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Abstract. In order to design “good” subdivision schemes, tools for analyzing the
convergence and smoothness of a scheme, given its mask, are needed.

A Laurent polynomial, encompassing all the available information on a sub-
division scheme to be analysed, (a finite set of real numbers), is the basis of the
analysis. By simple algebraic operations on such a polynomial, sufficient conditions
for convergence of the subdivision scheme, and for the smoothness of the limit
curves/surfaces generated by the subdivision scheme, can be checked rather auto-
matically. The chapter concentrates on univariate subdivision schemes, (schemes
for curve design) because of the simplicity of this case, and only hints on possible
extensions to the bivariate case (schemes for surface design). The analysis is then
demonstrated on schemes from the first two chapters [10,14].

1 Introduction

In this chapter, a procedure for analyzing the convergence of a subdivision
scheme, based on the mask of the scheme, is presented. This procedure is de-
rived and supported by mathematical analysis. The same mathematical tools
lead also to a procedure for determining the smoothness of the limit func-
tions generated by a convergent subdivision scheme. Our departure point is
the following general form of one refinement step of the stationary subdivision
scheme S with the mask a = {a; : i € Z%}

=" aisff, i€, (1)

JEL*

with s = 1 for curves and s = 2 for surfaces.
For each scheme S with mask a, we define the symbol

a(z) = Z a2, (2)

VA

with 2! = 2122 in case s = 2. Since the schemes we consider have masks of
finite support, the corresponding symbols are Laurent polynomials, namely
polynomials in positive and negative powers of the variables. Any Laurent
polynomial can be written as an algebraic polynomial (only non-negative
powers) times a negative power.
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FExercise 1.

1. Show that (1) corresponds to a univariate interpolatory scheme, whenever
s=1,a9;,=0,1#0, ap=1.

2. Show that (1) corresponds to a univariate m-th degree spline subdivision
scheme, if s = 1 and a(z) = 27™(1 + z)™*L

3. Show that for s = 1 there are two rules in (1), and four rules for s = 2.

The notion of Laurent polynomials enables us to write (1), in an algebraic
form. Let F(z;f) = ZjeZ f;27 be a formal generating function associated
with the control points f. The relation (1) then becomes

F(z8af) = a(z)F (2% f) . (3)

Ezercise 2. Show, by equating coefficients of the same power of the variables
on both sides of the equality (3), that this equation is equivalent to (1).

Most of the procedures presented are for univariate schemes (s = 1).
Only a special class of bivariate schemes is considered here, which includes
the butterfly scheme. For tensor-product schemes on a regular quad-mesh,
the convergence and smoothness follow from those of the corresponding uni-
variate schemes.

2 Analysis of Univariate Schemes

Here we present several theorems, on univariate schemes, most of them with-
out proofs, due to the limited scope of this chapter. Proofs can be found
in [3].

Theorem 1. Let S be a convergent subdivision scheme, with a mask a. Then
D =) ax =1
J J

Exercise 3. Prove the above theorem.

Hint: Use (1) as the refinement step of S, and note that for k large enough,
if the scheme is convergent then all f]’-‘", which appear on both sides of the
equality, are almost equal to each other.

It follows from Theorem 1 that the symbol of a convergent subdivision
scheme satisfies,

a(—1) =0, a(l)=2. (4)
Thus the symbol factorizes into
a(z) = (14 2)q(2), (5)

with ¢(1) = 1. The subdivision S, with symbol ¢(z) is related to S, with
symbol a(z) by



Analysis of Convergence and Smoothness 53

Theorem 2. Let S, denote a subdivision scheme with symbol a(z), and de-
note by Af ={(Af)i=fi—fie1 : 1 €L}, for f ={fi : i € Z}. Then if
(5) holds,

A(Saf) = S,Af.

Proof. Recalling that F'(z; f) denotes the generating function of the control
points f, we observe that

F(zAf) = (1 - 2)F (= f) .
Thus, in view of (3) and (5)
F(2;A8.f) = (1 = 2)F(2;8uf) = (1= 2)a(2) F(%; f)
=q(2)(1 = 2*)F(2*; f) = q(2)F(z%; Af),
which is equivalent to A(S,f) = S;Af. O
It is clear that if S, is convergent then Af* tends to zero as k — oo. The

opposite direction is also true.

Theorem 3. The scheme S, is convergent if and only if for all initial data f°
lim (S,)*f° = 0. (7)
k—00

Proof. To prove convergence of the subdivision it is sufficient to show that
the sequence {f*(t) : k € Z,}, where

ff)y em, te @27k +1)27%), freFy=rF icz,

7

satisfies

sup [f*F1 (1) — A < On*, Il <1,
teER

since then this sequence is uniformly convergent. Observe that the maximum
absolute value of the piecewise linear function f**1(t) — f¥(t) is attained at
its breakpoints. Thus

: . : : 1 fEH S
sup |71 (t) = f*()] = max {sup = £ sup £ - R
teER 1€Z 1€Z

(8)
Now, let
bl _ b ke _ e H SR
G20 =Jis a1 =T 5 €L,
then Gpy1(2) = F(z;¢"") is obtained from F(z) = F(z; f*) by a relation
as (3) with the mask d(z) = % +1+Z%= %(1 +2)2,

Gry1(2) = d(2)Fi(z7) . (9)
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If we denote by ||F(z; f)||lco = max;ez | fi] = || f]|co, then by (8)

sup [F¥ () — f2 ()] = 1Fipr — Grallso - (10)
teR

Using the symbol a(z) = (1 + 2)q(z), with ¢(1) = 1, we observe that by (9)

-1

Fisa(2) = Gra () = ((1+ 2)a(2) = d(z) ) Fr(=?)

= (14 2)(a(2) - (1 +2) ) Fu(z?)
= (1 +2)(1 = 2)r(2)Fr(2*) = r(2)H(z*) ,  (11)

with Hy(z) = F(z; Af*), and where in the equality before the last we used

the fact that ¢(z) — Z;
z=1
Combining (10) and (11), we finally obtain in view of Theorem 2

5—(1 + 2) is divisible by (2 — 1), since it vanishes at

sup [P = FH0] = 1Fi1 = Grpalloo < Rmax |ff = f)]

= R|Af* ]l < RIIS;FAS |0 (12)
where R =), |ri|.

Now, if (7) holds for any initial data f°, then there exists L > 0, L € Z,
such that the operator of L iterations of Sy, SqL, satisfies

187 llo = < 1
and we get from (12)

X X & . )
sup |FAH1 () — f5(t)] < Rplz! max [|Af7]lo < CnF
teER 0<j<L

Withn:u%<1. O

A scheme S, satisfying (7) for all initial data f° is termed “contrac-
tive”. By Theorem 3, the check of the convergence of S, is equivalent to
checking whether S, is contractive, which is equivalent to checking whether
ISEloe < 1, for some L € Z, L > 0.

Now, from (1) with q replacing a

[15q]lo0 :maX{Z|Q2i|v Z|QZi+l|} )
i i

since in (1) there are two rules for computing the values at the next refinement
level, one with the even, and one with the odd coefficients of the mask.
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To compute [|S)||o, we first observe that by (6), L iterations of S, are
given by the symbol

2L—1

since

Hir(2) = q(2)Hirr-1(2%) = ¢(2)q(z*) Hirp2(2*) = -+~ = qu(2)Hi(z*) .

The relation .
Hypp(2) = qu(2)Hp(2*)

with ¢r(z) = qEL]zi is equivalent to the rules

Afk+L Z qEL]2L Afk

There are 27 different subsets of {qI[ZL]} used above, depending on the remain-
der in the division of 4 by 2*. Thus

||SL||OO = max Z |q[L] 0<i< 2k} . (13)

i—2Lj

The algorithm for verifying convergence,
given the symbol a(z) of the scheme S,,.

If a(1) # 2 the scheme does not converge. Stop!
If a(—1) # 0 the scheme does not converge. Stop!

Compute ¢(z) = sz)

Set q1(2) = >, q[l]z =q(z).

For L=1,...,M,

(a) Compute N7 = maxg<;cor Z |ql oL |.
(b) If N;, <1, S, is convergent. Stop'

c) If N;, > 1 compute 2) = a(2)ar (22) = 5. glitil i
L Z p qrL+1 q(z)qrL i 4
6. S, is not contractive after M iterations. Stop!

Uk W o=

M is a parameter of the algorithm. If for small L, [|SF||c =y < 1, then

1AF oo = masx|fF = FE1] < pl#] mae A S loc
and the differences are small after a small number of iterations of S,. In this
case, it is enough to apply only a small number of refinement steps in order to
“see” convergence. If [|SF||oo > 1for L=1,...,M —1 and ||S}[| < 1, with
large M, then many iterations are needed, before the refined data “looks”
continuous. Thus, from a practical point of view, 5 < M < 10 is a reasonable
choice of the parameter M.
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The analysis of smoothness is similar. It is based on the following

Observation: It follows from Theorem 2 that if a(z) = (1;?1)1" b(z), then for
fk = Safk_l
Amfk
(2-F)m
Since for data sampled from f € C™(R), namely for

Amfkfl

=5 (2=G=Dym -

(14)

fE=f2%), ieZ, kel
and for fixed ( € Z

lim (2mkAmfk)1-2k—e — f(m)(l2fi) ,
BT

the following result is plausible.

Theorem 4. Leta(z) = (1;,’,2,)7" b(z). If Sy is convergent then S2° f° € C™(R)

for any initial data f°, and

dm o0 [ee] m

52100 = (S ) ) (15)
where A™f = A(A™~Lf) is defined recursively.

Thus the procedure for checking C™ smoothness of S, is reduced to the
verification of convergence of a scheme S;, obtained from S, by the factor-
ization of the symbol a(z) to

(1+2)"

om b(z) .

a(z) =
Ezample 1. The univariate spline schemes.
Univariate spline schemes are introduced in Section 2 of chapter [14]. The
symbol of the subdivision scheme with basic limit function the B-spline (uni-
variate box-spline) of degree m is

A+)™7 o, (16)

) =S >

To verify convergence consider the symbol

[m] 1 m 1 .
][y _ @ (2) _ (1+2) _ 1 m\

S,y 18 convergent if and only if Sq[m1 is contractive. Now

W)
v

L[’] (5]

1
|oo = max m , — .m
om 2o\ 95 ) am £La\2j 41

Jj=0 J=0

1S gm1
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But
sl L (1+1)m
2m.2<2;> Z<2j+1>:W’ m21.

Thus for m > 1, [|Similec = %, and Sy is contractive, proving the conver-
gence of S, for m > 1.
To obtain the smoothness of the limit functions generated by S, i), we

¢ [m]
show that the symbols Q(T +Z)(f ). 1< ¢ < m—1 determine convergent schemes.

It is sufficient to consider b(z) = 2(1::)[],(12) = (lfj)z. Since b(z) = al'l(2),

Sy, is convergent and so S, generates C™~! limit functions for m > 1.

Ezample 2. The 4-point scheme
The insertion rule of the 4-point interpolatory subdivision scheme is

ot = —w(fisy + fia) + G+ w)(fF + fia) -
Thus the mask of this scheme is (see Subsection 1.2 in [10]),

aw=1, a1 =1+w a=0 ar3=-w (17)
and the symbol is

a(z) =271+ 2)* (322 —w(z - 1)2(1 +27)) . (18)
Now,
I

and [|Sg|lcc = § + 2|w|. S, is convergent iff [|SF||o < 1 for some L € Z\0.
In case L =1, [|Sglloo < 1if |w| < }. Computing ¢2(2) = ¢(2)q(z?) we get

=—wz? twr + L+ L b we — w2? (19)

(z) =wz"? —w?27 — Lo+ w?)"T + (w2 - %w)z‘6
—wlz T+ (w+w?) T+ (L + tw)z 3+ (w4 1 —w?)z?
+Ew+ T —w?)z 7t + (5 +w? ——w)+(w+w )z—w2,z2
+(w® — tw)z? — (2 +w?)et —w?z® + w?b .

This leads to
157100 = maX{I% +wllw] + 13 +w? = fw| + Jw[|1 + w| +w?,
wlfw — L+ |2 + Lw — w?| +2w2} . (20)

Thus, for the case L = 2 we get from the requirement ||S7||o < 1 the range

S cw< *Hg‘/l_ % which is bigger than the range |w| < %, obtained

from the case L = 1.
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By considering all L € Z it was computed that the range for w > 0
is 0 < w < 1. The range —1 < w < 0 is obtained from results on positive
masks. Thus the exact range of w for S, to be convergent is —1 < w < 1.

As for smoothness analysis, consider S, with b(z) = 21‘1(_?. Then Sy is
convergent if and only if S, is contractive, with

r(z) = b(z)  2a(z)

14z (1422 =275 —w(z — (1 +2%)

But [|Sy]|ec = max{8|w]|, |l — 4w| + 4|w|} > 1, and to see contractivity we
consider ||S2||s. The condition ||S?|| < 1 gives the range 0 < w < *1+‘/5 =
0.154. Note that the special value w = % is contained in this range. In this
range of w, S, is contractive implying that Sj is convergent and therefore S,
generates C! limit functions.

To check C? smoothness, we consider w = 11—6 This is the only value of w
for which the necessary condition of Theorem 1 in the previous chapter [10]
is satisfied (the scheme is exact for cubics). In this case, the limit functions

of S, are C? if the scheme S; is contractive, where

_ da(z) _ 2t 2

But ||Sf || = 1 for L € Z\0 and our method of analysis fails to show that
52 f% € C? for w = ;. In fact it is possible to show by the Eigenanaly-
sis, presented in the next chapter [15], that S2°f° does not have a second
derivative at all dyadic points (see the solution of Exercise 3 in chapter [10]).

Ezercise 4. Derive (18) from (17), and verify (19).

3 Analysis of Bivariate Schemes with Factorizable
Symbols

Here we present similar analysis tools to those in the univariate case for bivari-
ate subdivision schemes defined on regular quad-meshes and for subdivision
schemes on regular triangulations.

3.1 Analysis of Schemes Defined on Regular Quad-Meshes

Theorem 5. Let a(z) = a(z1,22) = ), ; aijziz] be the symbol of a bivariate
subdivision scheme S, which is defined on quad-meshes. Then a necessary
condition for the convergence of S is

Z Qo238 = 1, ac {(0,0),(0,1),(1,0),(1,1)} . (21)

BEZ?
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The proof of this theorem is similar to the proof of Theorem 1.
Ezercise 5. Show that condition (21) implies that
a(1,1)=4, a(-1,1)=0, a(l,-1)=0, a(-1,-1)=0. (22)

In contrast to the univariate case (s = 1), in the bivariate case (s = 2)
the necessary condition (21) and the derived conditions on a(z), (22), do not
imply a factorization of the mask.

We impose the following factorization

a(z) = (14 z1)(1 + 22)b(2), z = (21, 22) . (23)
Theorem 6. Suppose the schemes with the symbols

a(z)

ai(z) = 1o = (1 + 22)b(2),
@) = L = 1420

are both contractive, namely

lim (S,,)f° =0, lim (Sa.,)*f°=0

k—o0 k—o0
for any initial data f°, then the scheme S, with the symbol (23) is convergent.
Conversely, if S, is convergent then S,, and S, are contractive.

The proof of this theorem is similar to the proof of Theorem 3, due
to the following observation: Define Ay f = {f;; — fi—1,; : 4, € Z}, and
Aof ={fij— fij—1:14,j €L} Then So, Apf = AySof, 0 =1,2.

Thus convergence is checked in this case by checking the contractivity
of two subdivision schemes Sg,,S,,. If in (23) b(z1,22) = b(22, 21), which
is typical for schemes having the symmetry of the square grid (topologically
equivalent rules for the computation of vertices corresponding to edges), then
ay(z1,22) = a2(z2,21), and the contractivity of only one scheme has to be
checked.

For the smoothness result, we introduce the inductive definition of differ-
ences: Albil = Ay A=1I10 Albil = Ay AlLT=1 0 AILOL = A AL = A,

Theorem 7. Let

a(z) = (14 2z1)" (1 + 22)™b(2) . (24)
If the schemes with the masks
2itiq(z
a; ;(z) = (1+zl)i(1(—222)j’ i,7=0,...,m (25)
are convergent, then S, generates C™ limit functions. Moreover,
aH—j .
SEf0 =S5 ATAL O, i,j=0,...,m. (26)

ot ot
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To verify that a scheme S, generates C'' limit functions, with the aid of the
last two theorems, we have to assume that

a(z) = (14 21)%(1 + 22)%b(2) ,
and to check the contractivity of the three schemes with the symbols
214 21) (1 + 22)b(2), 2(1+ 22)%b(2), 2(1+ 21)%b(2) .
Ezercise 6. Verify the last statement.

This analysis applies also to tensor-product schemes, but is not needed,
since if a(z) = a1(z1)a2(22) is the symbol of a tensor-product scheme, then
the basic limit function of S,, ¢a, iS ¢a(t1,t2) = ba, (t1) - Ga,(t2), and its
smoothness properties are derived from those of ¢, , Pa,.

3.2 Analysis of Schemes Defined on Regular Triangulations

For the topology of a regular triangulation, we regard the subdivision scheme
as operating on the 3-directional grid. (The vertices of Z2 with edges in the
directions (1,0),(0,1),(1,1).)

Since the 3-directional grid can be regarded also as Z?, (21) and (22) hold
for convergent schemes on this grid.

A scheme with a mask which treats each edge in the 3-directional grid in
the same way with respect to the topology of the grid, is a scheme for regular
triangulations. The symbol of such a scheme, when being factorizable, has
the form

a(z) = (L4 21)" (1 + 22)" (1 + 2122)"b(2) , (27)

where b(z) has some symmetries, e.g. b(z1, 2z2) = b(z2, 21).

Ezample 3. The symbol of the butterfly scheme on this grid has the form

a(z) = %(1 +21)(1 4 22)(1 + 2122) (1 — we(zy, 22))(2122)_1 (28)
with

—2_—1 —-1_—2 -1 -1 -1 -1
c(z1,22) =221 "2y +2z] 2yt —dzy 2y —dzy — 4z

+ 221_12'2 + 22122_1 + 12 — 4z — 42y — 42129 + 22’%22 + 2212'% . (29)

FExercise 7.

1. Derive the mask of the butterfly scheme from the insertion rule of the
scheme. Hint: Consult the solution of Exercise 11 in chapter [10].

2. Derive the symbol of the butterfly scheme.

3. Verify (28) and (29).
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Convergence analysis for schemes with factorizable symbols of the form
(27) is similar to that for schemes defined on quad-meshes.

Theorem 8. Let S, have the symbol
a(z) = (14 z1)(1 + 22)(1 + z122)b(2) . (30)

Sq is convergent if and only if the schemes with symbols

a(z)

:1+z27 as(2) = -

o 1+2122

, a2 (Z)

(31)

are contractive. If any two of these schemes are contractive then the third is
also contractive.

Note that
SasA&f: A3Saf7

where (Azf)i; = fij — fi-1,j-1-

If two of the schemes S,,, i = 1,2, 3, are contractive then the differences in
two linearly independent directions tend to zero as & — oo, which implies as
in the proof of Theorem 3, that the bilinear interpolants { f*(t)}xrez ., where

(T cEm X
fil®) teliitxGgn]

keZy,,
fk(ivj):fi}fjv (ivj)€Z2v

is a Cauchy sequence of continuous functions, with a continuous limit.
The smoothness analysis for a scheme with a symbol (30) is different from
that for schemes defined on regular quad meshes.

Theorem 9. Let S, have the symbol (30). Then S, generates C* limit func-
tions if the schemes with the symbols 2a;(z), i = 1,2,3, are convergent. If
any two of these schemes are convergent then the third is also convergent.
Moreover,

0 oo £0 __ . £0 S

atisa f _SQaiAlfv ’L_172
a a oo £0 0

(55 + 50 ) 547 = Samdas”

The verification that the scheme S, with symbol (30) generates C! limit
functions, based on Theorems 8 and 9, requires checking the contractivity of
the three schemes with symbols,

214 21)b(2), 2(1 4 22)b(2), 2(1+ z122)b(2) .

If these three schemes are contractive, then S, generates C'' limit functions.
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Ezercise 8. Verify the last statement.

Example 4. Continuation of Example 3.

To verify that the butterfly scheme generates C' limit functions, we use the
fact that the symbol a(z) of the butterfly scheme, given in (28) is factoriz-
able. In view of the observation following Theorem 9, we have to check the
contractivity of the schemes with the symbols

() = (1 +21)(1 —we(z1, 22)) (z122) "
g2(2) = (1 + 22) (1 — we(z1, 22)) (2122) "
gs(t) = (1 + zlzz)(l — wc(zl,zz))(zl,@)*l .

Noting that
c(z1,22) = c(z22,21) = c(zlz%zl—l) ,
and that the factor (2129)"! in a symbol does not affect the norm of the

corresponding subdivision operator, it is sufficient to verify the contractivity
of S,, where

r(z) = (z122)q1(2) = (1 + 21) (1 — we(z1, 22)) Z TaZ
a€Z?

Now

||Sr||oo = O<k 13<1 ( Z |Th+21 £+2]|>

1,JEL

and since

S Jraia] = 11— Sw| + [8ul
i,jEL
[|Sr|loo > 1 for all values of w.
Next, we show that there exists an interval (0,wy), such that we have for
€ (0,wp), ||S?]|oo < 1. The value of wp is not computed (for a computed
value of wyp see the Bibliographical notes).
The following computation is based on the fact that w is small. Computing
only terms which are bigger than O(w), we get

) =r()r(z?) = 1 +2 +22 + 2D) (1 = we(z1, 22) — we(27, 23) + O(w?))

= Z T[Q]zizz .

1,jEZ

Thus for j # 0, 7"[2] = O(w) while r% =1+ 0O(w), i =0,1,2,3. From this
we conclude that 1t is sufficient to show that for small enough w

Z |r£+4z4j| <1, ¢=0,1,2,3.
i,jEZ
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This requires considering terms of order O(w), and to ignore terms of order
O(w?). In case ¢ = 0, all the non-zero coefficients {rE]Aj} are

7“([)2}) =1-16w+O(w?), 7"4[1271) = 8w+ O(w?), 73[127]4 = 7“([)27]_4 = 2w+ 0w?) .
Hence for w > 0 small enough

ST =11 - 16w] + 12]w] + Ow?) < 1.
i,JEZ

In case ¢ = 1, the relevant coefficients are
7"[12’%) = 1—12w+(’)(w2), ré%]() = 4w+(’)(w2), rk[rfll = 7"[12’]74 = —2w—|—(’)(w2) .
Hence for w > 0 small enough,

Z |7"1+4i,4j| = |1 — 12w| + 8|w| + O(UJQ) <1.

iJ
The cases ¢ = 2 and ¢ = 3 are similar to the cases { = 1 and ¢ = 0, respec-
tively. Thus for w > 0 small enough the limit surfaces/functions generated
by the butterfly scheme on regular triangulations are C*.

This establishes that the butterfly scheme generates C'! surfaces/functions

on regular grids, and in the vicinities of vertices of valency 6 in general tri-
angulations, due to the locality of the insertion rule.

4 Bibliographic Notes

A detailed presentation of the analysis tools of this section is given in [3],
with complete mathematical justifications, and with a detailed extension to
the general bivariate case on quad-meshes.

The formalism of Laurent polynomials was introduced in [1]. For uni-
variate schemes, the analysis of convergence, based on the contractivity of
the corresponding difference scheme, was introduced in [5], together with the
smoothness analysis based on the divided difference schemes. The ranges of
the parameter w for the convergence of the 4-point scheme were computed in
[4,5,9]. The full range |w| < %, is obtained for w < 0 from results on positive
masks [13], while for w > 0, was computed by M.J.D. Powell. The analysis
of the smoothness of the butterfly scheme on regular grids for small values of
w, as presented here, is done in [9]. In [11] it is shown that for 0 < w < 11—2,
the butterfly scheme generates C'' limit functions/surfaces on regular grids.

The formalism of Laurent polynomials is inadequate for the analysis of
non-stationary or non-uniform schemes. For a certain class of non-stationary
schemes the analysis is done by relations to stationary schemes [6], [8], [7],
while for certain non-uniform schemes the analysis is done by divided differ-
ence schemes [2].
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To prove negative results (such as the result that the 4-point scheme
generates functions without a second derivative at the dyadic points), one can
show that certain necessary conditions are violated. Such necessary conditions
are obtained by the Eigenanalysis presented in the next chapter [15]. This
approach is explained in details in [3].
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Solutions of Selected Exercises

FExercise 1.

1.

Show that (1) corresponds to a univariate interpolatory scheme, whenever
s=1,a9;,=0,1#0, ap=1.

2. Show that (1) corresponds to a univariate m-th degree spline subdivision
scheme, if s = 1 and a(z) = 27 (1 + 2)(m+D),

3. Show that for s = 1 there are two rules in (1), and four rules for s = 2.

Solution 1.

1. The refinement step (1)

S = Z ai2iff, i €L,
JELS
with s =1, ag; =0, i #0, agp = 1, has the form
o= fk i =20,
fath = Sien -2 f) =2 gt [, i=20+1.
These two rules are the same as in Definition 2 in the previous chapter [10]
with Qj = 2541, ] €.

2. Expanding a(z) in powers of z, we observe that the coefficients of the
mask are a; = 27 m(mﬂ), 1 =20,...,m+ 1, as obtained from Pascal’s
triangle in Section 2 of chapter [14]

3. For s = 1 the two rules encompassed in (1) are for ¢ even and for 7 odd.

Let ¢ = 2/, then

1 1
o Zaze 2ij Zamjfé"_,,-

JEZ vEZ

To get the second rule, assume ¢ = 2¢ + 1. Then

/v+1 k
BN =D as o ff =D asa fl, -

JEZ vEZ

Thus one rule is based on the even coefficients of the mask, and the other
on the odd coefficients.

In the case s = 2 there are four rules depending on the parity of each
component in the multi-index ¢ = (i1,42). Writing all the multi-indices
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by components, we get the four rules

f(2i1,2i2) - Z a(2z172]1,21272]2)f(j17j2)
J1,j2€Z
— k
= Z a(2u172ug)f(il—u17i2—y2)
v1,V2 €L
k+1 _ k
f(2711+1727l2) - Z a(2V1+172V2)f(ilful,izfyz)
Ul,UQEZ
k+1 _ k
f(2i172i2+1) B Z a(2”1’2”2+1)f(i1*111,71271/2)
Ul,UQEZ
k+1 _ k
f(2i1+172i2+1) - z: a(2l’1+172y2+1)f(7:1—V1,7;2—IJ2)
v1,V2 €L

Ezercise 2. Show, by equating coefficients of the same power of the variables
on both sides of

F(z;8.f) = a(z)F(z% f)
that this equation is equivalent to (1).
Solution 2. The above equality is in the sense that coefficients of the same

power of z on both sides of the equality are the same. The coefficient of 2!
on the left-hand side is (S, f);. The cofficient of 2% on the right-hand side is

Ejez a;—2; f;, since
Cl(Z)F’(ZQ7 f) = Zaizi ijZQj .
iEZ JEZ
Thus
(Saf)i= Zaiﬁjfj ;

j€Z
which is equivalent to (1), since there fF+!1 =G, f*.

Ezercise 3. Prove that the mask a of a convergent univariate subdivision
scheme, satisfies

E a2 = E asz:l.

J J

Solution 3. Let S denote the convergent subdivision scheme. By the defini-
tion of convergence (see Definition 1 in the previous chapter [10]), there exists
f° and xg such that S f°(xg) # 0. Also by Remark 1 in chapter [10] for any
given small € > 0 there exists K = K (¢), such that for all ¥ > K

sup |(Skf0)i - S°°f0(2*ki)| <e.

1€2F(zo—1,z0+1)
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Let & > K(e) and ¢ be such that (27% < zy < (¢ + 1)27%. Denote

€ = 27F¢. Then fiFt = S®f0(&) + €* with |e*| < e. Similarly, since the
support of the mask is finite,

fi;=8%f(& —27%)) + €}, j €supp(a)

with |e§‘| < e. Using (1) with ¢ = 2¢ (see the corresponding refinement rule in
part 3 of the solution of Exercise 1), we get

§2f0() + € =D an;(S7f (G — 27" ) +¢)) (32)
JEZ

Let supp(a) C [~M, M], then by the uniform continuity of S f° in the
interval [z — 1,20 + 1], there exists K* such that |S> f0(z) — S®fO(y)| < e
for |z —y| < (M +1)275" z,y € [x0 — 1,20 + 1].

Returning to (32) obtained from (1) with ¢ = 2¢ and k > max{K, K*},
we get

8% f0wo) + &= _ an;[S% f(w0) + 5],
JEZ

with |€] < 2¢ and |e;| < 2e. This leads to

‘S“’fo(xo) [1 -3 a2j]

JEZ

< Ce,

with C' a constant independent of e.
Since € can be chosen arbitrarily small, and since S* f°(zq) # 0, we finally

get
Zazj =1.
JEZ
A similar analysis leads to ZjeZ asjyr = 1.
Ezercise 5. Show that condition (21) implies that
a(l,1) =4, a(-1,1)=0, a(1,-1)=0, a(-1,-1)=0. (33)
Solution 5. We show that the conditions

Y aazs =1, ac{(0,0),(0,1),(1,0),(1,1)},

BEZ?

imply a(1,1) =4, a(—1,1) =0. The other two implications are similar. By
the definition of a symbol

a(l,1) = Zag‘ = Z a(2j1,252) T Z A(2j1+1,2j2)

JEZ? J1,J2 €L J1,J2 €L
+ E . Q2,25 41) F E | Q(2),41,2j241)
J1,J2€Z J1,J2€Z

=1+14+1+1=4.



68 Nira Dyn

Similarly

a(-1,1) = Z Q(25,,25,) — Z (251 +1,252)

J1,J2€Z J1,J2€Z
- E: a(2j172j2+1)+ E: A(251+1,252+1)
J1,J2€Z J1,J2€Z

=1-1-14+1=0.
Exercise 6. Show that a bivariate scheme with a symbol
a(z) = (14 21)?(1 + 22)%b(2) ,
generates C! limit functions, if the three schemes with symbols
2014 21)(1 + 22)b(2), 2(1+ 22)%b(2), 2(1+ 21)%b(2) .
are contractive.

Solution 6. To verify that a scheme generates C' limit functions, by the
tools of Theorem 7, we have to verify that the schemes corresponding to the
symbols

2a(z) 2a(z)

]. —+ Z1 ’ ]. —+ Z9 ’

(34)

are convergent.
To show by the tools of Theorem 6 that the first scheme in (34) is con-
vergent, we have to show that the schemes with symbols

2a(z) 2a(z)
(]. + 21)2 ’ (]. + 21)(1 + 2’2) ’

are contractive. Similarly, for the second scheme in (34), we have to show the
contractivity of the schemes with symbols

2a(z) 2a(z)
(1 + 22)2 ’ (1 + 2’1)(1 + ZQ) ’

By the form of a(z), we get that the contractivity of the three schemes with
symbols

214 z1)(1+ 22)b(2),  2(1+22)°b(2),  2(1 + 21)%b(2) ,

has to be verified.



