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Abstract. Interpolatory subdivision schemes are refinement rules, which refine
data by inserting values corresponding to intermediate points, using linear combi-
nations of neighbouring points. Here we consider only refinements of regular meshes,
which in the univariate case (subdivision for curve generation) are uniformly dis-
tributed points on the real line, and in the bivariate case (subdivision for surface
generation) are either square grids or regular triangulations.

1 The univariate stationary case

1.1 Definitions and basic results

Let us first consider the simple case of refining univariate data of the form
(ih, fi),i = 0,... ,N, for some positive h. To get the values at the refined
mesh ih/2,i = 0,...,2N, we need a method that ”predicts” well the inter-
mediate values at the points (2¢ + 1)h/2,i =0,... , N — 1. Such predictions
make sense, if the data is sampled from a smooth function. We can then
approximate the function by a good approximating system of functions (e.g.
polynomials) and read the value of the approximating function at the inter-
mediate point. If we want our refinement to be local, we have to use different
approximating functions in different intervals. Further, if we want our rule
of insertion to be the same everywhere, and based on the function values
available, we should use polynomial interpolation (or interpolation by expo-
nentials), as a method of approximation, since then the coefficients of the
function values in the interpolating polynomial (interpolating sum of expo-
nentials) depend only on the relative distances between the interpolation
points, which is the same because of the regularity of the mesh of points.
Polynomial interpolation is advantageous in the sense that the rule does not
change with the refinement level i.e. with h.

Example 1. Suppose we use linear interpolation between the two endpoints
of an interval to get the intermediate value, corresponding to the midpoint
of the interval, then the rule is

(fi + fir1), i=0,... ,N—1.

DN | =

fi+§ =

To reiterate this rule we use the notation of levels of refinement; we denote
the level of refinement by superscript and denote the initial data as values at
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level zero. Then the iterations become

stt=fF, i=0,...,2"N

2

1
ffz—j—llzg(fzk-i- i,il—l)? i:()a"'72kN_17 k:071727"' .

The value fF is attached to the parameter value i2~*. Note that this subdi-
vision scheme is the degree 1 spline subdivision scheme. (See Section 2 in the
previous chapter).

It is easy to see that the limit of this subdivision, i.e. the limit of the
sequence of control polygons through the data of the different refinement
levels,

@27, fF), i=0,...,2"N,

is the polygonal line going through the initial points (i, f°), i =0,...,N.

We can now state, in a formal definition, the notion of convergence of
subdivision schemes. For that let us denote by m,, the space of univariate
polynomials of degree not exceeding m.

Definition 1. A univariate subdivision scheme S, is termed (uniformly) con-
vergent, if for any initial data fO = {f? : i € Z}, the sequence of polygonal
lines {f*(t) : k € Z}, converges uniformly, where

ffyem, te @ " i+1)27%), ffery=f icZ,

with f& = Skf0 = {fk . | € Z}, the data generated by the scheme
at refinement level k. The limit function, which is necessarily continuous, is
denoted by S f°. It is also required that there exists f° such that S f0 £ 0.

Remark 1. The first requirement in the above definition of convergence is
equivalent to (see the Bibliographical notes) the existence of a continuous
function f, such that for any closed interval I C IR

lim sup |ff — f(27%)|=0.

k— o0 ie2k 1

Obviously f = S f0.

If we want to get a smoother limit than the one obtained in Example
1, through the initial data, we have to use more points in the ”prediction”
formula for the inserted values. As in the spline case, higher smoothness can
be obtained only with a bigger mask, namely with a greater influence range
of the points used to predict.

Ezample 2. We construct an insertion rule, based on 4 points: the endpoints
of the interval where the midpoint is to be inserted, and the other two
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boundary points of its two neighbouring intervals. We interpolate the data
(4, ff), j=i—1,i,1+ 1,7+ 2, by a cubic polynomial p; € 73, satisfying
pl(]) = Jka .7 =i- 17171_‘_ 171 +27
and then predict
1
k .

f2i-:11 =pi(i+ 5)
This procedure yields the following subdivision scheme: the same rule as in
the previous example at the ”old” locations,

M= fk i=0,...,2"N,

k2

and the new insertion rule

9 1 .
kaztll :1_6(fik+ 1111)_1_6( b+ ik+2)7 i=0,...,2"N-2, k=0,1,2,... .

Note that there is a problem near the boundaries: with the data (i, f°), i =
0,...,N, we can insert only values at intervals which are not boundary in-
tervals. Thus the limit function is defined only in the interval (2, N — 2). In
case of no boundaries (see the periodic case in the solution of Exercise 7 in
Section 6), or in case of a finite set of initial data, the limit function can be
proved to be C! in the domain of its definition, as we shall verify in the next
chapter.

On the other hand, it is easy to verify that the scheme is exact for cubic
polynomials, (reproduces cubic polynomials), namely if the initial data is
sampled from a cubic polynomial, then the values generated by the scheme
at all refinement levels are on the same polynomial, and the limit function
generated by the scheme is that same cubic polynomial.

Exercise 1. Verify the last statement.

We use in the above example local interpolation by cubic polynomials,
but in order to get C! limit functions, it is necessary that the interpolatory
scheme is exact for linear polynomials only. This follows from the result

Theorem 1. An interpolatory subdivision scheme generates C™ limit func-
tions, only if it is exact for polynomials of degree m.

Proof: Let the interpolatory subdivision scheme S be given by the insertion
rule

f;zﬁ-ll = Zajfi,ija (1)
J

and denote by f = S°°f° the limit function of the scheme from the initial
data f°. Consider the following n-th order divided difference of f

rf@)=lr+er+2 e r+2df =€ " bif(z+27%),
=0
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where b, ' = IT7" (27" —279),i = 0,... ,n. For fixed z € 27¥Z, € =
27 0 > k, we get after substituting f(z+2"¢) = ;’ffewﬂ, by its expression
in terms of values at level £+ i — 1,

O-efl@) =23 by o,
i=0  j

= 2£n Z bZ Z Oéjf(il? — jQ_Z_i—H)
i=0

=2" Z aj(_j)n‘s;g—ul f(z).
J

Taking the limit as £ — oo, and recalling the assumption that f € C™, we
get for n < m,

f™(z) = 2" Z a; (=) f " (). (2)

Since equation (2) holds for all z € 27*Z, k € Z ., which is a dense set in
IR, and since f(™) is continuous for n < m, equation (2) holds for z € IR.
Moreover, f(") cannot be identically zero for all initial data. Thus, by choos-
ing initial data such that for some z, f(™(z) # 0, we can divide equation(2)
by f(™(z), and obtain

)" =Y (- n<m, ®)

which proves that the scheme is exact for polynomials of degree not exceeding
m. 0O

Exercise 2. Verify that (3) implies that the interpolatory scheme given by
the insertion rule (1) is exact for polynomials of degree not exceeding m.

The last theorem implies that schemes that generate C! limit functions,
must be exact for linear polynomials. The scheme in Example 1 is exact for
linear polynomials, but generates only continuous functions. The scheme in
Example 2 is exact for cubic polynomials, but generates only C'! functions.
The following example presents a one-parameter family of schemes, which
are exact for linear polynomials, and generate C'! limit functions.

Example 3. Here we construct a 4-point insertion rule, which is exact for
linear polynomials, and depends on one parameter. This rule is based on the
two rules in the previous two examples. Taking a convex combination of the
insertion rules in the two previous examples, with weights 16w for the rule
of Example 2 and 1 — 16w for the rule of Example 1, we get the general
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symmetric 4-point insertion rule which is exact for linear polynomials. The
resulting subdivision scheme is,

k+l _ gk
o =fr, 1€ Z,

f2kzil1 = —w( ik+2 + )+ (% +w)(fF + ik+1)7 i€ Z.
It can be shown by the analysis tools of the next chapter, that the above
4-point subdivision scheme generates continuous limit functions for |w| < %,
and C* limit functions for 0 < w < %. Note that the ranges of w given here,
are not the best possible. Also note that for the special values w = 0,w = 11—6
the scheme is the one of Examples 1 and 2 respectively. It can be also shown
that the limit functions, generated by the the scheme of Example 2 do not

have a second derivative at all the diadic points Upcz2 *Z.

Exercise 3. Use the Eigenanalysis (presented in Chapter ?7?) to verify the
last statement.

w=1/16

Fig. 1. Curves generated by the 4-point scheme (the polygonal lines after 4 itera-
tions)

In Examples 1, 2 and 3 the insertion rules are independent of the level of
refinement. Subdivision schemes with rules for defining the values at the next
refinement level, which are independent of the refinement level are termed
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stationary schemes. (See Section 2 for examples of non-stationary subdivision
schemes). Except for Section 2, all the schemes considered in the first four
chapters of this book are stationary, and if not stated otherwise, all discus-
sions refer to stationary subdivision schemes without stating it explicitly.

We are now ready to define formally the notion of interpolatory subdivi-
sion scheme.

Definition 2. A subdivision scheme is called interpolatory, if it is of the
form

k k .

b = IF, f21i11 = Zajfik—j’ e Z, keZs.

J

There is a well studied one parametric family of interpolatory subdivision
schemes, with a symmetric insertion rule, and with maximal polynomial ex-
actness for the number of points involved in the insertion rule. This number
is the parameter defining the schemes in the family. The scheme with inser-
tion rule based on 2NN points, is exact for polynomials of degree < 2N — 1.
The insertion rule is obtained by taking the value at the inserted point of
an interpolating polynomial of degree 2N — 1 to the data at 2NV symmetric
points to the inserted one. These interpolatory subdivision schemes, termed
the Dubuc-Deslauriers schemes, include the scheme of Example 1 for N =1,
and the scheme of Example 2 for N = 2.

The smoothness of the limit functions generated by these schemes in-
creases with IV, and is asymptotically 0.4N The method of proof of this
result is based on Fourier analysis, and is beyond the scope of this chapter.

Remark 2.

1. Note that only a symmetric insertion rule makes sense, in the absence of
any additional information on the initial data.
2. The values generated by a convergent interpolatory subdivision scheme
S, given by f¥ = S*f0 are on the limit function, namely
s kiy=rF ez kez,.

K3

Exercise 4.

1. Construct the Dubuc-Deslauriers subdivision scheme, based on 6 points.

2. Construct a 6-point insertion rule, by taking a convex combination of
the 6-point insertion rule constructed in part 1 of the exercise, and the
4-point insertion rule of Dubuc-Deslauriers constructed in Example 2.

3. What is the maximal possible smoothness of the limit functions generated
by the subdivision rule constructed in part 2 of the exercise?
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1.2 The mask

The mask of a subdivision scheme consists of a set of coefficients, which mea-
sure the influence of a value at a location (point) on the values at neighbouring
locations after subdivision. Since the schemes we consider are interpolatory
and uniform (the same insertion rule everywhere), the coefficients of the mask
are uniform, and determined by the insertion rule. There is always the coef-
ficient 1, due to the interpolatory rule f;fl = fF. The coefficient 1 indicates
the location of the influencing point relative to the other influenced points.

Here are few examples:

1. The mask of the scheme in Example 1: %, 1,

1
2

2. The mask of the scheme in Example 2: L0, 21, %,0, %

3. The mask of the scheme in Example 3: —w, 0, % +w,1, % +w,0,—w

[
[=>}

We use here the convention that the coefficients which are not specified in
the mask are all zero.

In general, the mask of an interpolatory subdivision scheme corresponding
to the insertion rule

U
K+l _ ok
foiti = Z Q5 Ji—j»
=L
is
a_L,O,a_L+1,O,---,a_l,l,ao,O,oq,O,---,O,aU,
namely
ap =1, a2; =0, azjy1 =04, j=—-L,—-L+1,...,U. (4)

It is the mask a = {a;} that encompasses all the information about the
subdivision scheme, and on which the analysis of the properties of the scheme
is based (See next two chapters).

Exercise 5. Determine the masks of the schemes constructed in Exercise 4.

1.3 The basic limit function

Most of the material in this section applies to all stationary subdivision
schemes (also multivariate), and not only to univariate interpolatory schemes.

With each convergent subdivision scheme, there is associated a basic limit
function, which for a spline subdivision scheme is the corresponding B-spline.

Definition 3. Denote by §, the sequence which is zero everywhere except at
0 where it is 1. Then the basic limit function of a scheme S is ¢g5 = 5°°4.

By definition the basic limit function of S has compact support, if the
mask of the scheme is of finite support. It is easy to follow the progress of
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w=0

Y

Fig. 2. The basic limit function of the 4-point scheme

the nonzero values in S8 as k increases. If { K1, K, +1,..., K} denotes the
support of the mask of S, then the support of ¢s is contained in [K;, K5].

For a convergent interpolatory subdivision scheme (which is necessarily
exact for mg by Theorem 1),

‘=1= ft=5"f"=1. (5)

This property is also true for any convergent subdivision scheme (see Theorem
?? in Chapter 7?7 ). A property of ¢g, which is valid for interpolatory schemes
only, is

¢s(i)=10;, i€ Z.

This follows from the fact that the initial data is interpolated by the limit
function.

With the basic limit function of a subdivision scheme S, we can express
any limit function generated by the scheme, in terms of the initial data. This
is due to the linearity and uniformity of the scheme. Thus

S f°(z) = Z fos(x—j) (6)

The two relations (5)and (6), when combined, lead to

qus(- —i)=1. (7)
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This property, termed partition of unity, plays a crucial role in ensuring
the approximating nature of the scheme. More specifically, for initial data
sampled from a continuous function F: f* = {f) = F(jh) : j € Z}, the
limit of the subdivision scheme S>f° = 37._/ f¢s(; — j) tends to F as
h — 0 (See Section 1.4).

The application of a convergent interpolatory subdivision scheme S, with
insertion rule (1) to a set of control points in R* or R*, P° = {P}}, is
according to,

P2ki+1 = Pik (8)
P2k2111 = Z ajpilij 9)
J

The limit of this scheme is a curve. Similar to (6), the limit curve can be
written in terms of the basic limit function as,

S*PO(t) =) Plos(t—J) (10)

J

It is (6) and (10) which justify the term ”basic limit function”.

Equation (10) is a parametric representation of the curve. Each compo-
nent of the curve (2 components in IR*, and 3 in IR?) is a limit function of
the subdivision scheme.

Remark 3. Note that if the points given are sampled from a closed curve, or
generate a closed control polygon, there is no need for boundary treatment,
even if the number of points is finite. The points are then arranged in a
periodic way. (The first point is identified as the one after the last, and so on.
See the discussion of the periodic case in the solution of Exercise 7 in Section
6).

By (6) and (10) the i smoothness of the basic limit function of a scheme
determines the smoothness of the limit functions/curves generated by the
scheme.

The basic limit function has an important property to wavelet construc-
tions. This property is formulated in the next theorem.

Theorem 2. The basic limit function of a convergent scheme S with a mask
a, satisfies the refinement equation,

bs(t) = Zaﬂﬁs(?t —J)-

This result follows from (6), from the stationarity of the scheme, which implies
that )
r—t

§%(58) = 3(S0)ids(“12),

i 2

and from the observation that

(S(S)z = ;.
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1.4 Approximation order

The material in this section applies to subdivision schemes in general, and
not only to interpolatory schemes.

The limit of a subdivision scheme, for initial data f) = F(ih), i € Z
approximates the sampled function F', if F' is smooth enough. The quality
of the approximation improves with the density of sampling, namely with
the reduction in the size of h. A measure of the rate of reduction in the
approximation error as a function of h, is the notion of approximation
order.

Definition 4. A subdivision scheme S, has approximation order n, if for the
initial data f? = F(ih), i € Z, with F smooth enough

|(F — S f%)(x)] < Ch", z € R,
where the constant C' may depend on F,n,x,.S, but not on h.

The approximation order of a subdivision scheme depends directly on the
space of polynomials for which the scheme is exact.

Theorem 3. The approzximation order of a convergent subdivision scheme
S, which is exact for m,, is n + 1.

Proof: Consider G = F' — Ty, where Tj, is the Taylor polynomial of ' of
degree n at the point x. Then

G9(z)=0, j=0,1,...,n, GOtH = pt), (11)

Now, since S is exact for m,, it follows that T, = S>(f° — ¢°), where
g = G(ih), i € Z. Therefore, F and G have the same error,

F—5%f=F -Tp, +5°(f°—¢°) - S®f° =G -52¢".  (12)

In the following we bound the error of G at =z.
The stationarity of S implies that

T —th

(5=9°)(@) = 3 gbos(“5),

where ¢g is the basic limit function of the scheme. By (7),
(G—-5%¢")(z) = Z‘bs(ﬁ —i)(G(z)—g?) = Z (G(x) —G(Zh)ﬁbs(ﬁ —i),
@ i€l (z)

where Ij,(z) = {i : ¢s(7 — i) # 0}. Since the support of ¢g is finite, the
number of elements in Ij(z) is bounded by a constant independent of x, h.



Interpolatory subdivision schemes 11

Denote this constant by Ng, and denote the support of ¢g by Mg = [Ky, Ka].
Let ||¢s|| = maxzem, |¢s(x)|, and 2, = [z — hK1,z + hK>]. Then we get

(G=5=¢")(@)| = llgsl] Y |G(2)=G(ih)| < Nsllos|| max |G(x)-Gy)l

i€l (z)
Now, (11) implies

max |G(z) — G(y)| < max [F"H(y)|[Ky — K] R,
YER. YER
which together with (12) completes the proof. O

For the spline subdivision schemes the approximation order is 2, because
these schemes are exact for linear polynomials only. Yet, it is possible to get
approximation order m + 1 for splines of degree m, Yet, it is possible to get
approximation order m + 1 for splines of degree m, if instead of the initial
data F'(jh) at the point j € Z, a certain fixed, local, finite linear combination
of F(jh) is used. (See the Bibliographical notes).

The scheme in Example 1 has approximation order 2, the scheme in Ex-
ample 2 has approximation order 4, while the schemes in Example 3 have
approximation order 2, except for the scheme with w = % which has ap-
proximation order 4.

Exercise 6. Determine the approximation order of the 2N-point Dubuc-
Deslauriers scheme.

2 Non-stationary, univariate interpolatory schemes,
exact for exponentials

It is non known how to generate limit curves which are circles by stationary
subdivision schemes. Yet if we sample points from a circle, and then apply
an insertion rule, which is exact for the functions

{exp(Ajt), 1=1,2,3}, M =0, o =vV-1, A3 =—Xy,
we get in the limit that circle from which the initial control points where
sampled. This observation is based on the following parametric representation
of the circle with center (xo,yo) and radius r,
z(t) = zo + r cost, (13)
y(t) = yo +rsint, (14)
and on the relation
span{exp(A;t), j=1,2,3} O span{l,cost,sint}.

The resulting scheme is non-stationary, since the insertion rule depends
on the refinement level. Recently a related non stationary scheme, generating
circles, was used in the construction of a bivariate scheme, which generates
a surface of revolution from a given curve (see the Bibliographical notes).
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Ezample /. Here we construct a 2-point insertion rule which is exact for all
functions in the span of the two exponential functions {1,exp(\t)}, A € RR.
Note that 1 = exp(0t), for all ¢. First assume that our data {f;} is given
on the grid hZ. Then interpolating the data (jh, f;), (jh + h, fj+1) by a
function of the form a + bexp(At), we obtain the interpolant

_ fix1 — fiexp(Ah) [i— [it1
Phii(t) = 1 —exp(\h) 1 —exp(\h)

exp(—Ajh) exp(At).

Substituting ¢ = jh + £ into ps;(t), we get the insertion rule

exp()\%) 1
1 +exp()\%)f] 1 -Haxp()\%)fﬁrl

fi+

N

As can be easily observed, the insertion rule does not depend on j, but
depends on h. This leads, by taking h = 2%, to the following non-stationary
interpolatory subdivision scheme,

byt =1 (15)
gt _epAZY) ! ¢
2j+1 14+ exp(/\2—(k+1)) J 1+ exp(AQ—(kJrl)) Jj+1-

(16)

As k — oo the insertion rule above tends to the insertion rule of Example 1,
at the rate 0(27%).

The mask of this non-stationary scheme depends on the level of refinement
(k), and is given by

koo_ 1 e exp(A2= (k)
I 1 fexp(A2-(k+D))’ W + exp(A2~(k+1))”

k _
ay =1, a

Exercise 7. Construct explicitly the mask of a 4-point insertion rule which
interpolates circles exactly.

Hint: Construct an insertion rule by interpolation with a function from the
span of the four functions {1,¢,cost,sint}.

In general, an insertion rule based on 2N symmetric points, obtained by
interpolating the values at the 2V points by a set of 2N real or complex
exponentials always exists. Yet, in order to get a rule with real coefficients,
the set of 2NV exponentials should be such that a complex exponential is in the
set only if its conjugate complex exponential is also in the set. The resulting
insertion rule for a given set of 2/V exponentials depends on the level of
refinement, but is the same everywhere on the same level. (See Example 4, and
the solution of Exercise 7 in Section 6). Moreover, it can be shown, that for an
insertion rule with real coefficients, based on 2N symmetric points, which is
exact for 2NV exponentials, the coefficients as functions of the refinement level
k., tend at the rate 2~* to the coefficients of the 2N-point Dubuc-Deslauries
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rule. Also, the limit functions generated by such a scheme have the same
smoothness as the smoothness of the limit functions, generated by the 2/N-
point Dubuc-Deslauriers scheme.

3 Tensor-product interpolatory schemes for surfaces

To define a subdivision scheme which generates surfaces, we first have to
choose the topology of the control points. In this chapter we deal with two
types of regular topologies for surfaces.

The first is that of a quad-mesh. The control points P = {P, ; : (i,]) €
Z 2}, are in IR®. Each control point has two indices which reflect the topology
of the quad-mesh. The control point P; ; is connected by a topological ”edge”
to the four control points Pjyi ;, Pi—1,j, P j+1,Pij—1. A set of four points
P', P2, P3 P* constitutes a topological ”face”, if P!, P‘*! are connected
by a topological "edge”, for £ = 1,2,3,4 with P> = P'. The quad-mesh is
topologically equivalent to the regular square-grid consisting of the vertices
Z*, with the grid lines parallel to the two axes.

In an interpolatory subdivision scheme relative to such a topology, there
are two insertion rules, one for the insertion of a control point corresponding
to an ”edge”, and one for the insertion of a "face” control point. The resulting
scheme is of the form

k k
P2i7+21j = Pi,j ) (17)
P2kii11,2j = Z’W‘Pik—l,j ) (18)
¢
P2ki,+21j+1 = ZWPz'lfj—z ) (19)
0
P;ifmjﬂ = Zﬁfﬂfpikff,jfu . (20)
v

The insertions (18) and (19) are of "edge” control points (edge-vertices) and
the insertions in (20) are of "face” control points (face vertices).

If the above scheme is convergent, then the limit is a surface with all the
control points from all refinement levels on it, namely

Ukezry Ui jeze Pl C SP.

Exercise 8. Define the notion of a convergent bivariate subdivision scheme
on the square-grids with vertices 2~¥Z?, in analogy to Definition 1.
Hint: Use bilinear interpolation to the values on the vertices 2% Z>.

One method for getting the two insertion rules is by taking a tensor-
product of a univariate interpolating scheme. The tensor product insertion
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rules obtained from the insertion rule (1) are as in (17)-(20), with
Yvi=ai, i€Z, Bij=aq; (i,j)€Z". (21)

It is not difficult to see that one can perform any bivariate tensor-product
subdivision scheme by repeatedly performing the corresponding univariate
scheme S, in the following way:

Pk+2 SPE., je27"'zZ, (22)
P =gPrE et g, (23)

Here we used the convention that the univariate subdivision S is applied
to the index, which is denoted by e, while the other index is considered as a
fixed parameter. Thus after the first stage the following points are defined

1
PHI = (P ez, jea ).
After the second stage the defined points are
k+1 _ ppk+l . s —(k+1) 772
PMU={PM s (4,5) e 27D 27

Exercise 9. Verify that the interpolatory tensor-product scheme, given by
(17)-(21), can be performed as a two-stage univariate scheme, regarding one
index as a parameter, each stage with a different index as a parameter. Show
that the result is independent of the order in which the two indices are chosen
to be regarded as parameters.

The basic limit function of a tensor-product scheme S x S, obtained from
a convergent univariate scheme S, is related to ¢g by

bsxs(ti,t2) = ¢ps(t1)ps(t2).

The limit surface generated by S x S from the initial control points P° is

(Sx S)*P(u,v) = > Pigs(u—ipsv—j). (24)

(i,5)€Z>

Equation (24) is a parametric representation of the limit surface. Each of its
three components

T (’LL, U)a T2 (’LL, U)a T3 (ua U)a
is a limit function of S x S, since for f* = {f) : p € Z*}, regarded as

function values at the points {u : u € Z?}, the limit function generated by
the subdivision scheme S x S, is given by

(S x 8)> = > figslu—i)gsv—j). (25)

(i,4)eZ*
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Remark 4. The representation (24) is not used in applications. It is the col-
lection of control points at a certain refinement level with the corresponding
topology that is used. In practice the few first refinement levels (3-5), are
sufficient for representing the limit surface.

Exercise 10. Consider the tensor-product scheme S x S, derived from a
convergent univariate interpolatory subdivision scheme S, with mask a =

{ai}.

1. Determine the mask of S x S in terms of the coefficients in the mask
a={a;}.

2. If S is exact for 7, (S reproduces 7,,), what space of bivariate polyno-
mials is reproduced by S x S?

3. Determine the two tensor-product insertion rules corresponding to the
univariate subdivision scheme in Example 2.

4 The butterfly scheme - an interpolatory subdivision
scheme on triangulations

The second type of a regular topology of control points that we consider for
surfaces, is that of a regular triangulation, where each vertex has valency six,
namely is connected to six other vertices in the triangulation.

We recall here, that a triangulation is a topological net defined on a set of
vertices and is realizable as a collection of connected planar triangles in IR®.
A triangulation consists of a set of vertices, a set of edges, each connecting
two vertices, and a set of triangles, each consisting of three vertices and three
edges. All the vertices of the triangulation are vertices of triangles in the
triangulation. Each edge in the triangulation belongs to exactly two triangles
(a triangulation without boundaries). Two triangles with a common edge are
termed neighbouring triangles.

A regular triangulation (each vertex has valency six) is topologically
equivalent to the ”three directional grid”, which consists of the vertices of
Z* with edges connecting the point (i,7) to the points (i + 1,5), (i,j +
), i+1,j+1), (i—1,j—1), for all (i,j) € Z>.

An interpolatory scheme on a regular triangulation consists of one inser-
tion rule for new vertices corresponding to the edges of the current triangula-
tion. The vertices of the refined triangulation are the union of the vertices of
the current triangulation and those inserted. In the refined triangulation, an
inserted vertex P, corresponding to an edge e in the current triangulation,
is connected to the two vertices belonging to e in the current triangulation,
and to the four inserted vertices corresponding to edges in the current trian-
gulation, which constitute the two triangles sharing e (see Figure 3).
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Fig. 3. The connectivity in the refined triangulation

Thus all inserted points have valency six, while the vertices which belong
also to the current triangulation retain their valencies. It follows from this
observation, that if the initial triangulation is regular, so are all the refined
triangulations.

The butterfly scheme is an interpolatory subdivision scheme on triangu-
lations, which in a certain sense extends the univariate four point scheme of
Example 3.

PE(e) Pi(e)
Fig. 4. The configuration of points for the butterfly insertion rule
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To present the insertion rule of the butterfly scheme, we introduce the fol-
lowing notations (see Figure 4.). The vertices of an edge e in the triangulation
Tk at refinement level k, are denoted by Pf(e), P¥(e). Further, we denote
by T} (e), Ta(e) the two triangles sharing e, by P¥(e), Pf(e) the vertices of
TF(e), T¥(e), which are not on e, and by e?(e), j=1,2,3,4, the four edges
of these two triangles, which are not e. Finally, ij (e), j =5,6,7,8, denote
the vertices of the neighbouring triangles to TF(e), T (e), which are different
from ij(e), j=1,234.

The insertion rule for the vertex corresponding to the edge e is

8
(Pf(e) + Py () + 2w (P (e) + Pf(e)) —w ) Pf(e).  (26)

i=5

k+1 _
P =

DN | =

Exercise 11. Show that on the three directional grid, if the values given
are constant in one of the three grid directions (1,0), (0,1), (1,1), namely
if £, =f3;or f0;=fyor = fo;_i» then the butterfly scheme inserts
new values which are constant 1n the same direction as the original data is,
and could be computed by the univariate 4-point scheme of Example 3, along
the other two grid directions.

Fig. 5. The mask of the butterfly scheme with w = %

5 on a symmetric 3-directional
mesh
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The mask of the butterfly scheme with w = 11—6 on a regular grid of
equilateral triangles is given in Figure 5. Note that the weights in the figure
have to be divided by 16.

The butterfly scheme, when applied to values at the vertices of Z?2, and
when the initial triangulation is that of the three directional grid, is exact
for the space of all bivariate linear polynomials (R2). For the particular

choice w = %, it is exact for all bivariate cubic polynomials 3 (R2).

Exercise 12. Verify the last statement.

Example 5. In this example a coarse triangulation is refined four times by
the butterfly insertion rule (26). The initial triangulation and the refined
triangulation after 4 iterations are shown in Figures 6,7 respectively.

OB

232004

e

Fig. 6. Initial triangulation Fig. 7. 4 iterations with the
butterfly insertion rule

Facts: The butterfly subdivision scheme on a regular triangulation generates
C! limit surfaces/functions for 0 < w < w*, with w* > % The biggest w*
is not known. The butterfly scheme can be applied to triangulations of any
topology. Yet the butterfly insertion rule (26) generates C! surfaces/functions
only near vertices of valency between 4 to 7. There are special insertion rules
to be applied near extraordinary vertices of the triangulation (vertices of va-
lency not equal to 6), which together with the butterfly insertion rule (26)
applied near vertices of valency 6, result in C'* surfaces/functions. These spe-
cial insertion rules togethder with the butterfly insertion rule (constituting to-
gether the ‘modified butterfly scheme’), generate ‘good-looking’ surfaces near
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extraordinary vertices, and improve the quality of the surfaces/functions,
generated by the butterfly insertion rule (26), near extraordinary points of
valency between 4 to 7 (see the Bibliographical notes).

5 Bibliographical notes

A more detailed tutorial, but less up to-date, on subdivision schemes in Com-
puter Aided Geometric Design is [6]. An extensive mathematical treatment
of stationary subdivision schemes, where the basic limit function is investi-
gated, and where the refinement equation of Theorem 2 is derived for the
first time is [1]. Also the equivalence discussed in Remark 1 is proved there.

A method for achieving the maximal possible approximation order, by
a judgicious choice of the initial data, is developed in [15]. The 4-point
schemes of Example 3 and the corresponding tensor-product schemes on reg-
ular quad-meshes, are presented and analyzed in [7]. The Dubuc-Deslauriers
schemes (DD-schemes) are presented and investigated in [4,5,2]. The DD
4-point scheme is further analyzed in [3]. The 6-point scheme is discussed
in [6]. A proof of an extension of Theorem 3 to the multivariate setting can
be found in [9]. Non-stationary interpolatory subdivision schemes exact for
a finite number of exponentials are studied in [16,11]. Non-stationary sub-
division schemes, generating circles are first presented in [10], and extended
to schemes generating surfaces of revolution in [17]. The tensor-product of
the 4-point DD-scheme is extended to general quad-meshes (quad-meshes
with extraordinary control points, where the valency is different from four)
in [14]. The butterfly scheme is presented in [8], and shown to generate C!
limit functions on regular triangulations for w € (0,w*), in [12,13]. In the
latter it is shown that w* > % The special rules for the ‘modified butterfly
scheme’ (near extraordinary points) are given in [18].

6 Solutions of selected exercises

Exercise 1. Verify that the scheme from Example 2 is exact for cubics.

Solution: The insertion rule in Example 2 is

1
(FF +fEy), i=0,...,2°N—2, £=0,1,2,... .

9
216;11 = —(ff+ ik+1)_1_6

16

To check that it is exact for cubics, it is enough by linearity to check that it
is exact for the monomials 27, j = 0,1,2,3. Let ff =1, i € Z, then since

2(19—6 — %) =1, f;lﬁ_ll =1, i € Z, and the scheme is exact for constants. Ob-
serve that since spaces of polynomials up to a fixed degree are shift invariant,

it is sufficient to check the claim for ff.
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For z! let f¥ = (i2%), i € Z. Then

9 1 1
k+1 _ 2—k _ _2—k: ) 2—k — _2—k — 2—(k+1) .
! 16 16[ +2027)] 2

Similarly for z2, let ff = (i2¥)2. Then

9 1 1
k41 — 7 2—k 2 - 2—2k 4 2—2k — _2—2k — 2—(k+1) 2 .
B = @R - 2R 427 = 2k = (2
The verification of exactness for z® follows from the exactness for 7 and
from the symmetry of the insertion rule relative to %

Exercise 3. Show that the limit functions generated by the 4-point scheme
are not in C2.

Solution: For all values of w except for w = %, the scheme is exact for linear

polynomials, and is not exact for quadratic polynomials. Hence by Theorem
1 the scheme does not generate C? functions.
For w = -, the scheme is exact for cubic polynomials (see Exercise 1),
therefore the necessary condition for C? limit functions of Theorem 1 holds.
We use the local representation of the scheme in the neighbourhood of a diadic
point, in terms of a finite dimensional matrix, to show that the scheme with
w = % generates limit fuctions which do not have a second derivative at
diadic points.

Let a diadic point ¢t = ng2~™ be fixed. Consider the five diadic points
closest to ¢ at level k + m, namely ¢ + j27%=™, j = —-2,-1,0,1,2, with the
corresponding values generated by the scheme at these points

Fr = (Ff2,Ffl,F§,F1k,F2k)T :
Then at level k¥ +m + 1 we have
FM1 = AF" (27)
where the matrix A is given by

0 1 0 0 0

~1/16 9/16 9/16 —1/16 0
0 o 1 0 0
0 -1/169/16 9/16 —1/16
0 0o 0 1 0

implying that Ff = FJ) for all k € Z, as is expected from the fact that the
scheme is interpolatory.

The first two largest eigenvalues of A are Ay =1, Ay = %, with correspond-
ing eigenvectors v = e = (1,1,1,1,1)7 and v® = ¢ = (-2,-1,0,1,2)7.
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1, A = &, with eigenvec-
tors v\9), j = 3,4,5. Note that v(*) is a generalized eigenvector satisfying
Av®) = iv(‘*) + v(®), Expanding F° in the basis of the eigenvectors of A,

F° = 23:1 a;v) | we get

The other three eigenvalues are \3 = Ay =

5
. 1
Fk = j;ajAkv(J) + aQ(i)kﬁ + Fle , (28)

and limy_, F* = Fle.
Denote f = S f0. If f'(t) exists, then

f'(t)ex = lim 2™T*D Y (F* — Fle) ,

k—oo

where ex = (1,1,0,1,1)7, and where D = diag{—2, —1,1,1,2}. But by (28)

5
f(t)ex = klir{:o 2mpD~! Z a;(24) %0 4 2ma, D70

=3

Thus the limit exists and equals 2™ asex.
Similarly if f”(¢) exists, then

f"(t)ex = lim 4™T*D=2(F*1 _oFk 4 Fle) ,

k—o0

which by (28) would lead to
5 .
f"(t)ex = lim 4D I - 24) ) o (44)F o)
7=3

But the limit above does not exist since the eigenvalue % has geometric mul-
tiplicity 1 and algebraic multiplicity 2.

Exercise 4.

1. Construct the Dubuc-Deslauriers subdivision scheme, based on 6 points.

2. Construct a 6-point insertion rule, by taking a convex combination of
the 6-point insertion rule constructed in part 1 of the exercise, and the
4-point insertion rule of Dubuc-Deslauriers constructed in Example 2.

3. What is the maximal possible smoothness of the limit functions generated
by the subdivision rule constructed in part 2 of the exercise?
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Solution:

1.

To construct the 6-point Dubuc-Deslauriers scheme, we solve for the co-
efficients of the symmetric 6-point insertion rule {«;, j = £3,£2, £1},
by requiring the rule to be exact for z’, i = 0,1,2,3,4,5. Since 75 is
invariant under shifts, it is sufficient to consider insrtion at % based on
the values at the points —2,—1,0,1,2,3. Moreover, by the symmetry
of the configuration of points relative to the inserted one, we get that
a_; = aj, j = 1,2,3. Thus the system of equations for the unknowns
aj, 3=1,2,3,1is

2(a; +az +a3) =1, (exactness for z%)
1
a1(1+0)+ax(4+1)+a3(9+4) = 1 (exactness for )

1
a1 (14 0) + a2(16 + 1) + a3(81 + 16) = 16 - (exactness for z*)

Note that exactness for the monomials z', 23, 2%, follows from the symme-
try of the problem together with the above three equations. The solution

of this system is a; = ay = a3 = ===, which yields the
insertion rule

75 25 3
128> 256 256

75 25 3
k k k k k k k
f2j++11 = 1_28(fj + fiy) — 2—56( 1+ ) + 2—56( ot fiys) -

Let 0 < p < 1, then the convex combination of the two insertion rules
yields the coefficients

a—g(]__ )+ E—g+i
L= 16V W T HETg T 16 T 12

1 25 1 9
—ay = 1—6(1—/~L)4‘/~L2—56 =16 " 256H
3
= oegh -
Defining 6 = %u, we get the 6-point scheme (see the Bibliographical
notes)

Qas

9 1
f2kj++11 = (]._6 + 20)(f]k + _](c+1) - (]._6 + 30)( ]kfl + ]k+2) + 6( _]{c72 + _]{c+3) '
(29)

For 6 # % the insertion rule (29) is exact for cubic polynomials. There-
fore by Theorem 1 the corresponding limit functions can be at most C®.
For § = 32- the insertion rule (29) is exact for 75 and therefore by The-
orem 1 the functions generated by the scheme can be at most C°.
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Exercise 6. Determine the approximation order of the 2N-point Dubuc-
Deslauriers scheme.

Solution: Since the 2N-point Dubuc-Deslauriers scheme is exact for mon_1,
the approximation order of the scheme, in view of Theorem 3, is 2.

Exercise 7. Construct explicitly the mask of a 4-point insertion rule which
interpolates circles exactly.

Hint: Construct an insertion rule by interpolation with a function from the
span of the four functions {1,¢,cost,sint}.

Solution: Since spaces of exponentials are shift invariant, and since the space
spanned by {1,%,cost,sint} corresponds to the exponents \; = Ay = 0, A3 =

i,\s = —i, with i2 = —1, we consider the k-th level insertion rule at the
point #27%~1 based on the values at the points —627%,0,027F, 262,
The system of equations for the coefficients af, j = —1,0,1,2 in the

insertion rule at level k is

o ok +akrak =1
—027Fak | 027 Fak 202 Fak = g2kt
cos(02 %)k | + af + cos(827F)ak + cos(2627%)ak = cos(h27F 1)
sin(027")a* | + sin(627%)a¥ + sin(2627%)ak = sin(2741) .
The first two equations correspond to exactness for t°, t'. The other two

equations correspond to exactness for cost,sint. The solution of this system
(obtained with the software Mathematica) leads to the insertion rule

fk.+1 _ -1 (
21 7 16 cos2(#2—k—2) cos(h2—k-1)
(14 2cos(A27F—1))2 (E 4 fE)

16 cos2(62—F2) cos(§2- k1) "7 j+1) -

k k
fia+ fits)

Note that this insertion rule tends to the 4-point Dubuc-Deslauriers insertion
rule of Example 2 as k tends to infinity, at the rate O(27%).

The above insertion rule together with f2’“j+1 = f, when applied to
equidistributed points {f](-), j=0,...,N} on a circle arc of angle N9, fills
the circle arc through the points f](-), j=2,...,N —2.In case the points are
equidistributed on the whole circle, then the application of this subdivision
scheme, recovers the circle. For this we have to deal with the periodic case. Let

Ny, = 2¥(N 4 1) — 1, then at level k the control points are f;“, j=0,..., Ng.

Using the periodic boundary conditions fF = fx ., j = —1,-2, and
fl’{,k_,_j = fﬁl, j = 1,2, the points at level k£ + 1 are defined with the above
k+1

rules. Note that with these boundary conditions the new inserted point f

Nit1
can be obtained also as f*I.
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Exercise 11. Show that on the three directional grid, if the values given
are constant in one of the three grid directions (1,0), (0,1), (1,1), namely
if £, =fo;or f{; = flo or f; = fo ;i then the butterfly scheme inserts
new values which are constant in the same direction as the original data is,
and could be computed by the univariate 4-point scheme of Example 3, along

the other two grid directions.

Solution: By the symmetry of the insertion rule of the butterfly scheme
relative to the three directions of the mesh, it is sufficient to consider the
case fg = fg’ j» ©,J € Z. The insertion rule of the butterfly scheme has three
different forms on the three directional mesh. For a new vertex corresponding
to an edge in the (1,0) direction, the insertion rule is

1
k
fyh; = 3 i+ fig) + 2w(fl g + £

k k k k
—w(fiyo jp1 + fijpr + fila o1 + fiya jo1) -

For a new vertex corresponding to an edge in the (0, 1) direction the insertion
rule is

1
k+1 k k k k
fig = 5( ot i) 2w f e + fila )
k k k k
—w(fi jyo + iy + fina o1 + fisi ji1) -
Finally, for a new vertex corresponding to an edge in the (1, 1) direction the
rule is

1
k41 k k k k
f2iil,2j+1 = 5( it fiv ) F2w(fij + filie)

k k k k
= w(fito g1 + fivijae + il + fi-1) -

Under the assumption fkj = f(ij, i,] € Z, namely that at level k the values

(2
generated by the scheme are independent of the first index, we get from the

first insertion rule

1
k k k k k
fziﬂ,j = i(fo,j + fo ;) +2w(fy 1 + fo1)
—w(fy i S A S I ) =18

implying that at level k£ + 1 the values attached to new points on the old grid
lines with fixed second index depend only on the second index. For a new
vertex corresponding to the (0,1) direction we get from the second insertion
rule

1

k

fi,SLj1+1 = 5(]%6,]' + f(;c,j+1) + 2w(f(1)€,j+1 + f(ij)
—w(fy o+ fo, + 8,0+ )

1
=G+ w)(fo; + f501) = w02 + f5-1) 5
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which is the insertion rule of the 4-point scheme with respect to the second
index. The third insertion rule gives the same rule as above. Thus, new points
at level k£ 4+ 1 which are on new grid lines with constant second index are
computed according to the 4-point scheme.

In conclusion, the grid lines with fixed second index correspond to uni-
variate points, and the values attached to these grid lines are computed by
the 4-point scheme. More precisely, let g¥ = f¥., j € Z, then g* evolves
according to the 4-point scheme, and fF; = g%, i,j € Z.

Acknowledgement: The author thanks Nurit Alkalai, Tom Duchamp and
Malcolm Sabin for providing figures to this chapter.
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