing the coefficients of the same power of z on both sides we get

k k k k
2o = Z azpfo—p frat1 = Z azpt+1fa—p >

pezs Bezs

which is equivalent to (3.3). Now observe that

Hi(z)= 3 (df')az =2 3 (4, — f5) = = 2" (-7 Fule) — Fi(=)) -

acls a€”ls

Hence

(3.5) Hi(2) = 28 Fi(2) :

and by application of (3.4) one gets

18



Thus, by (3.5)

Hiyt1(2) = 2a(2)
a relation similar in form to (3.4). Recalling the definition of Hy(z), we conclude the

existence of a s.s. 57 satisfying (3.2) with a mask determined by the characteristic £-

polynomial
(3.6) aM(2) =22(1 + 2)"a(z) . O

Remark. Property (3.2) of the s.s. S; corresponding to the characteristic £-polynomial
aM(2) = 2a(2)z(1 + 2)™', can be written as AS = 251 A where A is the operator defined

by (Af)a = fcv-l-l — fa-

We can now determine the convergence of S by analyzing the s.s. %Sl.

Theorem 3.2. S is a uniformly convergent s.s., if and only if %Sl converges uniformly to

the zero function for all initial data f°.

Proof: Suppose S converges uniformly, and let f* = S* fO. Then for oy € Z,

_ 1
‘(Afk)ao‘ :| f§0+1 _fzo‘ §| f§0+1 - Soofo (2 kao + 2_k> |

>0 — >0 — 1 >0 —
+|£E = S® (27 ag) | +]SF° (2 Fag + 2—k> — 5™ (27 ag)| .
Let I; be an open interval strictly containing the open interval I. For any point 2 Fay € T
and k > Ko, 27 %o+ 2% € I;. Hence by the uniform convergence of .S and by the continuity
of §%° 0 there exists for any ¢ > 0, K = K(s,I) > Ky, such that for any 27 Fag € I,

[(AfF)ao| < 3¢, k> K(e,I),

proving the uniform convergence to zero of %Sl.

The proof of the converse direction is more involved. First observe that if %Sl con-
verges uniformly to zero then kh—>Holo I (%Sﬁk |loc = 0. Indeed, for f° € (°°(Z),]|f%||s = 1,
and k > K(e)

G0 £l = 1D £2((350)"5) _, Il

—2k
aE”l

<UD ((580°8) | Moo < MI(351) 8]l < <.

aE”l
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where the last two inequalities follow from

supp (%Sﬁk §C(2h 1) <SUPP(a(1))> :

. k . .. .
and from the uniform convergence to zero of (%Sﬁ 0. Thus there exists a positive integer

L, and 0 < g < 1, such that for all f° € (>(Z),

L
(3.7) 1(351)" £l < pllfllss -
Consider now the sequence of control points f¥ = S* %, and the piecewise linear functions
interpolating these control points

fa)y=> fip*r—a), 2eR,

aEZl®

where 1) = By(- + 1) with By as defined in the Introduction. We now show that {f*(z) :
k € Z4} is a Cauchy sequence, and hence converges uniformly to a continuous function.

Then, since ¢» € C(R) satisfies (2.10) and the stability condition

=1l -

(. @)

> e —a)

aE”l

the second part of Lemma 2.2 implies that S is uniformly convergent.

Consider the differences f**1(z) — f*(z), and denote by U the s.s. corresponding to
the function . Then by (2.12) applied to U and v we get
(3.8) FHN ) = M) =D (S =UM)ap(2 e —a) .

aEl
Now S — U is a s.s with a characteristic £-polynomial d(z) = a(z) — (%2_1 +1+ %Z),
which by (3.1) satifies d(—1) = d(1) = 0. Hence
1— 22 ;
d(z) = 5 e(z), e(z) = Zeiz , ] < oo

z X
=y

One application of S — U can be described in terms of generating functions as in (3.4), by

1—22

SES

S (S = U)FY), =% = d(=)Fi(=*) = e(2) (

aE”l

z

= ¢(2) Z(f§+1 — o)

aE”l
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Comparing equal powers of z we obtain

(3.9) (S=U)f*), = ca—2a(AfF)s

Bez

yielding the bound

5 =01 < BIAM e = S feaal s Y feronal}

2ac] 2at+1el

Combining this with (3.7), (3.8) and 0 < () <1, 37 7 ¥(- — a) = 1, we finally get

(3.10) |F @) = @) < S = U < BIA s

<E A pult]
< Orél]agLH Flleo plt!,

a relation which implies that {fk(:zj) ke Z_|_} is a Cauchy sequence. o
A repeated use of (3.10) yields an estimate for the deviation of f¥(.) from S f°.

Corollary 3.3. Let S be a uniformly convergent s.s., and let ;1 and L be defined by (3.7).
Then

5% = f*()|| . < cult]

with
C = BL( ~ 1 £ e gas, | (551 -
Moreover
S f(a) = S*f(y)] < Cle —y|", w,yeR |Jz—y| <1,
where v = ——logz/,L and C = 2(C + ma:z;0<]<LHS]HOOHAfOH )/,L_(l—i_%) )

Proof: Using the notations in the proof of Theorem 3.2 and the estimate (3.10), we get

in view of Lemma 2.2,

|5 F° () = fH(2)| = Jlim [f'(x) Z\f”l — ()|
‘ L E L k
< B amax, HAffHooﬂ/ﬂf] < B max ||(3 HOOHAfOHOOEMf
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which proves the first claim, and gives an explicit form of the constant C'. Using this result

and (3.7), we get forz,y € R, |[t—y| < 1, with k € Z , defined by 27571 < |z —y| <27

(@) = F)l < |f(2) = FE@) + 1) = FE )+ 1) = FE )l

<20 12 AfF oo < 2(C + mazogj<r S ool AL oo )i/

< éﬂ(k—l—l)/L — o~ (k1) < 6|:1; —yl” .

Theorem 3.2 indicates that for any given s.s., S, with a mask a satisfying (3.1), we can
prove the uniform convergence of S by first deriving the mask of %Sl and then computing
H(%Sl)kHoo for k =1,2,3,... L, where L is the first integer for which H(%Sl)LHOO < 1. If
S converges uniformly, such an L exists. ;From the practical point of view, if L > 10 no
convergence occurs in the actual performance of the scheme, since only a small number of
steps (k < 10) are carried out in practice.

The formalism of the generating functions allows us to compute the masks of the

schemes S*, k > 1, given the mask of S. ;From (3.4) it follows that

2L—1

Fipr(z) = a(z)a(z?)...a(z2" " VFu(*") = dB(2)Fp (22" .

Comparing coefficients of equal powers of z on both sides we get 2% different rules mapping

f* to f¥L determined by the coefficients of

L—1 4

(3.11) alll(z) = H a(z¥) = Z alllze
j=0

These rules have the form

k+L (L] k _ L
(3.12) f7+2LQ_Za7+2Lﬁfa_ﬁ, v=0,1,...,25 1,
per
and hence the norm of S” is given by
L
(3.13) HSLHoo:maX{ZM!H]-ZLM : 7:0,1,...72L_1} .
per
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In particular

(3.14) 11 = { 3 Jazal + 3 lazanl -

a€Z a€Z
Later we discuss several examples and use this approach to establish convergence.

Once the uniform convergence of S is established, we are then interested in determining
the smoothness of the limit function S f°, which is equivalent by Theorem 2.4 to the
smoothness of ¢ = S0.

Here we state sufficient conditions for ¢ € C¥, v > 1. These conditions are also

necessary in the case that ¢ satisfies the stability condition (2.16).

Theorem 3.4. Let S be a subdivision scheme with a characteristic L-polynomial
(3.15) a(z) = ((1 + Z)/QZ)VQ(Z) , g€ L .

If the s.s Sy, corresponding to the L-polynomial ¢(z) converges uniformly, then S*6 =
© € CV and for any initial control points f°

d
1 Qoo 0: OOAI/ 0
(3.16) TS =S8SAN

where AV f0 = 2;20 (;)(—I)V_jf,o_i_j . Moreover, for j = 1,...,v, the s.s S; with charac-
teristic L-polynomial a(z)<22/(z + 1))‘7, satisfies
4 4 4 d’
(3.17) SIS = (S L s = s
T

where d?(S* f0) = 2K AJ(Sk £0).

Proof: Firstly, we prove the theorem for v = 1. Let f* = §*§. By (3.2) dfft! = S, df*
and since 57 is uniformly convergent, then by the first part of Lemma 2.2, the sequence of

functions

g ()= (dff)av(2r—a), Y =Bi(-+1), k=1,

aEl
converges uniformly to a limit function ¢ = S°Aé € C(R). Moreover, by the proof of
Theorem 3.2,

(3.18) |Adf oo < Aplt]
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where € (0,1), L is a positive integer and A is a constant independent of k. Also, since
S1 converges uniformly, %Sl converges uniformly to zero, and by Theorem 3.2, S converges
uniformly. Hence ¢ = >4 € C(R).

Let us denote by h¥(z) the piecewise constant function
() = (df*)a, 27 Fa <z <27%a+27% ) acz.

It is clear that
| g"(x) = M (2) |< || AdfY |

and by (3.18), h*(2) converges uniformly to ¢g. Noting that all functions considered here

are of compact support, and that

[ o= [ wwaris [ Lo - wioy e

we conclude that the sequence {fox hk(t)dt : k€ 24} converges uniformly to the function
ffoo g(t)dt. But by definition of hk(:zj),

/w PEdt = (S*6), o (2% — ) |

— 0 o

and since S is uniformly convergent, Lemma 2.2 implies that ffoo RE(t)dt converges uni-
formly to (), and therefore p(x) = ffoo g(t)dt ,%c,o =g = S;PA6 € C(R). Thus
¢ € CYR), and we conclude from (2.15) that for all initial data f°, (3.16) holds with
v = 1. This concludes the proof of the case v = 1.

If S, converges uniformly with v > 1, then by the claim of the Theorem for v = 1,

S,_1 converges uniformly for all initial data f°, and

d

L5 0 = AL
dx

Repeating this argument v — 1 times we get

d _ .
SSOA”fOZ%SVOilN 1f0:...:dx—VS e CR),

which yields (3.16) and shows that ¢ € C”. The proof of (3.17) is similar to the proof of
Proposition 3.1, observing that d”(S*f%) = d(d*=1S* f°). o
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Remark: For interpolatory subdivision schemes we show in Section 5 that if ¢ € C?(R)
then S, exists and converges uniformly. We will not show the necessity of the conditions

in Theorem 3.4 in the more general case of ¢ satisfying the stability condition (2.16).

Examples.

1. General uniform “corner cutting”
2k<;H = rf(l;: +(1- T)f§+1 )
Frats = sfa+(1=s)fay

This scheme satisfies (3.1) for all r, s.

<s<r<l,a€el.

The characteristic £-polynomial of this scheme is
a(z) =(1—- r)z_2 +(1 - 3)2_1 +r+ sz
= 72 [r(z=1)(z+1)+s2z(z—1)(z4+ 1)+ (1 + 2)]
= 2_2(1 + 2) [(1 —r)+(r—s)z+ 322] )
Hence the characteristic £-polynomial of 57 is

2za(z)

(1) —
a'(z) P

=2(1-— r)z_l +2(r —s) + 2sz

and the scheme %Sl for Af* is given by

k k k k k
92:1 = (T_S)goz ) 92:—11—1 :Sgoz—l_(]' _T)ga—l—l , &€ I .

By (3.14), || S1]lc = max{r —s, 1 — (r — s)} < 1, hence the corner cutting algorithm
converges uniformly to a continuous limit function.

To analyse the smoothness of the limit function observe that a(l)(z) =2(1 - r)z_l +
2(r—s)42sz, and hence this mask satisfies the necessary condition for uniform convergence

(3.1) if and only if »r — s = %. In particular s < Under this additional condition

2

b [ =

a(l)(z) = (1—25)27! +1+42sz, and the s.s. %52 exists with a characteristic £-polynomial

%a(z)(z) = ﬁa(l)(z) =1—2s5+2s2
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and norm H%SZHOO = max{1l — 2s,2s} < 1. By Theorem 3.2, S converges uniformly, and
by Theorem 3.4 S f% € C'(R), for all initial control points f°. The scheme S, satisfies
(3.1) if and only if s = 3,

i namely the case of the Chaikin’s algorithm. For these
values of s and r, a(z)(z) =1+z, %a(?))(z) = z and H%Sg”oo = 1. In fact || <%S3>k |oo =1

b r =
forall k € Z4, and S5 does not converge uniformly. As is expected, the Chaikin’s algorithm
does not produce C?*(R) functions.

2. Uniform B-spline subdivision

For By we saw that ) fFB, (2’“:1; — oz) is the piecewise linear function connecting the
points {(a, f2) : @ € Z}, and that the control points f*¥ are becoming dense on it as
k — oo. Here a(z) = %(1 + 2)?, %a(l)(z) = %(1 + z) and H%SlHoo = %, verifying the
convergence of the scheme.

For B;-curves the s.s. derived in the Introduction has the form

3 1 1 3
k+1 _ k k k+1 k k
2a _Zfa—l—l_z.fa ) f2a—|—1_1 oz—l—l_Zfoz‘

This is a corner cutting scheme with a different enumeration of the points. The

characteristic £-polynomial of this scheme is
1
a(z) = 1 <1—|—3Z—|—322—|—Z3> ,

which is just the £-polynomial of corner cutting multiplied by z2. Hence the convergence
result holds.

It i1s shown in the Introduction that the coefficients of the s.s. for B,,-curves are
given by (1.16). Thus the characteristic £L-polynomial of the s.s for By,-curves a,,(z) =

> o Ga,mz® has the form
(3.19) am(2) =27™(1 + z)™th

and

Hence by (3.14),

m m
510l = (3" a3 S (31,



proving the uniform convergence of the s.s. for B,,-curves.
The explicit formula (3.19) for the characteristic £-polynomial of a B,,-curve s.s., S,

allows us to conclude the existence of the scheme S, with the characteristic £-polynomial

o™ () = (12_iz>mam(z) — (142

Hence H%SmHoo = % and by Theorems 3.2 and 3.4, S*f° € C™ !(R) as is well known
from the smoothness of the B-spline functions.

3. 4-point interpolatory subdivision scheme

Interpolatory subdivision schemes retain the points of stage k as a subset of the points of

stage k 4+ 1. Thus the general form of an interpolatory s.s. is

fra = Fa s
3.20
(3.20) Fhoir = agasfh 4.
BEZ

The example we consider is a one parameter family of schemes given by the non-zero

odd coefficients
(3.21) a_3 = a3 = —w, a_1=da; = % +w .

For w = 0 this is the symmetric s.s. for By-curves. Questions of interest on this scheme are:
What is the range of values of the parameter w corresponding to convergent schemes? Can
such a scheme produce C'! functions? Note that for interpolatory schemes, convergence
implies uniform convergence, since the values {f*} are on the limit function.

The characteristic £L-polynomial of (3.20) with mask coefficients (3.21) is
(3.22) a(z) = —wz3 4+ (% + w) 14 (% + w) y—wzd
=273 (1 + 2)? <%22 —w(z — 1) (1 + 22>> ,
and
(3.23) %a(l)(z) =—wz Pt wzT L+ frtwe —w’

Hence

IzSille =3 +2]w],
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and the range of w which guarantees uniform convergence to zero of %Sl is | w |< i. This
range is not the best possible. By considering the scheme (%Sly with the characteristic

L-polynomial

(—w2_2 —+ wz ! —+ % —+ %Z + wz® — wz3> (—w2_4 —+ wz 2 —+ % —+ %22 —+ wat — wz6>

— w278 —w?z T — (lw + w2> 24 + <w2 — lw) 273 w?e? + (w + w2> P

-I-(i-l—wz—%w>-I-(%wﬁ-i—wz)z:—l-(%w—l—i—wz)zz—l—(i—l—wz—%w)z?)
-|-<w—|—w2> 24—w225—|-<w2—%w) 25— <%—I—w2> 27—w228—|—w229,

we obtain in view of (3.13)
1(551)% loe = max {| § +w | |+ | § +w? = Jw | +]w| [ 1+ w | 4w,
w| [w—3 [+ §+ 30 —w? | +20?}

Suppose w > 0, then the conditions on w become

(3.24) %w—l—?)wz—l— | i— %w—l—w2 |< 1, w|%—w|—|— | i—l—%w—wz | +2w? < 1,
Now, i F %w + w? > 0 for real w, hence the first inequality is 4w? + w — % < 0,
implying 0 < w < %\/ﬁ < % For w in this range the second inequality is also valid.

Suppose now that w < 0, then the condition on w determined by the second inequality in
(3.24) is

3
brdebut-u(i-w) <1s -2 cu<o.

i From the first inequality in (3.24), assuming —% <w < 0, we get

—w(ftw)+ i+’ —tw—wl4w)+w’ <1

hence —g < w < 0. No valid range exists when w < —

1
5

In fact the range |w| < %
is forced by a necessary condition derived in Section 4. Thus we conclude that the s.s.
(3.20), (3.21) converges for —2 < w < %\/ﬁ. The range —3 < w < 0 can be obtained by
considering results on schemes with non-negative coefficients in the mask. Computations

of || (%SQL |0 show that the range of convergence is indeed |w] < 1.
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Using the second line of (3.22) we conclude that for the scheme (3.20), (3.21)

%a(z)(z) = (12_:72)2 a(z) = P <22 —2w(z — 1)2 (1 + 22>>

= ! <22(1 —4dw) — 2wzt + 4w + 4wz — 2w> )

S

12

5

Hence H%SZHOO = 1. Calculating || <%52>2 || we obtain that for 0 < w < _1;';
0.154, || <%SQ>2 loc < 1, and the scheme (3.20), (3.21) generates C''(R)-functions. The

scheme S satisfies (3.1) only for w = 1/16. In this case

a(z)(z) = <2_1/4> (—1 + 922+ 622 + 223 — Z4> = <2_1/4> (1+2) <Z3 — 322 -3+ 1) ,
and 2a®)(z) = 1 (2% — 322 — 32 4 1), implying that |2 S5]|cc = 1. Indeed | (%S;;)k |oo =1
for all k, and S f° is not in C?*(R) even for w = 1/16. Yet, it is shown in [DL1], using

the formalism of Section 4, that (S°°f°)"(z) exists for x # a27% « € Z, k € Z4, and that
(S°°f%) is Holder of order 1 — ¢ for arbitrary small € > 0.

Figure 2. Curves generated by the 4-point and 6-point schemes

4. 6-point interolatory subdivision scheme.
In order to achieve C'?-limit functions we extend the support of the mask of the 4-point

scheme, and consider the scheme

2k—|—1 :fk
fzkcjil = (19_6 ‘|‘29> (fh ‘|‘f§+1) - (11_6 ‘|‘39> (fh_y ‘|‘f§+2) +O(fE_, ‘|‘f§+3) .
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For 6 = 0 it is the 4-point scheme with w = 1/16. Algebraic manipulations show that
[(385)°)|.<1. 0<@<o0.02,

proving that this scheme generates C2-limit functions in the above range of 6.

The algebraic manipulations are too involved to be performed without the help of a
computer program such as Mathematica.

Figures 2 and 3 depict the performance of the 4-point and 6-point schemes, and exhibit
the flexibility of the generated curves due to the range of values of the tension paremeters
w and € respectively.

In Figure 2 the closer curve to the control polygon is generated by the 4-point scheme
with w = .054, and the outer curve by the 6-point scheme with 6 = .02. In Figure 3 the
curves, from the closer to the control polygon and outward, correspond to the values of

the tension parameters w = .022, .04, and ¢ = .002, .014, .02.

Figure 3. The effect of the tension parameters in the 4-point and 6-point schems

Bibliographical notes.

The results of this section and the examples are taken from [DGL2]. The proofs use
the formalism of characteristic £-polynomials introduced in [CDM] and used further in
[DLM]. The generating functions technique, which faciliates the derivation of the various

L-polynomials related to a given scheme, is taken from [L]. The proofs given here of the
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case v = 1 in Theorem 3.4 and of the second claim in Corollary 3.3 are due to I. Yad-
Shalom. The 4-point scheme is introduced in [DGL1] and further analysed in [DGL2] and
[DLM]. The range of convergence %\/ﬁ < w < 3 was computed by M.J.D. Powell. The
range % < w < 0 can be concluded from the analysis in [MP3], of schemes with non-
negative masks. The 6-point scheme is analysed in detail in [W]. A simpler analysis based
on perturbation arguments in done in [DLM]. The necessity of the conditions in Theorem

3.3 for ¢ satisfying (2.16) is proved in [CDM].

4. The Matrix Formalism —the case s =1

Necessary and sufficient conditions for the convergence of subdivision schemes can be
formulated in terms of properties of two matrices which are sections of the infinite matrix
{aa—28}a,pcz, where a = {aq : a € Z} is the mask of the s.s.

Due to the finiteness of supp(a), there is a unique finite set of control points at level k,
FF, which determines all the control points corresponding to diadic values in the interval
[ﬁZ‘k,(ﬁ—l— 1)2"“] at levels above k. By the uniformity of the s.s., it follows that FJ
determines the two sets of control points at stage k41, sz;l and szﬁ_ll, corresponding to
the two half intervals [62_’“, (20 4+ 1)2_k_1] \ [(26 + 1)2_k_1, (0 + 1)2_’“]. Thus there are
two matrices Ag, A; termed refinement matrices, which transform the set F¥ into the sets
sz;l and szf":_ll respectively. The matrices Ay, Ay are of order N x N where N is the
cardinality of F}. The set Ff depends on supp(a).

Without loss of generality we may assume that supp(a) C {—n,—n+1,...,1}, since
a translation of the support corresponds to an extra monomial factor in the characteristic

L-polynomial of the scheme.

Proposition 4.1 Let supp(a) C {—-n,—n+1,...,1}, a; #0, a_, # 0. Then
(4.1) Ff ={ffin:acl,}, L={01,...n}, fh=gkp0

The refinement matrices Ay, Ay are of the form

(Ao)aﬁ = la-24 , a, B €l ,
(4.2)
(Al)aﬁ =di4a-—28, a,B€l,,
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and satisfy the relations

(4.3) szzﬂ = Aoka ) FZkK—:—ll = Alek )

where F} is regarded as the vector (Ff)a = ff_i_a, a € I,.

Proof: Relations (4.3) in view of (4.2) become

n+4{
k k k
(44) 2;_—1_1& = Z aa—ZﬁfH—ﬁ = Za2f+a—2ﬁfﬁ , € I )
eI, Bg=t
n+4{
k
(4.5) i = Z G1+a—2ﬁf£€+ﬁ = Zazz+1+a—2ﬂf§ ;o oa €y,
BEl, 8=t

which is exactly the way points at stage k + 1 are generated from points at stage k by the
s.8., if the summations in (4.4) and (4.5) include all the non-zero coefficients of the mask.
Indeed, in each sum of (4.4) the indices of the mask coefficients corresponding to « € I,
are {o, 0 — 2,..., & — 2n}, while in (4.5) these indices are {a + 1,0 — 1,...,a + 1 — 2n}.
The assumption on supp(a) guarantees that these sums consist of the full mask of the s.s.,
and that there is no smaller set than I,, for which (4.3) can hold. Hence ka in (4.1) is the
set of control points determining all control points S™ f°, m > k, in [62_’“, (0 + 1)2"“]. o
Remark : In case S is a uniformly convergent s.s., the limit function S, is given by
Y oacz fro (2’“:1; — oz), where ¢ 1s the S-refinable function of Section 2.  Since
supp(i) C (supp(a))’ = (—n,1),
{+n

chly“go <2k:1; —a) = chly“go <2k:1; —a), v € [KZ_k,(K—I— 1)2_k] ,
a={

aEl
and F} is easily seen to be (4.1). Also note that condition (3.1) on the mask a translates
easily to
(4.6) Aje=e¢, 1=0,1, where ¢, =1, a€l,.
Theorem 4.2. Let S be a uniformly convergent s.s. with ¢ its S-refinable function. Then

all eigenvalues of the refinement matrices Ay, A1 except for the eigenvalue A\g = 1 implied
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by (4.6), are of modulus less than 1. The left eigenvector of A, corresponding to the

cigenvalue 1, with components summing to 1, is {¢(v —a) :a € I}, v =0, 1.

Proof: By (4.3), forall k € Z,, FF

g = AFF). Now, since S is uniformly convergent

(4.7) Jim Fr.,=8>fl)e = Jim ANFY
and (4.7) holds for arbitrary vectors Fy. Thus all eigenvalues of A¢, except A\g = 1, have
modulus less than 1, and

(4.8) lm Af = A5, (A)as =vs, o,f €,

k—oo

where v 1s a left eigenvector of Ay satisfying vAg = v, ve = 1.
With f = § and ¢ € I,,, Ffzkf = AFFY, is the ('th column of A}, and therefore
by (4.8)

(4.9) lim Ffzkf = vse .

k—oo

On the otherhand, since ¢ = S, we conclude from (4.7) that limg_ o Ffzkf = @(—L)e.
Hence vy = (=), ¢ € I,. Note that v, = p(—n) = 0, since supp(¢) = (—n,1).
This observation is consistent with the structure of the last column of Ay, given by
(0,0,...,0, a_n)T. The proof of the analogous statement for 4y is similar. o

Theorem 4.2 allows us to determine the values of {Soofo(Z_koz) o€ Z} from the

computed values {f¥ : o € 7}.

Corollary 4.3. Let S be a uniformly convergent s.s., and let v satisfy vAy = v, ve = 1.

Then

(4.10) S®fO(27F) =N wsfly . (€L, kel .
Beln

Proof: Let ¢ be the S-refinable function. Then

S f0 — Z <Skf0>a99 <2k‘_a> :

aE”l
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and in particular S°°f° (027%) = 37, (S*f°)_ o(l — ). Since supp(¢) C (—n,1) we
conclude (4.10) from Theorem 4.2. o
k
Consider a diadic point (27F = ZﬁmQ_m, with ¢y € Zand (,,, € {0,1} for1 < m < k.
m=0
Then by (4.3)
F} =Ay ... A Al FY, .

Hence if S is uniformly convergent

S®FO (27 ) e = lim AJ'Ay, ... Ag FY, .

For x = ZﬁmZ_m, with ¢y € Z and {,, € {0,1}, we get a similar relation

m=0

(4.11) S®fx)e = lim Ag A¢,_,...AuF) .

m—0oo

Let S be a uniformly convergent s.s. and let A(()l), Agl) be the refinement matrices of the

scheme Si. It is not difficult to observe that
(412) 1AW= {(EAiE_l)aﬁ = In_l} . (BAE Vap=6an, acl,,
where E = {04, 8-1 — 60,5 : @, f € I,}. Indeed

{(df*) 4o a €L} = {2ABFfy a1},

and (4.12) follows directly from (4.3), after multiplication by E from the left. Also, since
(EA;E~Y)an = 8a,n, @ € I, all the eigenvalues of %Agl) are the eigenvalues of A; with
modulus less than 1.

The uniform convergence to zero of %Sl, which is necessary and sufficient for the
uniform convergence of S, can be reformulated in terms of the refinement matrices of the

scheme 5.

Proposition 4.4. Let S be a s.s. with a mask satisfying (3.1), and let Agl),Agl) be the
refinement matrices of S1. A necessary and sufficient condition for the uniform convergence

of S is the existence of a positive integer L, such that
(4.13) (OADAD AP <1, V(i) € {0,1)F
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Proof: It is easy to verify that condition (4.13) in view of (4.11), is equivalent to the
condition H (%Sl>LHoo < 1, which is necessary and sufficient for the uniform convergence

of S. O

Remark. The norm in (4.13) can be any matrix norm induced by a vector norm, since

by the equivalence of norms on the space of all matrices of a prescribed order,
ol Ay A oo < Aiy - Al S enllAiy o A oo

and by choosing m large enough we can guarantee ||A4; ...A; || < 1 whenever
|Ai, ... Ai,||lo < 1 and vice versa.

With the above observations, we can simplify the analysis of convergence of schemes
with characteristic £-polynomial of the form (3.15), with v > 1, if the schemes satisty
the necessary condition of Theorem 4.2. Here we use the scheme San» = 2775, instead of

Sa = %Sl, and hence have to analyze a simpler £-polynomial.

Theorem 4.5. Let S be a s.s. with a characteristic L-polynomial
a(z) = (="' +1)%(2), v>1,

such that its refinement matrices Ay, A1 have eigenvalues of modulus less than 1, except
for their eigenvalue 1. Then S is uniformly convergent if and only if the scheme Sav

corresponding to the L-polynomial ¢(z) converges uniformly to zero.

Proof: Suppose S is uniformly convergent. Then by Theorem 3.2, SA = %Sl converges

uniformly to zero. Since any initial data ¢° can be expressed as A f°, and since
SAVAka — Au_lsAfk 7 fk — Ska 7

Sav converges uniformly to zero.

To prove the converse direction, observe that the refinement matrices of Sai = 275,
corresponding to a(z)(z~* +1)77, j = 1,...,v, have spectral radius less than 1, since by
(4.12) their eigenvalues are a subset of the eigenvalues of Ay, Ay, which are different from 1.

Now by Theorem 3.2 and by the uniform convergence to zero of SA» the scheme Spv-1 1s
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uniformly convergent, and since the refinement matrices of Sn»-1 have spectral radius less

than 1, (4.11) implies that S%,_, f%(x) =0 for = € 2747, ( € 7. This and the continuity
of SZOV_lfO prove that SY,_; converges uniformly to zero. Repeating this argument v — 2
times we conclude that Sa converges uniformly to zero which, by Theorem 3.2, guarantees

the uniform convergence of 5. o

Combining Theorem 3.4 with Corollary 4.3 we get

Corollary 4.6. Let S be a s.s., with corresponding derived schemes S;, satisfying (3.17)
for y =1,...,v. Let A(()j),Agj) be the refinement matrices for the scheme S;,5 =1,...,v.
If S, converges uniformly then for k € 74 and ( € 7,

J

d ny .
(4.14) (%) (27F) = Y o (@SH) s d=1r
a=0

where v(9) satisfies v = v(j)A(()j), En_j o) = 1,7=1,...,v.

a=0 "%

Corollary 4.6 indicates a way to construct a good approximation to S°°f° from the
final computed values S* f°, by interpolating to the values of the limit function and its

derivatives, which can be computed for all points in 27%Z, according to (4.10) and (4.14).

Proposition 4.7. Under the conditions of Corollary 4.6, with v = 2m, let Q* ¢ C™~1(R)

be the unique function satistying for { € 7

k
(4.15) Q% a-s (e41y2-1 € T2m—1
d _ & _ .
@Q’“(@ M = (8 e, j=01,...,m—1.
Then
(4.16) 1S f° = Q%o e < Cu(1/29), Lel,

where Cy is a constant depending on {f?_i_a , a € I,} and S, but not on k.

The estimate in (4.16) is the classical error bound for Hermite interpolation. Cy is a

constant multiple of H dd; Seo o || so,[¢,¢+1]> Which is bounded by the convergence of S, and
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depends on the initial data F}. Comparting (4.16) with the error bound given in Corollary
3.3, we see the advantage in using Q*(z) instead of f*(z), in case p > (1/2)L.
The matrix formalism extends straightforwardly to the multivariate case where there

are 2% refinement matrices.
Examples.

1. General Uniform “corner cutting”.
The matrics Ay, A; for the uniform corner cutting with mask a3 = s, a9y = r,

a1 =1—s5,a_9=1—r,0<s<r <1, are

r 1—r 0 s 1—s 0
Ag=1| s 1—s 0 , Ar=10 r 1—7r
0 r 1—r 0 S 1—s

To compute the left eigenvector v of Ay, observe that

2
Evazl, vAg=v = v =0, rvg+4sv; =vg,

hence,
v={1 —r,s,O)/(l —(r —3)) :

By Corollary 4.3, S f0((27F) = 2=k 4 1_(873)%:-1- Note that for r = %7 s =

1—(r—s) ’

W=

S f0(27F) = %(ff ‘|’le€—|—1)7 i.e. the limit curve generated by Chaikin’s algorithm contains
the midpoints of all the segments of all control polygons produced by the scheme. Using

the mask of 57 derived in Section 3, we get

(1 r—s 0 (1 s 1—r
Ao _2< e 1—7“)’ A _2<0 r—3>'

S1 converges uniformly only if r — s = % In this case

1
Z v&l) =1, v(l)Agl) =) = vil) =0, vél) =1.
a=0

Hence %(Soofo)(KZ_k) = dff = 2k(ff+1 — fF), and the limit curve touches the control

polygon at their common points.
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2. 4-point interpolatory subdivision scheme.

The Scheme defined by (3.20) and (3.21) with the convention of this section has the
mask

a_5 = —w, a_3:%—|—w, a—s =1, G—lZ%—I-w, ap = —w,

with all other coefficients equal to zero. This shift of the support of the mask causes a
shift in the limit function, namely with the above mask S f° = f*(- — 2) where f* is
the limit function corresponding to the mask (3.20),(3.21) and the initial data f°.

By (4.2)

0 1 0 0 0
—w %—I—w %—I—w —w 0
Ag = 0 0 1 0 0 ,
0 —w %—I—w %—I—w —w
0 0 0 1 0

and hence v = (0,0,1,0,0), while by (4.10), S>®f°((27%) = ff_i_z indicating again the
(1)

interpolatory nature of the scheme. The matrix Ay, according to (3.23), has the form

2w 1 —2w 0
4 —2w 1 2w 0
o 0 2w 1 —2w ’

0 —2w 1 2w

and the left eigenvector v(!) is given by
o) = (—w,%—w,%—w,—w)/(l —4w) .

This together with (4.14), yields the following formula for the derivative of the limit func-
tion f = S f° at diadic points,

e
%JJf(Q_k) = T el e+ (5 = w0)(df e + (5 = w)(dfers — w(df ) ers §
2k
= 1~ 4w {wlec - %ff—i—l + %fzﬁ-s - wff+4}
2k

= 7 (of (0 =20275) = 3 A= 1)275) + (0 4+ 1277) —wf((0+2275) }

By Theorem 4.2 and the observation following (4.12), a necessary condition for convergence

of the scheme to C'°-limit functions is that the spectral radius of %Agl) should be less than

1. The eigenvalues of %Agl) are

M=1, NM=2w, A=31(14V1-16w), M\ =1(1-V1-16w).

38



Hence |w| < % is a necessary condition for convergence to C'° limit functions.

By (4.12) and the remark following it, all eigenvalues of %Agz) are those of A(()l) which
are less than 1 in module. Thus the eigenvalues of %Agz) are 4w, %(1 + M),
%(1 — m>, and a necessary condition for the convergence of the scheme to C'* limit

functions 1s 0 < w < i.

Bibliographical notes.

The matrix formalism as stated in Proposition 4.1 and (4.11) was introduced in [MP3],
and developed further in [DGL2] in the analysis of convergence and smoothness. The
derivation of the necessary conditions for convergence and the expressions for the values of
the limit function and its derivatives follows the derivation in [DGL1], where the example
of the 4-point interpolatory dubdivision scheme is analyzed. A similar analysis of the 6-
point interpolatory subdivision scheme is done in [W]. The use of second differences in the
convergence analysis is taken from [DGL2]. See [CDM] for generalizations. The matrix

formalism for multivariate s.s. is discussed in [CDM].

5. Interpolatory Subdivision Schemes — the case s =1

An interolatory s.s. has a mask a with the property aso = 64,3, @ € Z, for some
B € Z. Without loss of generality we assume that 3 = 0. The condition asy = 0n,0, @ € Z,
guarantees that for all k& € 7 the points {(a2_k, Fyiac Z} , with f* = S*f° belong to
the graph of the limit function when it exists. This property implies that an interpolatory
s.s. which converges in the weak sense of (2.5) converges uniformly. The integer translates
of the refinable function ¢, corresponding to a converging interpolatory s.s., are (°°(Z)-
linearly independent as well as weakly-local linearly independent, since ¢(a) = 64,0, @ € Z.
Hence ¢ satisfies the stability condition (2.16).

There is a simple necessary condition for convergence to C'”-limit functions, for inter-

polatory s.s.

Theorem 5.1. An interpolatory s.s. S, converges to C'V-limit functions only if it repro-
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duces w, namely if

(5.1) (F+35)'=> aqsalk—a), (=01,...,v, kel.
aE”l

Proof: Consider the n’th order divided difference of the limit function f = S f° given

by
(5.2) fflr)=lr+ex+27 e, 27 f =" Z bif(z +27%) .
1=0
where b, ! = H?:O,j;éi(Q_i —279),4=0,...,n. For fixed € 27%Z and e = 27, ¢ > F,
we get from (5.2), after expressing f(z +27'7¢) = ffj;i%_i_l, in terms of the mask and the

values of f¢+'=1 the following relation:

O fle) =2 Y b} ar-zafle+ 277

1=0 a€E”Z
=2" ) a1 200”60y f(x) .
a€E”Z

Taking the limit as { — oo, and recalling the assumption f = S f° € C¥(R), we get

(5.3) Frl ) =2 s0a"fM(2),  n<wv.

aEl
Since (5.3) holds for all points € 27%Z, k € Z,, which are dense in R, and since ) ig
continuous for n < v, (5.3) holds for € R. But f(")(z) = 0 cannot hold for all arbitrary

initial data f°. Hence

IA
3
IA
<

(3)" =) a1-24a", 0

aE”l

b [ =

which is equivalent to (5.1) and hence to reproduction of m, by S. o
This easy to verify property of S, guarantees the existence of the schemes Sy,...,5,41,

which are used in Theorem 3.4 to prove the smoothness of the limit functions generated

by S.
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Theorem 5.2. Let S be an interpolatory s.s. If S generates C'V-limit functions then there
exists for eachn, 1 <n <v+4+1, as.s., S,, with the property

(5.4) d"(Sk"Hfo) = Snd"(Skfo) , kel .
Moreover, S,, converges uniformly to C'*~"-limit functions for 1 < n < v.

Proof: Since (5.4) holds for n = 0 with Sy = S, in order to prove the first part of the
claim it is sufficient to show that if (5.4) holds for some n < v then it holds for n + 1.

Starting with f0 = o" , « € Z, and recalling that by Theorem 5.1, f(z) = 2™ is
reproduced by S, we get from (5.4) that S, reproduces g, since d"f0 = d"(S*f%), =
n!. Hence the mask a™ of S,, has property (3.1), which together with Proposition 3.1
guarantees the existence of S, 41.

To prove the second claim, observe that any initial data ¢ can be represented as
d" fO for some data fO. Let f¥ = S¥f0 f=8%f0 ¢k = Sk40 Then by the interpolation
property of S, f¥ = f(a27%), and it follows from (5.4) and the continuity of f(™) that

=(d"fMa=f"0E), 27Fa<¢<2Ma+n).

Thus
lga = F (@278 = [ 1) = f (@27

with |¢ — a27%| < n27*. The uniform continuity of f(™) on any closed interval implies the
uniform convergence of S¥¢° to the limit function f(™ € C*~"(R). o

Combining Theorem 5.2 with Theorems 3.2 and 3.4, we get

Theorem 5.3. Let S be an interpolatory s.s. which reproduces w,. Then the following
conditions are equivalent

(a) S converges uniformly to C”-limit functions.

(b) S, converges uniformly to C"~7-limit functions for n = 1,2,...,v.

(c) %S,,_H converges uniformly to zero for all initial control points.

The extension of Theorems 5.1 and 5.2 to multivariate interpolatory s.s. is discussed

in Section 7.
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Bibligraphical notes.

The results of this section are taken from [DL3]. The necessary condition of Theorem
5.1 appears in [DL2] in terms of the matrix formalism. The results of this section can be
concluded also from those in [CDM], concerning s.s. with a refinable function ¢ satisfying

(2.16). Yet the direct analysis of the interpolatory case is much simpler.

6. Analysis of Convergence — s > 1

Two different extensions of the analysis of convergence of univariate s.s. are presented

here for the analysis of multivariate schemes of the form
(61) f§+1 = Z aa—?ﬁfg y Q€ z° )
pez:

with masks satisfying
(6.2)  ayap=1, y€E,.

pez:
Both methods are based on a “contractivity principle”.
Definition 6.1. A s.s. S is contractive relative to a non-negative, non-trivial function

D, defined on all sets of control points, if for f € (°°(Z°), D(f) < oo and there exists
p€(0,1) and L € Z4 such that for all f € (°°(Z%)

(6.3) D (S'f) < uD(f) .

Theorem 6.2. Let S be contractive relative to D, with a mask a satisfying (6.2). Let
S be a uniformly convergent s.s. with a mask a and S- refinable function, ¢ € C(R®) of
compact support, satisfying

(6.4) Y dlz—a)=1, zeR’,

aEZl®

(6.5) il flloe 1Y fatb(- — a)lloo S 2llflle » f €T .

aEZl®
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If

(6.6) 1S = S)fllw < eD(f) , feLXT),

then S converges uniformly.

Proof: For any initial control points f° € (°°(Z%), let

(6.7) i)=Y (SH) ¢ (2fa —a) = Y <§S’“f0>a v (2 —a) |

[ [

where for the last equality we used (2.12) with & = 1. As has been observed in Lemma
2.2, 1t is sufficient to show that the sequence of functions {fk() ke Z_|_} is a Cauchy
sequence to conclude the uniform convergence of {Skfo ke Z_|_} to a continuous limit

function. By (6.7), (6.5) and (6.6)

A0 = Ol < \

3 (55ka _ §5ka> (2" — )

@ ‘
(. @)

< 6 (5 . §) S Floe < (c20)D (S*£°)
Application of the contractivity property (6.3) yields
k k £ j
(6.5) 79100 = POl < (eaelplt] amax D (577°)
Thus {fk() ke Z_|_} is a Cauchy sequence, and S is uniformly convergent. o

Remark.  Theorem 6.2 is an extension of the sufficiency part of Theorem 3.2, which
claims that S is uniformly convergent if %Sl converges uniformly to zero. In this case (6.3)
holds with D(f°) = ||Af% e , 1t = || (%SQL oo < 1 and ¢ = Bi(- + 1), the symmetric
univariate B-spline of degree 1.

We apply Theorem 6.2 in two different ways, to the analysis of convergence of multi-
variate schemes. First we use it to prove convergence of schemes with mask a consisting
of positive coefficients on a rectangular support. Then we prove a multivariate analogue
of Theorem 3.2.

In the following we use the multi-index notation. In particular © = (a1,...,2s),

% = Hle i o = Ele lai|, ™ = Hle z, n € L. Also x < y stands for =; < y;,
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i=1,...,8,and e = (1,...,1) € Z°. We note that the formalism of generating functions

introduced for the case s =1 in Section 2 is valid also in the multivariate setting. With

z) = Z fhzo a(z) = Z anz®, z=1(z1,...,25) ,

aEZl® aEZl®

relation (6.1) can be written as

(6.9) Frii(z) = G(Z)Fk(zz) \
and
(6.10) Foprn(z) = 1 a(z2 V(22" = dP () Fu(22") .

=0

.

The following proposition, which has interest of its own, is required in our analysis.

Proposition 6.3. Let S be a uniformly convergent s.s. defined on Z, with a mask a =
{ aq o € supp(a } and S-refinable function p. Then the tensor-produce s.s. & with the
mask a = {aa = H Qo; @ O E ZS}, is uniformly convergent and its refinable function ¢ has

=1
the form

(6.11) o(x) =[[e(zi), weR".
Proof: The characteristic £L-polynomial of & is

a(z) = ) @z =) Haal 2 af

aEZl® acZ® i=1 =1

w0

where a(z) = Y cz7 @az®. Then by (6.10), the characteristic £-polynomial of S” has the

form
afl(z) = >l = LH HLﬂl H a(z) .
a€Zs j=0 i=1 j=0 i=1
Thus
(8780 = olf) = Tl = T[(5" )
=1 =1
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and by taking the limit L — oo, and recalling that $°°6 = ¢, we conclude that the sequence
{8*5 : k > 0} is uniformly convergent to a limit function ¢ satisfying (6.11).
Since ¢ is of compact support and & is linear, we conclude that S is uniformly con-

vergent and

S¥f = flé(-—a). o

a€”ls
Theorem 6.4. Let a be a mask satistying (6.2) and the conditions

Ll

Supp(a) = H wlvul] nes ) Qo > 0 ) S Supp(a) )
=1

where ( = ({1,...,0s), u=(uy,...,us) € Z° satisty { < 0-e < u. Then the corresponding

s.s. S converges uniformly.
Proof: Define for f € (°°(Z°)

(6.12) D(f) =sup{|fa — fs| : (a,3) €T},
where T' = {(a, ) € (Z°)* : { —u < o — B < u — L} . Also observe that for any constant ¢
and fixed a, 3, by (6.2) and the hypothesis on the mask

(6.13) (Sfla—(Sfla= > (fy—)(Ga2s —ap_2-)

761—‘04”6
where I'y 3 =T'y UT'g, with

Fo={y:{<a—-2y<u} .

Now for (a,3) € I', and 7,6 € ' 3, we get (7,6) € I' | since
(<a—2y<u, (<a—-20<u = (—u < 26 —79) < u—1"0,
(<a—=-2y<u (<f-205u = (—u<a—-F=-20—-0)<u—-"0,
— (—u < v =06 < u—-"L,

and similarly for the two other possibilities. Hence it is possible to choose ¢ in (6.13) so

that |f, — ¢| < %D(f) for v € I'y, 3, and to conclude that for f € (°°(Z°)

D(Sf)=supq | 3 (fr—)(aazy —as_2y) | : (@.0) €T
v€la s
1
(6.14) <D b D ldamzy — agz] i (@) €T

761—‘04”6
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Now, if for each (a, ) € I' , there exists v* € ' 3 such that
(6.15) (<a—-2v"<wu and (< [F—29"<u,

then

|aoz—2'y* - aﬁ—27*| < Qo—2~* F Ag—2~*

and for all (a,3) € ', by (6.2)

Z |Ga—2y — ap_2y| < 2.

761—‘04”6
The contractivity relation
(6.16) D(Sf) = puD(f)
now follows from (6.14) with
1
(6.17) p= 5 sup Z ldq—2y —ag—o~| (e, 3) €T 3 < 1.
761—‘04”6

To prove the existence of v* satisfying (6.15) for (a, ) € I' , assume without loss of
generality that a; < f; for some 1 € {1,2,...,s}. Then

(6.18) 0§6i—ai<ui—£i.
Rearranging (6.15), we get
o —u; <29 <oy —4; and B —u; <297 < B — U

but since a; < B, Bi —u; < 29F < «; — 04, and by (6.18) a; — {; > (; — u;, a condition
which guarantees the existence of an even integer in the interval [#; — u;, a; — €;]. Thus
2~ 1s chosen to be that even integer. The argument is repeated for all 2 = 1,...,s. To

complete the convergence proof choose ¢ in Theorem 6.2 to be

(6.19) (x) = H By(zi+1).
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Since the mask defining By(- + 1) consists of three positive coefficients u_y,ug,uy, the
mask defining ¢, by Proposition 6.3, has the form a, = uq, -+ uns,, @ € Z°, so that
supp(a) C supp(a). As both masks a and a satisfy (6.2),
(6.20) (Sf)a = (5Fla= Y (fs—¢)(da—2p = da—25)

ﬁel—‘a

To see that ¢ can be chosen so that

fs—el <3D(f) . BET.,

observe that for v,8 € 'y, { < a — 20 <w and { < a — 2y < u, hence (,7) € I'. With
this observation we get from (6.20)
~ 1 N
(6.21) (5P~ (5F)al < 2D S (s +ia-25) < D)
BEr
and (6.6) of Theorem 6.2 holds. Now (6.16) and (6.21) together with Theorem 6.2 yield
the uniform convergence of 5. o

A direct consequence of Theorem 6.4 is

Corollary 6.5. Let b be a univariate mask with positive coefficients on its support. Let

q(z) = > baz® and consider the s.s with a characteristic L-polynomial
aEl

a(z) = (12+ZZ>VQ(Z) =Y aasn

Then the s.s. with the tensor-product mask
(6.22) a={dq =da, " aq, :a €L},
generates limit functions which are in C”(R?).

Proof: By Theorem 6.4 the s.s. with mask b is uniformly convergent. Hence by Theorem
3.4 the s.s S with the mask a = {ao : a € Z} converges uniformly to C'”(R)-limit functions.
Let ¢ € CY(R) be its S-refinable function. By Proposition 6.3 the s.s & with the mask

(6.22) is uniformly convergent, and the S-refinable function has the form

(6.23) ox) =pler)--plzs),  zeRY,
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which in view of Theorem 2.4 proves that this scheme generates C”(R®)-limit functions. o
Corollary 6.5 applies to tensor-product schemes obtained from uniform B-spline s.s.
These schemes have positive masks on rectangular supports. (Recall that (1 + z)*t12-"
is the characteristic £L-polynomial corresponding to B-spline curves of degree n.)
A main tool for the analysis of convergence of multivariate s.s. is an extension of
Theorem 3.2 to the multivariate setting. This extension requires the introduction of a

vector of differences in the coordinate directions at each o € 7%:

(624) Afa:{fa+e(’)_falglgs}7
(1)

where e(9) € 7 is defined as e} = ¢;5, j = 1,...,s. The use of the contractivity principle

1s relative to the function

(6.25) D(f) = sup [Afale s FELZ(L),

where |v]|o = max |v;], v € R”.
1<i<s

In order to prove property (6.6) of D we need the following lemma.

Lemma 6.6. Let p(z) € L satisfy
(6.26) p-er) =0, yeB. (o =][-1
Then there exist pi,...,ps € £ such that
(6.27) pe) = Y p) - 1)
=1

Proof: The claim for s = 1 is obvious. We prove it by induction on s. Suppose the

claim holds for s — 1, then

s—1
P21, 2sm1, 1) = Zpl,i(zlv"-vzs—l)(zi_z -1),
(6.28) =1

s—1
p(Zlv cee 9 Z5—1, _1) = Zp_l’i(217 . 728—1)(21‘_2 — ]_) .
=1

Now, the polynomial ¢(z) = %[(1 +za)p(z1s ooy 2s—1, 1)+ (1 — 25 )p(21, . ooy 251, —1)]
satisfies ¢(z) = p(z) for z; = +1, hence there exists ps € L such that p(z) — ¢(z) =
(252 — 1)ps(z), which in view of the definition of ¢(z) and (6.28) implies (6.27). o
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Remark. The representation (6.27) is non-unique for s > 1.

Proposition 6.7. Let S and S be two s.s. of the form (6.1), with masks satisfying (6.2).
Then for f € (>°(Z°)

(6.29) I(5 - §)f| < ED()
where E is a constant depending on the masks of S and S.

Proof: Let a(z) and a(z) denote the characteristic £L-polynomials of S and S respectively.
Then by (6.2), d(z) = a(z) — a(z) satisties (6.26), and therefore by Lemma 6.6,

(6.30) d(z) = a(z) —a(z) = Z eil =)z = 1),

where e;(2) = czs €ia2® €L, 1 =1,...,5.

Using the generating functions formalism, we conclude from (6.30) that

Y (S =S5 )az = d(2)Fu(z?) = ) eilz)(z77 = DFu(%)

aEZl® =1
Z Z a—|—e(i) - fs)zza °
=1 [ =y/A
Hence
(6.31) (SFF— S5, :Z > iaap(Fhien — F5)
1=1 B€Z*

and the claim (6.29) follows from (6.31) and (6.25), with

(6.32) E = max-cp, Z:l % l€iv—2a] - o
1=1aec/®

In the univariate case, conditions (6.2) guarantee the existence of the scheme %Sl for

Af. In the multivariate case we get an analogous result.

Proposition 6.8. Let S be a s.s. with a mask a satisfving (6.2). Then there exists a

matrix mask

(6.33) A={A,:a€2°} C R xR*,
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with the property

(6.34) (ASfla =Y Aa-2s(Af)g, a€l®.
pez:

If we denote by Sa the s.s. with the matrix mask (6.33) then (6.34) can be written as
(6.35) AS = SaA

where A maps a set of control points defined on Z° into a set of control vectors (Af), € R®

defined on 7°.

Proof: Consider the £L-polynomial a(z) = > anz® of the mask a. By (6.2)
aEl*

a((=e)7) =0,  y€E\{e},

ale) = 2° .

(6.36)

Since a;(2) = a(z)(z;" —1),i = 1,...,s satisfies ai<(—e)7> =0, v € E;, we conclude from

Lemma 6.6 that

Ll

(6.37) (7' =1)a(z) = Z (577 =1 aqj(z) , @jel.

J

Consider the vector

(7' —e)Fp(2) = (Z—l —e) Z frze = { Z (f!:_i_e(i) —fcly“) 2%, izl,...,s} :

aEZls aEZls

Then by (6.9) and (6.37)
(6.38) (2_1 —e)Fry1(2) = a(z) <Z_1 — e) Fk(zz) =Q(z) <Z_2 — e) Fk(zz) \
where Q(z) is a matrix with elements in £ of the form

Q(z) ={gij(=)} ;21 = Y Aaz®,  Aa€R xR,
aEl*

The vector equation (6.38), when equating equal powers of z, yields
(6.39) (A e = Aacas(Aff)y,  ael”,
B

which proves the claim of the proposition. o
Combining Propositions 6.7 and 6.8 with Theorem 6.2, we obtain an extenion to the

multivariate case of Theorem 3.2.
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Theorem 6.9. Under the conditions of Proposition 6.8, S is uniformly convergent only if
SkAfY converges uniformly to zero for all initial data f° = {f2 € R: « € Z°}. Moreover,

S is uniformly convergent if SX ¢° converges uniformly to zero for all initial control vectors
@ ={ R :a 2.

Proof: The proof is analogous to that of Theorem 3.2. Suppose S converges uniformly,

and let f¥ = S*f9 and f> = §>®f°. Then for any bounded domain @ C R* and € > 0,
there exists K (e, ) such that for all 27 %ay € Q, ag € Z°, and k > K(e,Q)

[(SAAS ool = max |f5 4o = fa,|

= 125 {‘fso—l-e(i) — e a + 2_ke(i))‘

+ | £h = 1R )| + 22 e + 27 — (27 ag)|}

< 3e .

Here we used the uniform continuity of f* and the uniform convergence of S on the
domain = Q + 27 KD € R : 2] = 1}. Thus SkAfO converges uniformly to zero,
proving the necessity part of the theorem.

To prove the sufficiency part, observe that by the assumption on Sa, for k& > K(e),

fOel=(z®), and 6 = {8a,0 : o € 7%}

Ll

D (Foien = FSKE D)oo

=1 [e%e)

28: Sﬁée(i)
i=1

(6.40) sup ‘(SﬁAfo)a‘oo = sup
aEl* aEl*

S Ai sup {‘@Afﬂ)ahm}
aEl*

< esup [(AF)]

)
0o aEl* >

where the last inequality follows from the uniform convergence to zero of the sequences

{Sksel) i =1,...,s, and the one before it from the relation
(6.41) supp(Sk dv) C (2% — 1)<supp(A)> , veR’.

Relation (6.41) is derived in a way similar to the derivation of the scalar case (see the proof

of Theorem 2.4).
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Inequality (6.40) guarantees the existence of u € (0,1) and a positive integer L such
that for all fO € (°°(Z*)

(6.42) D(SEf") = sup [((S2)"Af), | < uD(f")

where D(f) is defined in (6.25). Thus S is contractive relative to D, while by Proposition
6.7, S satisfies (6.6). These together with Theorem 6.2 imply the uniform convergence of
S. o

Remark. Let ||Sk|« be the operator norm of S% relative to the norm
19°[lec = sup [galeo
aEl*

defined on control vectors of the form ¢° = {¢° € R* : « € 7°}. Replacing Af° by ¢° in
(6.40), we conclude the existence of L € Z4 and u € (0,1), both independent of ¢°, such
that

(6.43) 1529 llee < wllglloc -

Thus ||S%]lc = £ < 1, is equivalent to the uniform convergence to zero of all sequences
of the form {S%¢°}. This condition which is sufficient for the uniform convergence of S
might be too strong, since in the proof of Theorem 6.9 we use (6.43) with ¢° = Af°, and
the space {Af fe KOO(ZS)} is a proper subspace of

(((2*)) ={g:9a €R*, 0 €Z° , ||g]lo < o0} .

That this is the case, can be concluded from the following relations satisfied by all control

vectors of the form Af:

(6.44) D [(Af)aper — (Af)a] = €D [(Af)areir — (Afla] ., a€Z,

where 7,7 € {1,...,s}. It can be shown by using the matrix formalism of Section 4, and
in particular the approach of Proposition 4.4, extended to the multivariate setting and to
matrix masks, that if {SXAf} converges to zero for all Af, then there exist L € Z4 and
f € (0,1) such that

(6.45) ISKAfllso < EllAflloe ,  f € L2(Z7).
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Thus the necessary condition of Theorem 6.9 is also sufficient, but impractical, since the

estimation of /i is very difficult, in cases where i < ||SX||oc-

In the following proposition the form of ||Sk|lo is expressed in terms of the mask

A. For that we use the notation ESL = {a € 75 o< 2Le} , Al = {|Ai]‘|}jj:1 and
| A]|l e = max{zjzl |Aijl:i=1,...,s}.

Proposition 6.10. Under the conditions and notations of Proposition 6.8, let

(6.46) QU() = Q(=)Q(*) - Q(=*"") = Y Al

aEZl®

Then

(6.47) 155 oo = maX

J(z ],

Proof: Let Gi(2) =) cz: gk 2 with g% = Sk ¢°. Then Gyy1(2) = Q(2)Gi(z?) and in
view of (6.46)
Grrr(z) = QM(2)GH(=>) |

or equivalently

L s
O)a = Z A[ozEZLﬁgg R a€e’l”.
pezs

Hence

L
1S56°1e < > 1AL I8l

Bgezs
and for ¢° € (KOO(ZSDS
(6.48) 15X9° | < [lg°[loc max fgfgg (Z 4.2 2Lﬁ|> -

pers

Inequality (6.48) implies that

©049)  1Skle S max| (X 14000 ) | = e | (X 140,,,))

BezZs BezZ®

(. @) (. @)
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To complete the proof of (6.47), it is sufficient to exhibit ¢° € (KOO(ZSDS, 19°||oc = 1, for
which

155"l 2 (Z 41 2Lﬁ|)

(. @)

Let v* € EL achieve the maximum in (6.49), and let :* be such that

I 8
H( > |A[7*]_2La|>H — ( ST A ey, ) .
aEZ* o 1=1 aEZ* i,
Choosing ¢° of the form

. {sgn(A[yL]_zL Jixj . J = 1,...,3} . v —2ba e supp(AlHy
9o =

0. otherwise ,
we get g%l = 1, and
L
NETIERCE DU I b T IR
aE”Zs a€”Z: j=1
Thus by the choice of ~* and *

ERUNEN0 3) SIFIN) -

a€Zs j=1

(L]
IEEN)
aEl* o
which completes the proof of the proposition. o

Remark. Suppose S have a characteristic £-polynomial of the form

(6.50) a(z) =q(z) H(Zz_l +1), ge Ll .

=1

Then the s.s. Sa is “diagonal”, namely Q(z) in (6.38) is the diagonal matrix

Q(z) =a(z)diag {(z1 "+ 1) (zg '+ D)7 )T

and Sa decomposes into s scalar s.s., Sa,, with the property SAi(e(i) AR = e() A R+

corresponding to the £-polynomials a(z)(z;' +1)71, i =1,...,s. Also
(6.51) IS5l = max 15X lloe . LE€Z4,
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and the condition ||SX|loc < 1 for some L € Z is necessary and sufficient for the conver-
gence of S.

This remark holds for more general forms of a(z) in (6.50), namely

(6.52) a(z) = g(=) [J="" +1).

=1
where (1) ... 005 € 7° satisfy
(6.53) | det(6V,...,00)| =1.
Then there exist s schemes Sy Aty f¥ = Apy SF¥, with (Agi) f¥)a = 5—1—9(1') — fk
t=1,...,s. If all these schemes converge uniformly to zero then S converges uniformly.

This follows from the observation that by (6.53) any v € Z° can be expressed as a linear
combination with integer coefficients of #(1), ... 6} and therefore there exists a finite set

of matrices {B~}, with elements in {—1,0,1} , such that

(Afk)oz — ZB’Y{AO(l)fkv SR 7A9(5)fk}§—'y ’
Y

implying that {Af*};>0 converges uniformly to zero.
In Section 8 we present an example of a one-parameter family of interpolatory s.s. for

the design of surfaces and analyze its convergence and smoothness.

Bibliographical notes.

The contractivity principle (Theorem 6.2) and its application to the convergence of
schemes with positive masks on rectangular supports follow [CDM]. The convergence anal-
ysis based on s.s. with matrix masks appears in [DL3] and [CDM], but not in full details.
The generating functions technique for the derivation of the various £-polynomials is based

on [L]. Proposition 6.10 is due to S. Hed [H].

7. Analysis of Smoothness — s > 1

The analysis of smoothness of schemes which do not exhibit directional factorization
of their characteristic £-polynomials such as in (6.50) or (6.52), requires the introduction

and analysis of non-degenerate s.s. with matrix masks.
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Definition. A s.s. with a matrix mask is called non-degenerate, if the components
of the limit vector-valued function generated by the scheme are linearly independent for
generic initial data.

Two key observations in the analysis of such s.s. are the analogue of Proposition 2.1
and the necessity part of Theorem 6.9. We state the results without proofs, because the

proofs are based on the same arguments.

Proposition 7.1. Let S be a uniformly convergent s.s. with a matrix mask
(7.1) A={A,:a €’} CR" xR".
Let f* = S*f0 = {f* c RY : o € 7°}, and define

(7.2) Aff={(Af"aaer?y,  (Affa={flo —foaii=1..s}.
Then {Af*} converges uniformly to zero, namely for f° € ((°°(Z*))¢ and any e > 0,

[AF oo = max max |f3) 6 = falee <€, k> K(e).

Moreover, if S is non-degenerate then
(7.3) Y Avsa=Ine, 7YEE,,
a€”ls

where Iy« is the unit matrix of order (.

Remark. The operator A maps sequences of scalars {f¥ € R: o € Z°} into sequences
of vectors of order s as in Section 6, and it maps sequences of vectors of order ¢ into
sequences of matrices of order ¢ x s as in (7.2).

We first discuss the simpler case of a s.s. S with a scalar mask a. In the convergence
analysis of such schemes in Section 6, it 1s shown that the necessary conditions for conver-
gence (6.2) imply the existence of a s.s. Sa with a matrix mask (6.33) satisfying (6.34).
Let S, =25, and f*¥ = S¥f0, then

(7.4) Sidff = afttt . dff = 2FAFF e Re .

The following is a direct extension of Theorem 3.4 with v = 1, and the proof supplied

is an extension of the proof of Theorem 3.4.
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Theorem 7.2. Let S be a uniformly convergent s.s. with a corresponding scalar mask a
and a s.s. Sy satisfying (7.4). If S; converges uniformly then S* f° € C1(R®) for all initial

data f°, and Sy is non-degenerate.

Proof: Let f' =4, f¥ = 5% and define y(x) = [[_, Bi(1 + i),
flay= 3 fip@e—a), oMoy =Y (df)at2'r—a) .
a€”ls a€”ls

Since ) cz: ¥(- —a) = 1, by Lemma 2.2 and its extension to s.s. with matrix masks

(7.5) lim f*(z) = S™f°(x) = p(z) , lim ¢g*(z) = Sdf°(z) , r e R,

k—oo k—oo

and the convergence is uniform.

Introducing a sequence of vector valued functions h*(z) with components

W)= ) (dif¥ )iz —a),  i=1,...s,

aEZl®

where d; f¥ = ¢ . df*, and ;(x) = (2)H(z;)/By(1 + z;), with H(z;) = 1 for z; € [0,1]
and H(x;) = 0 elsewhere, we first show that

(7.6) g () = Rf(@)] o, < elle®? - Adif* o -

Now, gf(z) = hi(x) = X,ez:(dif*)a($(2¥0 — a) = ¥i(2%2 — a)), and since ¢i(z) =
() — bi(x) satisfies ¢;(x) = —oi(x — V) for x; € (0,1) and ¢;(x) = 0 for z; & (—1,1),

gzk(x) - hf(:z;) = Z <(difk)a+e(i) — (dlfk)OZ)g(Qkx —a),
aEl*
where g(:p) = —¢(x) for x; € (0,1) and g(:p) = 0 elsewhere.
Thus

gt = bflloe < - AdifHlloo ]| D2 624 - —a)
ac’l®

oo’

proving (7.6), in view of the local support of 5 and the bound H%HOO =1.
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By the uniform convergence of S and by Proposition 7.1, {Adfk};Ql converges uni-
formly to zero, and due to its compact support {HAdkaoo
bining this with (7.6), (7.5) and the bound

}kzl converges to zero. Com-

[7* () = S7edf° || < [|h*(x) — 9" (@)  + 9" (x) = STedf’]| -

we conclude the uniform convergence of h¥(x) to S®df°. Here the sup-norm of vector
valued functions u = {ul eC(R*), 1=1,...,s} is defined by

lelloo = max fusloo = max ma Jui(c)]
1<i<s rER® 1<:<s

To complete the proof of the theorem we show that dp = S{°df?, with § = (%, N a%q).

Rewriting h¥(z) as

W) = R (i(2b e — a + €)= gi(2F2 —a)) |

aEZl®

and observing that

/_ (i(x + (7 4+ 1)) — (@ + D)) dr = (x4 te?) |

we conclude that
t

fk(:zj + te(i)) = / hf(:z; + Te(i))dr \

— 0

which in view of (7.5) implies the uniform convergence of the sequence
{fioo hf(:z; + Te(i))dT}kZO to @(x + te(i)). On the other hand this sequence converges
uniformly to {fioo e(®) . Sdf(x + Te(i))dr}, due to the compact support of the inte-

grated functions. Therefore

0
Ox;

S

ooy 9

(7.7) o =eD. 5% c C(RY), i=1

proving that ¢ = S f° € C'1(R*). Since ¢ is of compact support, there is no v € R® such
that vT0p(z) =0, = € R®, and therefore S; is non-degenerate . O

To analyze smoothness of higher orders, a result as that in Theorem 7.2 for s.s. with
matrix masks is needed. Before that the existence of Sy for non-degenerate schemes should

be guaranteed.
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Proposition 7.3. Let S be a s.s. with a matrix mask (7.1) satisfying (7.3). Then there

exists a 5.5. SaA with a matrix mask
Q={Qq:a€Z°} C R® xR",

operating on the matrix Af¥, defined in (7.2) and rearranged in a vector of length (s, such

that

(1.8) (AFH) = (SaAf)a = 3 Quoss(AfF)s . Fr=SH°

pez:

Proof: By (7.3) the matrix polynomial A(z) = >_

acze A, 2% satisfles

(7.9) A(z)=0, z € E\{e} , Ale) =2°Ipxy.
Hence, by Lemma 6.6
(7.10) (= (AR), = BUIE)EE —e) . ij=Tosl,

with B(i’j)(z) a matrix of order s x s with L-polynomials as elements.

Let Fi(2) = > cz- frze, where f* € RY, then
(1) Fen() = AGRG) . (= Fini(2) = BE)E — OF() |

with B(2) = > cz: Baz®, where B, is a linear map from matrices of order s x { to matrices
of order s x (.

Rearranging the matrices (Af¥),, o € 7Z°, and (z — e)Fy(z) = EQEZS(Afk)aza
into vectors, we finally get (7.8), with {Q : @ € Z°} the matrices obtained from the
corresponding rearrangement of {B, : « € Z°}. =

Once the existence of Sa is established, analogous results to Theorems 6.9 and 7.2,
stating sufficient conditions for the convergence of s.s. with matrix masks, and for the
smoothness of the generated vector-valued functions are needed, in order to complete the
analysis of higher order smoothness of multivariate s.s. with scalar masks. We state these

results without the proofs, which are straightforward generalizations of the proofs given to

Theorems 6.9 and 7.2, with f* regarded as a vector rather than a scalar.
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Proposition 7.4. Let S be a s.s. with a matrix mask (7.1) satisfying (7.3), and let Sa be
the s.s. guaranteed by Proposition 7.3. S is uniformly convergent if S converges uniformly
to zero. S generates C''-limit vector-valued functions if S; = 2Sa converges uniformly. In

this case

(7.12) 9S>0 = S°df° .

A repeated application of Proposition 7.4 yields the analogue of Theorem 3.4 with
v > 1. For that we introduce the vectors d” f* consisting of all distinct differences of order

v in the corrdinate directions. First consider the vector
(7.13) {(diydiy -+ diy f¥)a : (1, i) € {1, s} ) €RY

for all s repeated differences of order v, where d; = e'¥ . d. There are only M,y =
<”+j_1> distinct elements in (7.13), since (d;, d;, - - - di, f*)a is independent of the order of
(1,92, ..,1,). We define (d” f¥), as the vector consisting of the ms,, distinct elements in

(7.13).

Theorem 7.5. Let S be a s.s. with a scalar mask a. S converges uniformly to C?-limit

functions, if there exist s.s. Sy,...,.5, with the property
(7.14) S;diS*f0 = gigktifo i=1,...,8,
and S, converges uniformly.

Remark. It is sufficient to require the uniform convergence of S, for all initial data
of the form d” f°. Also note that a necessary condition for the uniform convergence of S;
satisfying (7.14) is that it is non-degenerate, since S®d'f° = 9°S°f° and no function
of compact support satisfies a homogeneous linear partial differential equation with con-
stant coefficients in R®. Thus in the analysis of smoothness we consider only s.s. S, with
masks satisfying (7.3), and determine their uniform convergence by analyzing the uniform
convergence to zero of %S,,_H.

The existence of 57 is guaranteed by Proposition 6.8 for all masks a satisfying (6.2).

Conditions on the mask a guaranteeing the existence of S, for v > 1 are much harder
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to obtain. In the case of interpolatory s.s. such conditions are easily derived, and can be
easily checked for a given concrete s.s. These conditions are later shown to be necessary

for convergence to C'V-limit functions.

Theorem 7.6. Let S be an interpolatory s.s. with mask a. If S reproduces 7, the space

of all s-variate polynomials of total degree < v, then there exist s.s. Sy,..., 5,41 satisfying
(7.15) Spd"S*FO = dnghtifo

Proof: The existence of Sy is guaranteed by Proposition 6.8. We show that if 5,, exists
for n < v, then S,4; exists. Choose the initial data f = {f) = of : a € 7°} for
fixed 3 € 77, |B] = n, and observe that (d"f%)q = Slv(B) with v(3) = {(55,7 ty €
75, |y = n} € R™en, and 8! = [[;_; Ai!. Then the reproduction of 7, by S implies
that (S*f%) = (27Fa)?, and (d"S*f°), = BWw(3). Hence by (7.15) S, reproduces the
constant data f = {fa =v(f):a € ZS}, and since the vectors {v(ﬂ) B el B = n}
consititute a basis of R™=7 . S,, reprodces all constant vectors. This property of the scheme
is equivalent to property (7.3) of the mask. The existence of a s.s. S,41 satisfying (7.15)
is now concluded from Proposition 7.3. o

In the following we state the multivariate analogue of the necessary conditions of

Section 5. We omit the proofs.

Theorem 7.7. Let S be an interpolatory s.s. with mask a which converges uniformly to
C'"-limit functions. Then S reproduces,, and forn = 1,...,v, the scheme S,,, guaranteed
by Theorem 7.6, converges unformly to C¥~"-limit vector-valued-functions for all initial

data of the form d™ f°. More concretely
(7.16) Soodm 0 = 9n S f0 1<n<v,

where 0" consists of all the n-th order partial derivatives of S f° ordered in accordance

with d" f°. Also the s.s. %S,,_H converges uniformly to zero for all initial data of the form

du+1fo‘
The analysis of smoothness of s.s. with scalar mask a and characteristic £-polynomial
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of the form
f .
(7.17) a(z) === +1g(z) . 69,00 ez, qecr,

can be done similarly to the analysis in Section 3, without the introduction of s.s. with
matrix masks, by showing the smoothness of certain directional derivatives of the limit

functions. L£-polynomials of the form (7.17) are typical to s.s. for box-splines.

Theorem 7.8. Let S be a convergent s.s. with a characteristic L-polynomial a(z) =
(279 +1)"277¢(2), § € Z°, q € L. If the s.s. S, with a characteristic L-polynomial ¢(z)

converges uniformly, then for all initial data f°
(7.18) oy S=f e C(R%),

where Og f = }E,% (f( +t8) — f)/t

Proof: The proof follows the lines of the proof of Theorem 3.4 (and Theorem 7.2). As
in Theorem 3.4, it is sufficient to prove the case v = 1.
Let f* = Skf0 and (dgf*)a = 2%( 5_1_9 — f¥), then by the generating functions

formalism and the structure of a(z)

(7.19) S,doft = dof*t! = dpSfE .
Here we show that

(7.20) 09S™6 = S°dg6

proving that the S-refinable function ¢, = S°°6 satisties dgp, € C(RY), which is equivalent
to (7.18) with v = 1.
Introducing an orthogonal set of vectors in Z°, 81 ... (%) with ) = 6, and defining

the function

o) =[[ Moy, Nile) = Bi(1+(69-2)/60)) ,
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we observe that supp;Z(:L') ={z:-1<z-6 <1, i=1,... s}, and

Z &(‘—ZO&]‘QUU =1.
aEZl® 1=1

Thus (z) = m~"(e), with m = [{z € 2 : 0 <« 60 <1, i =1, s}| satisfies
Eaezs (- — «) =1, and by Lemma 2.2 with O =4,

(7.21) lim ff(2) =S¥ = ., lim g"(a) = SZdf" .

k—oo

where

)= mv@a—a),  gMw)= D (dofM)at(2'e —a),

aE”Zs aEZs
and the convergence in (7.21) is uniform.

As in the proof of Theorem 3.4, we also consider the sequence of functions

) = X of oot - ) oty =mta () [T

aEZl® 1=2

and show that
(7.22) 9" () = W) < elldpdofflloe s Aof=Fro—1F,

with ¢ a constant independent of f*.
The bound (7.22) guarantees the uniform convergence of {h¥(z)} to Sdg f°, since
| Agdg f¥|oo < (Ele |9i|>HAd9kao<>7 and by Theorem 6.9 and the uniform convergence

of S,, the sequence ||Adgf¥|| converges uniformly to zero. Observing that

W)=Y fRR (= pe(2b — a) + ve(2 2 —a + )

aEZl®

and
/_ (o (2 + (7 +1)8) — tg(x + 76))dr = ¥(x + 16) ,

we get
t

iz +16) = / RE(x + 76)dr .

— 0
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Hence {fioo RE(x + 7'9)d7'}k>0 converges uniformly to ¢(x + t6) proving that dpp =
lim A* = Sxdef* € C(R?).

k—oo

Thus in order to complete the proof we have to verify (7.22). Now,

g*(2) = 1M (2) = Y (dafF)ad(2b2 —a)

aEZl®

where
S

o(x) = m ™ [ Mita) {zva(x) - H(ﬁé,‘ﬁ)} -

=2

Since ¢(z) = —d(x — ) for 0 < 6 -2 < ||0||*, we finally get

(7.23) g (2) = hF(2) = > (Agdaf*)ad(2be —a)

aEZl®

with ¢(2) = —¢(z) for 0 < -z < ||0]|* and ¢(x) = 0 elsewhere. Equation (7.23) implies

(7.22) with ¢ = H EQEZS 5(2’“:1; — oz)Hoo < 0. o
As a direct consequence of the theorem we obtain a sufficient condition for S ¢ €

C1(R*).

Corollary 7.9. Let S be a s.s. with a characteristic L-polynomial.

s+1 )
(7.24) a(z) =) [ +1),  qec,

=1

with 61 ... 805t € 7% and such that any subset of s vectors satisfies condition (6.53).

If the s.s. corresponding to the s(s +1)/2 L-polynomials
—g(® _pl) . . .o
aij(z) =2a(z) /(=777 + DT L), iF G, =18+ 1,

converge uniformly to zero, then S converges uniformly to C'(R®)-limit functions for all

initial data f°.

Proof: By Theorem 6.9 and the last Remark of Section 6, each s.s. S; with a character-

istic L-polynomial



converges uniformly. By the same reasoning S converges uniformly, since %Si ,t=1,...,
converge uniformly to zero. Moreover, by Theorem 7.8, 9py S f* € C(R*), i =1

and since 81, ... 8(*) are linearly independent, S f* € C'(R*).

)

ooy

We use Corollary 7.9 in the analysis of smoothness of the butterfly scheme considered

in Section 8.

Bibliographical notes.

The sufficient conditions for smoothness of general s.s. in terms of s.s. for vectors
of divided differences are stated without proof in [DL3]. The proofs follow the analysis
in [DHL]. The necessary conditions for the smoothness of interpolatory s.s. are stated
and proved in [DL3]. The result on smoothness of s.s. corresponding to characteristic £-
polynomials with directional factorization, is proved in [CDM] and used in [DLM]. The
proof here is different following the approach of Section 3. For a discussion of s.s. for

box-splines see, e.g. [CLR2], [DM], [DDL].

8. The Butterfly Subdivision Scheme

The example we present here is an extension of the 4-point interpolatory s.s. to the
case of surfaces defined by control points with the topology of general triangulations. This
scheme can be analyzed within the setting of the square-grid topology, with the exclusion

of a fixed set of irregular points.

Figure 4. The butterfly scheme
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Given a set of control points {p¥} which comprise the vertices of a triangulation T*,
the scheme associates with each edge ¢ € T* a new point ¢* defined according to the rule
7
k k k k k k
9e — %(Pe,o + pe,l) + 2w(pe,2 +pe,3) —w Zpe,j )
=4
where the locations of the points pf’j relative to the edge e in T* are depicted in Figure 4.

The configuration of points in Figure 4. suggests the name “butterfly scheme”.

The butterfly scheme defines the control points at stage k£ + 1 as

Pt =P u{d eeTh),

and the triangulation T**! as the collection of edges

{¢f.pf), 7=01,(¢}ql,),i=01,j=23:eeT"},

where ¢;; = (pf’i,pf’j). With this construction of T*¥1, the number of edges having p* as
a vertex in T*+! is the same as in T*, while each new vertex is regular, namely a vertex of
six edges in T*+1. Therefore, with the exclusion of the irregular points in T°, all vertices
of T* are regular.

A triangulation with regular vertices is topologically equivalent to a three direction
grid, and thus away from the irregular points, the butterfly scheme has the form (6.1).

The explicit expression of the mask a,, for the choise of the three directions #(1) = (1,0),
82 = (0,1), 83 = (1,1) is

and zero otherwise.

The corresponding bivariate L-polynomial can be put in factored form

u(z1,22) = 27 (L2 (14 25 DL+ 27 2y )z z2(1 +wqler, 22))
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where

2 —421_122_1 —421_1 —422_1 —|—221_122 —|—22122_1

q(z1,22) =227 225 + 227 2y

+ 12 — 4z —4z9 —4dz129 + 22%22 + 22123 .
It is easy to check that the butterfly scheme maps f* which is constant in one of the
three grid directions to f**! with the same property. The scheme for such f* reduces
to the 4-point interpolatory s.s. applied along the grid lines of the other two directions.

To show that this scheme converges to a surface with C'(R?) components, it suffices to

demonstrate, according to Corollary 7.9, that each of the three L-polynomials

(1+ Z_e(i))(l +wq(z))z122, 1 =1,2,3,

determines a s.s. which converges uniformly to zero. By the symmetries of ¢(z1, z2):

Q(21722) - Q(22721) = Q(2122721_1) ?

it suffices to consider the s.s. S, corresponding to the £ -polynomial

1(2) = (L4 2)(Fwa(z) = 3 1z

aEZ?
Forn=1

15elloo := 0<mk?f}i1 Z ‘rkﬂi’“—z‘j‘
-7 \uwez

and since

D Jraias] = 11— 8w|+ |8w|
1,JEZ

|Sr|leec = 1 for all values of w.
Considering S%, we find below an interval w € (0,wp) for which ||S?||cc < 1. An exact
value of wy is not computed since only linear terms in w are considered. We expand
P(z) = r(2)r(2?) = (L+ 21 4 21 +21)(1 - walz1,22) —wa(=F, 23) + O(W?))
and find that TE?; = O(w) for j # 0, while TE?(]) =14+0(w),7=0,1,2,3. Thus it is sufficient

to show that for w small enough

Z ‘TZ]—M,M‘ <1,0=0,1,2,3.
i,JEZ
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For the case ¢ = 0, all the non-zero coefficients are:

Hence

ST = 11— 160] + 12)w] + 0w?) < 1
1,]EZL

for w > 0 small enough. For the case ¢ = 1, the relevant coefficients are:
A =1-1204+0(?) ) = 4w+ 0?) =Pl = —2w+ 0(?) |

Hence

ST ] = 11— 120] 4+ 8lw] + 0(w?) < 1

1,7€EZ
for w > 0 small enough. The cases { = 2 and ¢ = 3 give the same expressions as { = 1
and { = 0 respectively. Thus we have shown that S, converges uniformly to zero, and

the butterfly scheme converges uniformly to a surface with C''(R?) components for w > 0

small enough, away from the irregular control points.

Figure 5. A head-like surface generated by the butterfly scheme.

Local analysis of the convergence near an irregular point, similar to the analysis in
[DS], and many numerical experiments with the scheme [DGL3], indicate that the gener-
ated surface is C'! everywhere except at vertices of three edges. Figure 5 depicts an initial

surface and the surface generated by four iterations of the butterfly scheme.
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Bibliographical notes.
The material in this section is based on [DGL3] and [DLM]. Recently an efficient algo-

rithm for surface-surface intersection, based on the butterfly scheme, has been developed

K].
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