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Abstract

This work addresses k-restriction problems, which unify combinatorial problems of the
following type: The goal is to construct a short list of strings in Σm that satisfies a given
set of k-wise demands. For every k positions and every demand, there must be at least
one string in the list that satisfies the demand at these positions. Problems of this form
frequently arise in different fields in Computer Science.

The standard approach for deterministically solving such problems is via almost k-wise
independence or k-wise approximations for other distributions. We offer a generic algo-
rithmic method that yields considerably smaller constructions. To this end, we generalize
a previous work of Naor, Schulman and Srinivasan [18]. Among other results, we greatly
enhance the combinatorial objects in the heart of their method, called splitters, and con-
struct multi-way splitters, using a new discrete version of the topological Necklace Splitting
Theorem [1].

We utilize our methods to show improved constructions for group testing [19] and gen-
eralized hashing [3], and an improved inapproximability result for Set-Cover under the
assumption P 6= NP.

1 Introduction

In the past decades, randomness was established as a fundamental notion in Computer Science.
Consider, for example, the following simple algorithmic result (cf. [5]). Given a directed graph
G = (V, E), one wishes to find whether it contains a simple path of length k. A very simple
randomized solution is to assign each vertex a uniformly chosen number in [k], and consider
only edges connecting a vertex assigned i, 1 ≤ i < k, to a vertex assigned i + 1. By scanning
the resulting k-layered graph from the first layer to the last, one can easily discover in linear
time whether it contains a simple path of length k. If G indeed contains such path, there
is a probability of at least k−k that the path remains in the random layered subgraph. If
k ≤ O( log|V |

log log|V |), repeating this process, say, 2kk is (a) efficient (b) discovers a sized-k simple
path, if such exists, with good probability, and, (c) never discovers such path, unless it existed
in the first place.

Many efforts were made to fully understand the role of randomness in computation. Those
efforts revealed that many applications that incorporate randomness may be, in fact, deran-
domized, that is, simulated deterministically. The reason is that frequently one can settle for
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objects that only look random to a limited observer, that is, randomness is (many times) in
the eyes of the beholder. This motivated a series of works constructing small sample spaces for
different limitations on a beholder: observing only k places (k-wise independence), considering
only linear tests (ε-bias [17]), being unable to distinguish small deviations from such (almost-
ε-biased, k-wise independent [4]) etc.

In the above example, one can consider only assignments V → [k] that are induced by k-wise
independent sample-spaces, because one is only interested in a condition on any k vertices. As a
matter of fact, any almost k-wise independent sample space suffices, as long as the distribution
is, say, 1

2k−k-close to the uniform distribution. Furthermore, one can settle for even smaller
sample-spaces, as the demands are merely existential ; one only wishes to have one assignment
for every k vertices, assigning the vertices 1, . . . , k respectively. There is no need that a noticeable
fraction of assignments would do that.

This work addresses problems of this type; given any set of existential k-wise limitations
on the beholder as well as a distribution with respect to which the limitations have a good
probability to be satisfied, it provides algorithmically a small set that satisfies the limitations.

The following definition formalizes the problems we address, namely, k-restriction problems:

Definition 1 (k-restriction problems). k-restriction problems are as follows:

1. The input is an alphabet Σ of size |Σ| = q, a length m and a set of s possible demands
fi : Σk → {0, 1}, 1 ≤ i ≤ s. For every 1 ≤ i ≤ s there exists a ∈ Σk so that fi(a) = 1.

2. The task is to prepare a set A ⊆ Σm so that: For any choice of k indices 1 ≤ i1 < · · · <
ik ≤ m, and a demand j, 1 ≤ j ≤ s, there is some a ∈ A, such that fj(a(i1) · · · a(ik)) = 1.

3. The quality of the solution is measured by how small |A| is.

For completeness, let us formulate the above problem as a k-restriction problem. Σ = [k],
q = k, m = |V | and there are s = k! demands; for every permutation σ : [k] → [k], corresponding
to a possible ordering of the k observed vertices, there is a demand fσ : [k] → {0, 1}, requiring
the vertices would be assigned the appropriate numbers, that is, fσ(x1, . . . , xk) = 1 if and only
if x1 = σ(1) ∧ · · · ∧ xk = σ(k).

1.1 Our Work

For every constant k, we devise an efficient algorithm that finds a solution whose size is arbi-
trarily close to the size of a probabilistic construction. For k = O( log m

log log m), we show an efficient
algorithm constructing solutions of a somewhat larger size. We also present a method for han-
dling problems with larger k. The exact results are detailed in section 4 (theorems 1 and 2),
after the required terminology and background. Let us present some of the applications of our
work.

Multi-Way Splitters

A k-wise t-way splitter is a set of partitions of [m] into b sets, so that for every k coordinates
within [m], each having a color in [t], there exists a partition so that every set 1 ≤ j ≤ b contains
the same number of coordinates of each color up to rounding. This is a generalization of the
existing notion of a splitter introduced by [18]. Splitters are multi-way splitters for t = 1.

Splitters and multi-way splitters are used to split a problem of the form “for every k coor-
dinates,...” into b problems of the form “for every dk/be coordinates,...”. The advantage of
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multi-way splitters is that they give more control on the split. They allow us to split a problem
of the form “for every k coordinates, for every partition of the coordinates into t types,...” into
b problems of the form “for every dk/be coordinates, for every partition of the coordinates into
t types,...”.

We show how to construct succinct multi-way splitters

Theorem 3 A k-wise t-way splitter for splitting m coordinates into b blocks of size

O(k4 log m) · bp+1 ·
(

k2

p

)

where p = (b− 1)t, may be constructed in time polynomial in m, tk and the size of the construc-
tion.

Our main tool is the Necklace Splitting Theorem [1], which is a theorem proved by topological
techniques, that considers the number of cuts needed to split a necklace with beads of t types
between b thieves. In order to use the theorem, we prove a new discrete version of it.

Group Testing

The problem of group testing [11, 19] was first presented during world war II. Among a large
population of m soldiers, at most d individuals carry a fatal virus. We would like to blood test
the soldiers to detect all carriers. The simple solution would be to test the blood of each soldier
separately. But if we are to minimize the number of tests, we can mix the blood of several
soldiers and test the mixture. If the test comes out negative, then none of the tested soldiers is
a carrier. If the test comes out positive, we know at least one of them is a carrier.

The problem is to come up, given m and d, with a small set of group tests. Each group test
is defined by the subset of soldiers whose blood samples are mixed. After performing all the
tests there should be enough information to pin down the identities of the carriers. We focus
on the non-adaptive case, namely, all tests should be decided upon before starting to test.

Using the results presented in this paper, we prove that there exists an efficient deterministic
construction of a set of group-tests, whose size is – roughly – ed2 ln m, for a large, however
constant, d. The reason that d need be constant, is that the running time of the algorithm
depends on md.

Theorem 4 For any fixed d, for every δ > 0, a set of at most (1+δ)·e(d+1)[(d+1) ln m+ln(d+1)]
group tests may be found in time polynomial in md.

In other words, for every δ > 0, there exists d(δ), so that for every d ≥ d(δ), there is an
algorithm that given m can produce a set of group-tests for m people with at most d carriers,
whose size is at most (1 + δ)ed2 lnm in time polynomial in m.

Generalized Hashing

The classic problem of (m, q, k)−perfect hashing is to find a small set of functions hi : [m] → [q]
so that for every X ⊆ [m], |X| ≤ k, there exists some function which is 1-1 on X, i.e there
exists i so that for every x1, x2 ∈ X, x1 6= x2, it holds that hi(x1) 6= hi(x2).

This problem has many variants. One example is (t, u)-hash families used for the design of
parent identifying codes for digital fingerprinting [3]. Again, one wishes to find a small set of
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functions hi : [m] → [q], but now, for every two subsets T ⊂ U ⊆ [m], |T | = t, |U | = u, there
should exist i so that for any x1 ∈ T , x2 ∈ U , x1 6= x2, it holds that hi(x1) 6= hi(x2).

[3] addressed the case of the minimal alphabet-size q = t + 1, and concentrated on the rate
R = logq m

n , where n is the number of functions produced. Our results derive a better explicit
construction than theirs:

Theorem 5 For any fixed 2 ≤ t < u, for any δ > 0, one can construct efficiently a (t, u)-
hash family over an alphabet of size t + 1 whose rate is at least (1− δ) t!(u−t)u−t

uu+1 ln(t+1)
.

Our methods are also applicable when the parameters u and t are growing, and not constant.
For instance, we prove:

Theorem 6 There exists an algorithm that given a and m, outputs an (a, 2a)-hash family
of at most (4e)a logO(log a) m functions hi : [m] → [a + 1] in time polynomial in m and this size.

The same methods could be easily applied for other choices of parameters and other gener-
alizations of perfect hashing as well.

Hardness of Approximating Set-Cover

Given a universe U = {u1, ..., un} and a family of its subsets, S = {S1, ..., Sm} ⊆ P (U),⋃
Sj∈S Sj = U, Set-Cover is the problem of finding a minimal sub-family C ⊆ S that cov-

ers the whole universe,
⋃

Sj∈C Sj = U. Set-Cover is a classic NP-hard combinatorial opti-
mization problem, and it is known that it can be approximated in polynomial time to within
ln n− ln lnn + Θ(1) [21, 15, 22].

Feige proved that for every ε > 0, there is no efficient approximation to within (1 − ε) lnn,
under the assumption NP * DTIME(nlog log n) [13].

The work of [8] facilitated hardness results for Set-Cover under the weaker, more tradi-
tional, assumption P 6= NP. However, it seems their reduction has an inherent inverse linear
dependency in a parameter d ≥ 2 of the underlying PCP , called its dependency, or the number
of provers, which prevents the reduction from obtaining the optimal factor. Specifically, using
the sub-constant error PCP of Raz and Safra [20], unless P = NP, Set-Cover cannot be
efficiently approximated to within any number smaller than log2 n

2(d+1) . Arora and Sudan claim in
[7] that d can be made 3 for the error probability we need, but do not provide the details.

We would like to comment that the work of [18] eliminated – up to low order terms – the
advantage the randomized reductions had over the deterministic ones, and thus, under assump-
tions concerning efficient randomized computation, better results are not known.

We hence address the challenge of proving better inapproximability results for Set-Cover,
under P 6= NP. Roughly speaking, we manage to reduce the inverse dependency of the in-
aproximability result of [8] in d to the considerably smaller inverse dependency in ln d, which
improves the result no matter how small d ≥ 2 is made.

Theorem 7 For any η ≥ 1, Set-Cover cannot be efficiently approximated to within any
number smaller than c ln n, for c = 1

(1+1/η)(ln ηd+1+1/ηd) , unless P = NP.

For d = 3, we obtain a hardness factor of more than 0.2267 ln n (for η = 3), instead of
arbitrarily close to 0.125 lnn.
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1.2 Comparison With Previous Work

The literature regarding derandomization is vast. We will reference only two papers that are of
particular relevance.

The paper by Naor, Schulman and Srinivasan [18] is the starting point of our work. They
consider a few important problems that fall into the category of k-restriction problems, such
as perfect hash families and universal sets. They solve these problems using similar methods,
focusing on decomposition of the problems into smaller problems. We take a unifying approach
and address all k-restriction problems. Moreover, two ingredients are added. Naor et al consider
problems in which a small set of strings chosen uniformly is (with high probability) a solution.
We consider problems in which a small set of strings chosen from some (efficiently approxi-
matable) distribution, not necessarily the uniform one, is (with high probability) a solution.
Many intriguing k-restriction problems are so (see our applications). In addition, Naor et al use
splitters to split a problem into sub-problems. We put splitters in a wider context, viewing the
observation underlying their construction as a special case of the topological Necklace Splitting
Theorem [1]. This realization allows us to construct multi-way splitters that form much finer
splits, and are, hence, suitable for a larger class of applications.

Koller and Megiddo [14] take a similar approach to ours, and consider the problem of con-
structing small sample-spaces algorithmically given the constraints. They consider constraints
of the form “the probability these k coordinates admit this string in Σk is this number”. In one
respect, this is a generalization of our definition, as we only guarantee a positive probability, and
do not promise a restriction would be satisfied with some specified probability. However, their
results are only applicable when the number of observed k-tuples is small, while we concentrate
on demands on all

(
m
k

)
possible k-tuples, and are still able to provide efficient solutions.

1.3 Organization

We start by laying out the foundations, when discussing the probabilistic construction in section
2 and k-wise approximations in section 3. In section 4 we describe our results simulating the
probabilistic construction deterministically. The construction is done in three stages: greediness,
approximation and concatenation. In section 5, we present a Divide-and-Conquer approach, that
builds upon the first results and may derive efficient algorithms for a wider range of parameters.
This approach is based on splitters [18] and extends them using the Necklace Splitting Theorem
[1]. The applications are detailed in sections 6 (group testing), 7 (generalized hashing) and 8
(Set-Cover hardness of approximation).

2 Probabilistic Solution

Σm is a solution for every k-restriction problem on alphabet Σ and length m. However, a
substantially smaller subset of Σm chosen at random forms a solution with good probability. In
this section we will study this argument, and establish how small we can expect a solution to a
general k-restriction problem to be.

To this end, we will define the density ε of a k-restriction problem with respect to some
probability distribution D over Σm to be so that for any given demand at any given k-positions,
when picking a random string from D, the string satisfies the demand at those positions with
probability at least ε.
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Definition 2 (density). Given a probability distribution, D : Σm → [0, 1], the density of a
k-restriction problem with respect to D is

ε
.= min

1≤i1<···<ik≤m

1≤j≤s

{
Pr

a∼D
[fj(a(i1) · · · a(ik)) = 1]

}

Note that every k-restriction problem has density at least q−k with respect to the uniform
distribution. Some problems (e.g., group testing, or (t, u)-hashing) have a much larger density
with respect to other distributions.

A simple union bound calculation shows that if a problem has a large density (with respect
to some distribution), it has a small solution:

Proposition 1 (union bound). Every k-restriction problem with density ε with respect to some
probability distribution D has a solution of size at most dk ln m+ln s

ε e.
Proof. Fix a k-restriction problem with density ε with respect to some probability distribution
D. Let t > k ln m+ln s

ε be some natural number. consider A = {a1, . . . , at} ⊆ Σm chosen
probabilistically as follows: for each 1 ≤ i ≤ t, draw ai independently from D. Let us bound
the probability that there exist k indices 1 ≤ i1 < · · · < ik ≤ m and a constraint 1 ≤ j ≤ s,
such that a1, . . . , at all do not match,

Pr
a1,...,at∼D

[∃i1, . . . , ik∃j∀a ∈ A, fj(a(i1), . . . , a(ik)) = 0] ≤
(

m

k

)
s(1− ε)t ≤ ek ln m+ln s−εt

where we use the union bound and the inequality 1− x ≤ e−x.
For our choice of t, the probability above is smaller than 1, hence there exists A ⊆ Σm of size

t which is a solution for the k-restriction problem.
Moreover, picking slightly more vectors at random from D should yield a solution with high

probability. But note that we do not know of an efficient way to verify a given set of vectors
really does form a solution, unless k = Θ(1).

3 k-wise Approximating Distributions

A relatively small solution for any k-restriction problem may be obtained using a succinct dis-
tribution that approximates the distribution, with respect to which the problem has a large
density. The resulting solution is, however, considerably larger than the random solution pre-
sented in the previous section. In this section we will make the proper definitions and consider
this argument.

We start by defining ways to measure distance between distributions.

Definition 3 (lp-norm distance). The distance in the lp-norm between two probability distrib-

utions D,P over some sample space Ω is ‖D − P‖p
.=

(∑
a∈Ω |D(a)− P (a)|p)

1
p . The distance

in max-norm is ‖D − P‖∞ .= maxa∈Ω |D(a)− P (a)|.
We consider distributions over Σm, and are interested in k-wise approximations, i.e., distribu-

tions that approximate a distribution well when restricted to any k coordinates. The restriction
of a probability distribution D over Σm to indices 1 ≤ i1 < · · · < ik ≤ m is a probability
distribution Di1,...,ik over Σk, that assigns each a ∈ Σk the probability a string drawn randomly
from D has a in indices i1, . . . , ik, i.e., Di1,...,ik(a) .= PrX∼D [X(i1) = a(1) ∧ · · · ∧X(ik) = a(k)].
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Definition 4 (k-wise ε-closeness). Two distributions D, P over Σm are said to be k-wise ε-close
in the lp-norm, if for any 1 ≤ i1 < · · · < ik ≤ m, ‖Di1,...,ik − Pi1,...,ik‖p < ε.

A distribution which is k-wise ε-close to the uniform distribution for every ε > 0 (no mat-
ter in what norm) is called k-wise independent, and hence the use of the term almost k-wise
independence, when this holds for any ε ≥ ε0 for some small ε0 > 0.

Approximations in the l1-norm are very strong:

Lemma 1. Let D, P be two probability distributions over Σm, such that P is k-wise ε-close to D
in the l1-norm. Then for every k-restriction f : Σk → {0, 1} and indices 1 ≤ i1 < · · · < ik ≤ m,

∣∣∣∣ Pr
X∼D

[f(X(i1) · · ·X(ik)) = 1]− Pr
X∼P

[f(X(i1) · · ·X(ik)) = 1]
∣∣∣∣ < ε

Proof.

‖Di1,...,ik − Pi1,...ik‖1 =
∑

a∈Σk

|Di1,...,ik(a)− Pi1,...,ik(a)|

≥
∑

a:f(a)=1

|Di1,...,ik(a)− Pi1,...,ik(a)|

≥
∣∣∣∣∣∣

∑

a:f(a)=1

Di1,...,ik(a)−
∑

a:f(a)=1

Pi1,...,ik(a)

∣∣∣∣∣∣

=
∣∣∣∣ Pr
X∼D

[f(X(i1) · · ·X(ik)) = 1]− Pr
X∼P

[f(X(i1) · · ·X(ik)) = 1]
∣∣∣∣

The lemma follows from |Di1,...,ik − Pi1,...ik‖1 < ε.
Many works present explicit constructions of succinct distributions that are k-wise ε-close to

different distributions in different norms. Succinctness refers to the size of their support, i.e the
number of strings having a positive probability. We will use the following definition:

Definition 5 (k-wise approximation). A distribution D over Σm is said to be k-wise efficiently
approximatable, if the support of a distribution which is k-wise ε-close to it in the l1-norm may
be enumerated in time polynomial in m, ε−1 and |Σ|k.

Perhaps the largest family of distributions that admit an efficient k-wise approximation is
that of product distributions. A product distribution over Σm , |Σ| = q, is specified by a matrix P
of dimensions m× q, indicating the probability each of the m independent coordinates assumes
each of the values in Σ. Note that the uniform distribution is a product distribution. We quote:

Lemma 2. [12] Any product distribution on Σm is k-wise efficiently approximatable.

Using the former definition we can now describe the folklore method for solving k-restriction
problems deterministically. The underlying observation is the following:

Proposition 2. [folklore] The support of a distribution over Σm which is k-wise ε-close in l1
to D is a solution for any k-restriction problem with parameters m ,Σ, k, s and density ε with
respect to D.
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Proof. Fix some k-restriction problem with density ε with respect to D. Consider some distri-
bution P which is k-wise ε-close in l1 to D. By way of contradiction, let us assume that there
exist 1 ≤ i1 < . . . ik ≤ m and 1 ≤ j ≤ s so that PrX∼P [fj(X(i1) · · ·X(ik)) = 1] = 0. However,
PrX∼D [fj(X(i1) · · ·X(ik)) = 1] ≥ ε. This contradicts lemma 1.

Unfortunately, this yields solutions with a dependence on parameters that is inferior to that
of proposition 1 (which was roughly k log m

ε ). To demonstrate this, consider the extensively
studied uniform distribution over {0, 1}m. Known explicit constructions give distributions that
are almost k-wise independent in l1 of support size O(2k k2 log2 m

ε2 ) [4]. The dependence is usually
much worse for other distributions (e.g, see [12]).

Let us remark that for k-restriction problems in which each restriction fj requires exactly

one string in Σk (i.e.,
∣∣∣f−1

j (1)
∣∣∣ = 1), one can settle for an approximation in l∞. Unfortunately,

even then the known constructions are large (e.g., O(k2 log2 m
ε2 ) [4], or O(k log m

ε3 ) [17, 2] for the
uniform distribution on {0, 1}m).

4 Our Results

Our results provide solutions that are smaller than those implied by proposition 2.
We first make one technical definition. We will sometimes consider sets of demands that

are invariant under permutations, i.e when permutating the substrings, the possible demands
remain the same. Formally, if for a demand f , we use Cf to indicate f−1

i (1), the set of sub-
strings it accepts, then a set of demands {f1, . . . , fs} is invariant under permutations, if for any
permutation σ : [k] → [k],

{Cf1 , . . . , Cfs} = {σ(Cf1), . . . , σ(Cfs)}

Natural problems, like the ones presented in the introduction, usually have demands with this
property. Moreover, if the set of demands does not have this property, we can add it dummy
demands. Since the dependence of our solutions in the number of demands s is only logarithmic,
this usually does not enlarge the solution significantly.

Now to the results – for k = O(1), an efficient algorithm that produces solutions of size
arbitrarily close to that of proposition 1 is implied by the following theorem:

Theorem 1. Fix some efficiently approximatable probability distribution D. For any k-restriction
problem with density ε with respect to D, there is an algorithm, that given an instance of the
problem and an accuracy parameter 0 < δ < 1, obtains a solution of size at most

⌈
k ln m+ln s

(1−δ)ε

⌉

in time polynomial in s, mk, qk, ε−1 and δ−1.

Let |Hashm,q,k| be the size of the smallest possible efficient construction of a (m, q, k)-perfect
hash family (see the introduction). For k = O( log m

log log m), an efficient algorithm is implied by the
following theorem:

Theorem 2. Fix some efficiently approximatable probability distribution D. For any k-restriction
problem with density ε with respect to D and demands that are invariant under permuta-
tions, there exists an algorithm that given an instance of the problem and an accuracy pa-
rameter 0 < δ < 1, obtains a solution of size at most

⌈
2k ln k+ln s

(1−δ)ε × ∣∣Hashm,k2,k

∣∣
⌉

in time

poly(m, s, kk, qk, ε−1, δ−1).
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Note that by [2] and the connection between perfect hashing and asymptotically optimal
error correcting codes,

∣∣Hashm,k2,k

∣∣ ≤ O(k4 log m):

Lemma 3. For every m, k, there exists an explicit construction of a code with m codewords of
length n = O(k4 log m) over an alphabet of size k2, so that every k codewords differ on some
coordinate.

Proof. Consider an explicit construction of an error correcting code with m codewords of length
n over alphabet [k2] whose (normalized) Hamming distance is at least 1− 2

k2 (such a construction
exists by [2]). Denote the codewords by c1, . . . , cm. Let I = {i1, . . . , ik} ⊆ [m]. By the distance
of the code,

n∑

j=1

|{ i1, i2 ∈ I | i1 < i2, ci1(j) 6= ci2(j)}| =
∑

i1<i2∈I

|{j ∈ [n] | ci1(j) 6= ci2(j)}|

≥
(

k

2

)(
1− 2

k2

)
n

By averaging, there exists 1 ≤ j ≤ n for which,

|{ i1, i2 ∈ I | i1 < i2, ci1(j) 6= ci2(j)}| ≥ 1
n
·
(

k

2

)(
1− 2

k2

)
n >

(
k

2

)
− 1

But since the left-hand is an integer, also bounded from above by the integer
(
k
2

)
,

|{ i1, i2 ∈ I | i1 < i2, ci1(j) 6= ci1(j)}| =
(

k

2

)

Thus, if i1 6= i2 ∈ I, then ci1(j) 6= ci2(j).
For larger values of k we present in section 5, an approach that builds upon the above

theorems. To prove them we use three techniques. First, we formulate k-restriction problems as
(huge) Set-Cover problems. This derives an algorithm with two flaws: The running-time is
polynomial in mk, which is inefficient for non-constant k, and it requires an enumeration of the
distribution’s support (sub-section 4.1). Then we k-wise approximate the distribution to get
one that preserves most of the density, and has support that may be enumerated (sub-section
4.2), thus obtaining theorem 1. Lastly, we show a technique transforming inefficient solutions,
such as the one obtained when combining the first two techniques, into efficient ones, by way of
concatenation (sub-section 4.3). This results in theorem 2.

4.1 Greediness

Somewhat surprisingly – bearing in mind our Set-Cover application – the first step of the
construction involves finding a small solution for some Set-Cover instance (see section 8 for
background). We show that any k-restriction problem may be formulated as a Set-Cover
problem, and invoking the greedy algorithm (i.e the one that chooses in any step the subset
that covers the largest number of elements not covered yet) ensures the size anticipated by prob-
abilistic considerations. This approach is really an implementation of the method of conditional
expectations.

Unfortunately, the reduction to Set-Cover is not polynomial in m for k = ω(1). Hence, in
this case, the algorithm we present is inefficient by itself. Nonetheless, it serves as a procedure
inside the final algorithm, when invoked with much smaller parameters.
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First, let us adhere to the Set-Cover setting, and analyze the behavior of the greedy algo-
rithm when all elements are covered by a significant portion of the subsets.

Proposition 3. Let (U, S) be a Set-Cover instance. Let D : S → [0, 1] be some probability
distribution over S. If for every u ∈ U, PrS∼D [u ∈ S] ≥ ε, then the greedy algorithm produces
a set cover whose size is at most

⌈
ln|U|

ε

⌉
.

Proof. For a subset S ∈ S and an element u ∈ U, let Xu,S be an indicator variable for the event
′u ∈ S′. By linearity of expectations, for every U ′ ⊆ U,

E
S∼D

[∣∣S ∩ U ′∣∣] = E
S∼D

[ ∑

u∈U ′
Xu,S

]
=

∑

u∈U ′
E

S∼D
[Xu,S ] =

∑

u∈U ′
Pr

S∼D
[u ∈ S] ≥ ε

∣∣U ′∣∣

Hence, in each iteration the greedy algorithm covers at least ε of the sub-universe. Thus, after
t iterations, at most (1−ε)t ≤ e−εt of the elements remain. Therefore, any number of iterations
larger than ln|U|

ε suffices.
The following lemma explains how k-restriction problems reduce to Set-Cover problems

and uses the above analysis to derive the algorithm.

Lemma 4 (greediness). Given the support of some probability distribution D : Σm → [0, 1] and
a k-restriction problem with density ε with respect to D, one can obtain a solution whose size
is at most

⌈
k ln m+ln s

ε

⌉
in time polynomial in

(
m
k

)
, s and |supp(D)|.

Proof. Define an element for every possible pair (k positions, demand on those positions), and
a set for every support vector:

U .= {< i1, . . . , ik, j > | 1 ≤ i1 < · · · < ik ≤ m, 1 ≤ j ≤ s}

S .= {Sa | a ∈ supp(D)} where Sa
.= {< i1, . . . , ik, j >∈ U | fj(a(i1) · · · a(ik)) = 1}

Note that a cover C for (U, S) corresponds to a solution of size |C|. As for any u ∈ U,
Pra∼D [u ∈ Sa] ≥ ε, the lemma follows from proposition 3.

4.2 Approximating Distributions

The greedy algorithm immediately provides us an algorithm that solves a given k-restriction
problem in time that depends on the size of the support of the distribution with respect to
which we evaluate the density. This size may be very large for natural distributions, such as
the uniform one, whose support is Σm.

The idea is to approximate the distribution first, in order to obtain a new distribution with
considerably smaller support, that preserves most of the density. Then invoke the algorithm on
the new distribution.

Proof. (of theorem 1) First construct a distribution D′ which is k-wise δε-close in the l1-norm
to the distribution at hand. By lemma 1, for any k indices 1 ≤ i1 < · · · < ik ≤ m and any
k-restriction f : Σk → {0, 1},

Pr
X∼D′

[f(X(i1) · · ·X(ik)) = 1] ≥ Pr
X∼D

[f(X(i1) · · ·X(ik)) = 1]− δε ≥ ε− δε = (1− δ) ε

The theorem follows from lemma 4 with D′ instead of the original distribution.
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4.3 Concatenation

In this sub-section we show a general scheme for transforming inefficient algorithms for k-
restriction problems, such as the greedy algorithm, into more efficient algorithms via concate-
nation. This follows an idea by [18].

Invoke the inefficient algorithm only on m′ ¿ m tuples. In the case of the greedy algorithm,
this reduces the

(
m
k

)
factor in the running-time to the considerably smaller

(
m′
k

)
factor. It is

useful to think of the output of the inefficient algorithm as a table with m′ columns.
Our plan is to interleave these columns in a clever way, so they compose a solution for the

original problem on m tuples. This clever way is defined by an outer construction, that should
be thought of as a table with m columns having entries from [m′]. In this way, each entry
references a column in the inner construction. The concatenated construction replaces each
reference with the actual column.

The property of the outer construction is perfect hashing (see the introduction): for every
choice of k columns out of m, there should be a row in which all k entries differ. That is,
in the final construction we can find there k different columns of the inner construction. By
the property of the inner construction and the invariance under permutations, they satisfy all
demands.

Now we can describe the concatenation algorithm. It works for any k-restriction problem
with demands that are invariant under permutations,

• Input: Solution A for the problem on m′-tuples, and (m,m′, k)-perfect hash family B.

• Output: Solution C for the problem on m-tuples (instead of m′-tuples).

• Process: For every a ∈ A, and every b ∈ B, output the vector a(b(1)) · · · a(b(m)).

The correctness of this algorithm may be easily checked:

Lemma 5 (concatenation). Given A and B as specified, the concatenation algorithm produces
a solution C for the problem with |C| = |A| · |B|.
Proof. Note that clearly C ⊆ Σm, and |C| = |A| · |B|. Let us prove C is indeed a solution.
Fix a restriction 1 ≤ j ≤ s and k indices 1 ≤ i1 < · · · < ik ≤ m. As B is a (m,m′, k)-
perfect hash family, there exists b ∈ B with b(i1), . . . , b(ik) ∈ [m′] all distinct. Let us consider
the permutation σ : [k] → [k] so that b(iσ(1)) < · · · < b(iσ(k)). By the invariance under
permutations, there exists a restriction 1 ≤ j′ ≤ s that is equivalent to fj when applying σ. As
A is a solution for the problem, there exists a ∈ A such that fj′(a(b(iσ(1))) · · · a(b(iσ(k))) = 1.
Hence fj(a(b(i1)) · · · a(b(ik))) = 1. That is, the vector a(b(1)) · · · a(b(m)) satisfies fj at indices
1 ≤ i1 < · · · < ik ≤ m. As this holds for every k-restriction and k indices, the concatenated
construction is solution for the problem on m tuples.

Recalling that there are small explicit constructions of (m, k2, k)-perfect hash families (e.g of
size O(k4 log m) [2]), theorem 2 follows.

5 Divide and Conquer

We outline a Divide and Conquer approach, that may be used together with theorem 2 to obtain
an efficient solution for many k-restriction problems, even for k ≥ ω(log m/ log log m):

1. Give a short list of possible partitions of {1, . . . , m} into b blocks, typically b = Θ(log k).

11



2. Find a solution for the sub-problem with parameters m, dk/be (e.g using theorem 2).

3. Combine the sub-solutions.

For the purpose of dividing into blocks, [18] defined a combinatorial entity called a splitter. We
generalize their definition, based on the topological Necklace Splitting Theorem of [1].

5.1 Necklace Splitting

The Necklace Splitting Theorem states, that if b thieves steal a necklace with beads of t colors,
they can cut it in only (b− 1)t places, in order to fairly divide it between them.

In [1], a continuous version of this theorem is proven using tools from algebraic topology, and
a discrete version is deduced. We will need a slightly more general discrete version, which may
be of independent interest, and show how to derive it.

Continuous Necklace Splitting

let I = [0, 1] be the unit interval. An interval t-coloring is a coloring of the points of I by t
colors, such that for each 1 ≤ i ≤ t, the set of points colored by i is Lebesgue measurable. Given
such coloring, a b-splitting of size r is a sequence of numbers 0 = y0 ≤ y1 ≤ · · · ≤ yr+1 = 1 and
a partition of the family of r + 1 intervals F = { [yi, yi+1] | 0 ≤ i ≤ r} into b pairwise disjoint
subfamilies F1, . . . , Fb whose union is F , such that for each 1 ≤ j ≤ b, the union of the intervals
in Fj captures precisely 1/b of the total measure of each of the t colors.

Clearly, if each color forms an interval, the size of a b-splitting is at least (b − 1)t. The
Necklace Splitting Theorem shows this is tight.

Lemma 6 (A Continuous Necklace Splitting Theorem,[1]). Every interval t-coloring has a b-
splitting of size (b− 1)t.

Let us describe the intuition behind the case of t = b = 2, which provides some insight to
the role of topology in the proof. Call one of the types red. Instead of observing some coloring
of the unit interval, observe the equivalent coloring of the one-dimensional sphere (a necklace
closed at its clasp). Consider some half necklace. If the measure of red within this half is exactly
1
2 , this induces a fair partition, and we are done. Otherwise, assume without loss of generality
that this measure is larger than 1

2 . When rotating the necklace 180◦, the measure of red in the
observed half is hence smaller than 1

2 . As the change in the measure is continuous, there must
be a half in which this measure is exactly 1

2 . In general, the proof uses a generalization of the
Borsuk-Ulam theorem.

Discrete Necklace Splitting

Suppose a necklace has n beads, each having a color i, where 1 ≤ i ≤ t. Suppose there are ai

beads of color i, 1 ≤ i ≤ t;
∑t

i=1 ai = n. A b-splitting of a necklace is a partition of it into b
parts, each consisting of a finite number of non-overlapping sub-necklaces of beads whose union
captures either bai/bc or dai/be beads of color i, for every 1 ≤ i ≤ t. The size of the partition
is the number of cuts that form the sub-necklaces.

The discrete version appearing in [1] considers only necklaces that can be accurately divided
among b thieves, i.e b|ai, for every 1 ≤ i ≤ t. The following variant is clearly a generalization of
this version.
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Lemma 7 (A Discrete Necklace Splitting Theorem). Every necklace with ai beads of type i,
1 ≤ i ≤ t, has a b-splitting of size at most (b− 1)t.

Proof. Convert the discrete necklace into an interval coloring, by partitioning I = [0, 1] into n
equal segments, and coloring the j’th segment by the color of the j’th bead of the necklace.
By lemma 6, there exists a b-splitting of the interval into families of intervals F1, . . . , Fb with
(b− 1)t cuts.

However, these cuts not necessarily occur at the endpoints of the segments, and thus, they
do not necessarily correspond to a splitting of the discrete necklace; several thieves may have to
share a single bead. Nevertheless, by giving each bead to one of the thieves 1 ≤ j ≤ b that have
some share of it, (a) we do not increase the number of cuts, and, (b) we convert the splitting
into a discrete splitting. Let us show how this can be done so (c) (almost) fairness holds as well:
each thief gets either bai/bc or dai/be beads of color i, for every 1 ≤ i ≤ t.

For every 1 ≤ i ≤ t, construct a flow network in which each edge has a capacity and a lower
bound on the flow through this edge.

Define a directed graph Gi on the set of all ai beads of color i, all b thieves, and two distin-
guished vertices: source vs and sink vt,

Vi = {bl | 1 ≤ l ≤ ai} ∪ {hi | 1 ≤ j ≤ b} ∪ {vs, vt}

Ei = {(bl, hj) | thief hj gets a share of bead bl} ∪ {(vs, bl) | 1 ≤ l ≤ ai} ∪ {(hj , vt) | 1 ≤ j ≤ b}
For every edge (vs, bl), let its capacity and lower-bound be c(vs, bl) = l(vs, bl) = 1. For every
edge (bl, hj), let its capacity be c(bl, hj) = 1, and its lower-bound l(bl, hj) = 0. For every edge
(hj , vt), let its capacity be c(hj , vt) = dai/be, and let its lower-bound be l(hj , vt) = bai/bc. Note
that the continuous theorem yields a non-integral legal flow in the network. As all capacities
and lower-bounds are integral, there exists an integral flow in the network (folklore; this follows,
for example, from the validity of Lawler’s algorithm, cf., e.g, [23], page 602). Such a flow in
each of the Gi’s corresponds to a discrete, almost-fair, split.

Note that the proof of this theorem, as a result of the underlying proof of the continuous
version, is not constructive. Nevertheless, this is not a drawback in our context, as we invoke it
on very small parameters, and consider all possible splits.

5.2 Multi-Way Splitters

A partition of m coordinates into b blocks is a function π : [m] → [b] assigning each coordinate
the block that contains it. We say π splits a subset I ⊆ [m] of the coordinates, if every block
1 ≤ j ≤ b sees the same number of coordinates up to rounding, i.e

⌊ |I|
b

⌋
≤ ∣∣π−1(j) ∩ I

∣∣ ≤
⌈ |I|

b

⌉

To facilitate the handling of partitions, for a partition π : [m] → [b], let us define π̄ : [m] →
[b]× [m] assigning a coordinate its (block,ordinal within the block) pair, i.e

π̄(i) = (π(i), |{j ≤ i |π(j) = π(i)}|)

[18] introduced the notion of (m, k, b)-splitters, referring to list of partitions such that every
set of k coordinates is split. To use the analogy of the Necklace Splitting Theorem, say the
necklace is composed of m seemingly identical jewels, but only k of them are real gemstones.
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[18] wanted a small set of possible partitions of the necklace to b thieves, so that no matter
which k jewels are real, there is a partition that splits these k jewels fairly between the thieves.
We introduce a generalization of this notion, namely multi-way splitters. The only difference
is that now jewels may be of various types, and a fair partition is one that gives each thief the
same number of jewels of each type.

Definition 6 (multi-way splitter). Let m, b be natural numbers.

• A t-way splitter is a list A of partitions π : [m] → [b], s.t. for any series of t pairwise
disjoint subsets of coordinates S1, . . . , St ⊆ {1, . . . , m}, there exists a partition in A that
splits each one of S1, . . . , St.

• A k-wise t-way splitter is a list A of partitions π : [m] → [b], s.t. for any series of t
pairwise disjoint subsets S1, . . . , St ⊆ {1, . . . , m} containing at most k indices

∑ |Si| ≤ k,
there exists a partition in A that splits each one of S1, . . . , St.

When there is only one type, i.e t = 1, our definition of a t-way splitter is equivalent to the
[18] definition of a splitter. When t > 1, we need to use the Necklace Splitting Theorem.

Lemma 8. There exists an explicit construction of a t-way splitter that splits m indices into b
blocks, and has size bp+1 · (m

p

)
, where p

.= (b− 1)t.

Proof. Take all possible splits π : [m] → [b] of size p of a necklace with m beads of t types
to b thieves. That is, for every 0 = i0 < i1 < · · · < ip ≤ ip+1 = m positions, and every
s ∈ [b]p+1 determining which thief gets each piece, define a split π as follows: π(j) = s(k) for
every ik−1 < j ≤ ik.

To prove correctness, take t pairwise disjoint subsets S1, . . . , St ⊆ {1, . . . , m}. They cor-
respond to a necklace with m′ .=

∣∣⋃t
i=1 Si

∣∣ ≤ m beads of t different types, determined by
S1, . . . , St. As every split of a necklace of size m′ is induced by at least one split of a necklace
of size m, by lemma 7, there exists a split out of those we constructed, that splits evenly the
necklace we consider, and thus satisifes our demand for S1, . . . , St.

We are interested in constructions of (smaller) k-wise t-way splitters. This is a k-restriction
problem over an alphabet of size b with demands that are invariant under permutations; There
is a demand for every classification of k coordinates into t types, containing all partitions that
split all types. Now, applying concatenation,

Theorem 3. A k-wise t-way splitter for splitting m coordinates into b blocks of size
∣∣Hashm,k2,k

∣∣·
bp+1 · (k2

p

)
, p = (b− 1)t, may be constructed in time polynomial in m, tk and the size of the con-

struction.

Proof. Apply lemma 5 (concatenation) on lemma 8 (the exhaustive construction).

6 Application to Group-Testing

In this section we will prove theorem 4 presented in the introduction.

Theorem 4. For any fixed d, for every δ > 0, a set of at most (1 + δ) · (d + 1)e · [(d + 1) lnm +
ln(d + 1)] group tests may be found in time polynomial in md.

Proof. Our plan is as follows:
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1. Formulate the group-testing problem as a k-restriction problem.

2. Present a product distribution that induces a large density for the k-restriction problem.

3. Derive the conclusion from theorem 1.

Let us formulate the group-testing problem as a k-restriction problem. A test may be repre-
sented by a string in Σm, Σ = {0, 1}, indicating which of the m blood samples to take and which
not. The combinatorial requirement is that no matter who are the d carriers, for every person,
there should be a test that examines his blood, and none of the d infected blood samples. In
other words, for every string w ∈ Σk, k = d + 1, with d zeros and a single one, there should be
a demand fw : Σk → {0, 1}, fw(x) = 1 iff x = w (hence s = d + 1).

Consider the product distribution D : {0, 1}m → [0, 1], so that each group-test t ∈ {0, 1}m is
chosen as follows: for every soldier 1 ≤ i ≤ m, independently at random, let

t(i) =





1 with probability 1
d+1

0 with probability d
d+1

For any k indices 1 ≤ i1 < · · · < ik ≤ m and a string w ∈ {0, 1}k with d zeroes and a single
one, the probability a group-test drawn randomly from D has w in positions i1, . . . , ik is

1
d + 1

·
(

1− 1
d + 1

)d

≥ 1
e(d + 1)

Fix some 0 < δ < 1, and let δ′ < 1
1−δ . By theorem 1 and lemma 2, one can obtain a solution of

size at most (1 + δ) · e(d + 1)[(d + 1) lnm + ln(d + 1)] in time polynomial in md.

7 Application to Generalized Hashing

In this section we will prove theorems 5 and 6 concerning (t, u)-hashing, as presented in the
introduction. First, let us formulate the problem as a k-restriction problem.

Claim 1. The problem of finding a (t, u)-hash family is a k-restriction problem, for k = u.

Proof. The underlying observation is that functions h : [m] → [q] may be thought of as strings
s ∈ Σm, for Σ = [q]; for every x ∈ [m], h(x) = s(x). As to the restrictions, k = u, and for
every T ⊆ [u], |T | = t, there is a demand fT : Σu → {0, 1}, fT (x) = 1 iff for every i ∈ T and
j ∈ [u] \ {i}, x(i) 6= x(j). Here s =

(
u
t

)
.

As aforementioned, [3] consider the minimal alphabet size, q = t+1, and observe the product
distribution D : [t+1]m → [0, 1], for which a hash function h : [m] → [t+1] is chosen as follows:
for every x ∈ [m], independently at random,

h(x) =





t + 1 with probability 1− t
u

1 with probability 1
u

. .

. .

. .

t with probability 1
u
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The density of the problem with respect to this distribution is at least t!( 1
u)u(1 − t

u)u−t =
t!(u−t)u−t

uu , as for every T ⊂ U ⊆ [m], |T | = t, |U | = u, a function h : [m] → [t + 1] satisfies
the restriction T at place U , if (but not necessarily only if ) h(U − T ) = {t + 1}, and h(T ) =
{1, . . . , t}.

Note that this argument works even for a restricted (t, u)-hash problem, in which the demand
associated with T is fT (x) = 1 iff for every i ∈ T and j ∈ [u] \ {i}, either j ∈ U − T and then
x(j) = t + 1, as well as, x(i) ≤ t, or j ∈ T , and then x(i) 6= x(j), as well as, x(i), x(j) ≤ t.

Now, we simply need to substitute the parameters in theorem 1:

Theorem 5. For any fixed 2 ≤ t < u, for any δ > 0, one can construct efficiently a (t, u)-hash
family over an alphabet of size t + 1 whose rate is at least (1− δ) t!(u−t)u−t

uu+1 ln(t+1)
.

Proof. Fix t, u. Let δ > 0. By theorem 1, there is an algorithm, that given m and δ′, outputs,
in time polynomial in m, a (t, u)-hash family of size

(u lnm + ln
(
u
t

)
)uu

(1− δ′)t!(u− t)u−t

The rate of this construction is, hence:

R
.=

ln m · (1− δ′)t!(u− t)u−t

ln(t + 1) · (u lnm + ln
(
u
t

)
)uu

If we choose δ′, so that 1−δ′
u ln m+ln (u

t)
≥ 1−δ

u ln m ,

R ≥ (1− δ)t!(u− t)u−t

ln(t + 1)uu+1

This rate resembles that of the probabilistic construction of [3], t!(u−t)u−t

uu(u−1)ln(t+1)−δ, and improves
their explicit construction whose rate is u−ct for a large constant c. Importantly, our methods
and the use of the multi-way splitters we define, provide small constructions even when u and
t grow with the parameters of the problem. To ease the presentation, let us concentrate on the
case u = 2a and t = a, for some input parameter a.

Consider the following algorithm:
Input: a, m
Output: an (a, 2a)-hash family of functions [m] → [a + 1].

1. Construct a 2a-wise 2-way splitter S that splits m coordinates into b = dlog 2ae blocks
applying theorem 2.

2. Construct a restricted (da/be, d2a/be)-hash family H (as defined above) of functions hi :
[m] → [da/be+ 1].

3. For every splitter partition π ∈ S, for every b (not necessarily different) strings, h1, . . . , hb ∈
H, output a function hπ,h1,...,hb

composed of h1, . . . , hb interleaved according to π: for every
x ∈ [m], if x is assigned to the k’th block by π, i.e., π(x) = k, then

hπ,h1,...,hb
(x) =





a + 1 hk(x) = da/be+ 1

hk(x) + (k − 1)da/be otherwise
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Theorem 6. There exists an algorithm that given a and m, outputs an (a, 2a)-hash family of
at most (4e)a logO(log a) m functions [m] → [a + 1] in time polynomial in m and this size.

Proof. Clearly, the algorithm produces a family of size |S| |H|b. By corollary 3, |S| ≤ aO(log a) log m.
By theorem 2, |H| ≤ 2O(a/b) log m, since, the density of the problem solved is at least c!cc

(2c)2c , for
c = da/be, and using Stirling’s approximation, ε−1 ≤ 22cec. Therefore, the algorithm outputs a
family of size 22aea logO(log a) m. Also note that the running-time of the algorithm is indeed as
specified.

Let us prove correctness. Let T ⊂ U ⊆ [m], |T | = a, |U | = 2a. By definition of 2a-wise 2-way
splitter, there exists a partition π : [m] → [b] that splits T and U − T . For every 1 ≤ k ≤ b,
let Tk = T ∩ π−1(k), Uk = U ∩ π−1(k), Tk ⊂ Uk, |Tk| ≤ da/be, |Uk| ≤ d2a/be. By definition of
a (da/be, d2a/be)-hash family (together with the observation that a (t, u)-hash family is also a
(t′, u′)-hash family for every t′ ≤ t, u′ ≤ u), for every 1 ≤ k ≤ b, there exists hk ∈ H for which
hk(Uk − Tk) = {da/be+ 1} and hk(Tk) = {1, . . . , da/be}. Consider h

.= hπ,h1,...,hb
. Let x1 ∈ T ,

x2 ∈ U , x1 6= x2.

• If π(x1) 6= π(x2), then necessarily h(x1) 6= h(x2).

• Otherwise, let k = π(x1) = π(x2). x1 ∈ Tk, x2 ∈ Uk. Thus, hk(x1) 6= hk(x2).

In any case, the restriction is satisfied.

8 Application to Set-Cover

In this section we will prove theorem 7 presented in the introduction, and show an improved
inapproximability result for Set-Cover under the assumption P 6= NP.

8.1 How to Prove That Set-Cover is Hard to Approximate?

To prove that Set-Cover cannot be efficiently approximated to within factor α unless P = NP,
we prove that there exists t such that the following decision problem (a.k.a “the Set-Cover
gap problem”) is NP-hard:

• Input: A Set-Cover instance (U,S); U = {u1, ..., un} is a universe and S = {S1, ..., Sm} ⊆
P (U) is a family of subsets,

⋃
Sj∈S Sj = U.

• Problem: distinguish between the following two cases:

1. There exists a small set-cover: there exists C ⊆ S, ⋃
S∈C S = U with |C| ≤ t.

2. Every set-cover is large: every C ⊆ S, ⋃
S∈C S = U, satisfies |C| > αt.

If there were an efficient algorithm approximating Set-Cover to within α, there would have
also been an efficient algorithm solving the gap problem for any t. Thus, proving the Set-Cover
gap problem is NP-hard for some t indeed suffices.

To prove that the problem is NP-hard, we find another gap problem that is known to be
NP-hard, and reduce it to the Set-Cover gap problem. Specifically, PCP theorems provide
gap problems that are NP-hard. Let us describe the general structure of the problem we use.
The input is a set of tests Φ over variables from a set X (e.g., quadratic equations). Each test
depends on d variables (where d is some constant). F denotes the range of the variables. The
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problem is to distinguish between the case that there exists an assignment to the variables such
that all tests are satisfied and the case that no assignment satisfies more than 2

|F| of the tests
(i.e., the tests are far from being satisfiable).

To show a reduction we need to find a way to “encode” the tests and variables by elements
and subsets, such that a small cover would correspond to a satisfying assignment.

The general idea is as follows:

• For every variable x ∈ X and possible assignment to it a ∈ F, construct a set S(x, a).
Including S(x, a) in the set-cover would correspond to assigning a to x.

• For every test ϕ ∈ Φ, construct a sub-universe Uϕ. Covering the sub-universe would
correspond to satisfying the test.

• If a variable x ∈ X appears in a test ϕ ∈ Φ, each of its variable-sets S(x, a) (for a ∈ F)
would cover some portion of the sub-universe Uϕ.

Each sub-universe Uϕ together with the portions covered within it is itself a Set-Cover
instance. The challenge is to design each instance Uϕ such that covers that do not correspond
to satisfying assignments for ϕ would be large.

8.2 Using Universal Sets

Let us demonstrate how to design a sub-universe Uϕ for a test ϕ ∈ Φ via universal sets [16, 8].
Our construction extends this idea.

An (m, k)-universal set is a set of binary strings in {0, 1}m, such that the restriction to any
k indices contains all possible binary configurations. More formally, this is a solution to a k-
restriction problem with Σ = {0, 1}, and a demand fw for every w ∈ {0, 1}k accepting only it.
I.e., fw(x) = 1 iff x = w (hence, s = 2k).

One can view an (m, k)-universal set B as a Set-Cover instance, where the set of elements
is B and there are 2m subsets, indexed Cb

i , for 1 ≤ i ≤ m, b ∈ {0, 1}. These is because
every binary string a ∈ {0, 1}m can be thought of as indicating to which of the 2m subsets it
belongs: for every 1 ≤ i ≤ m, it belongs to C

a(i)
i . This Set-Cover instance has two important

properties:

1. (legal covers are small) For every 1 ≤ i ≤ m,
{
C0

i , C1
i

}
is a cover with only 2 sets (in

other words, C1
i is the complement of C0

i ).

2. (illegal covers are large) Every cover of size at most k necessarily contains both C0
i and

C1
i for some 1 ≤ i ≤ m.

To see why the second property holds, note that every collection of the form
{

Cbl
il

}k

l=1
has an

element it misses: the element that has 1− bl in position il for every 1 ≤ l ≤ k.
Clearly, the size of any (m, k)-universal set is at least 2k. A probabilistic argument shows

that there are (m, k)-universal sets of size O(2kk lnm). This follows since the density of the
k-restriction problem with respect to the uniform distribution is 2−k. Moreover, there is a way
to efficiently compute, given m, an (m, k)-universal set B such that k ≥ log |B| (1− o(1)) [18].

Now we can describe how to construct a sub-universe. Fix a test ϕ ∈ Φ over variables
xi1 , . . . , xid ∈ X. Set m = d |F|. Let Uϕ be an (m, k) universal set where k ≥ log |Uϕ| (1− o(1)).
Index the subsets C0

1 , . . . , C0
m by {Cj,a} for j = 1, . . . , d, a ∈ F.
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• For every 1 ≤ j ≤ d, a ∈ F, the variable-set S(xij , a) covers Cj,a.

• For every satisfying assignment a1, . . . , ad ∈ F for ϕ’s variables, an extra test-set covers
what the subsets corresponding to a1, . . . , ad do not cover, i.e., covers (C1,a1∪· · ·∪Cd,ad

)c =
Cc

1,a1
∩ · · · ∩ Cc

d,ad
.

Clearly, for every satisfying assignment a1, . . . , ad ∈ F for ϕ’s variables, Uϕ can be covered by
the d variable-sets S(xi1 , a1), . . . , S(xid , ad) together with the extra test-set corresponding to
a1, . . . , ad. Moreover, by the property of the universal set, every cover with at most k subsets
must contain S(xi1 , a1), . . . , S(xid , ad) for some satisfying assignment a1, . . . , ad for ϕ. The gap
we get, i.e., the ratio between the size of the cover in the two cases, is k/(d+1) ≥ log|Uϕ|

d+1 (1−o(1)).
Recall that ideally we would have liked the gap to be ln |Uϕ| (1− o(1)).

8.3 How Do We Improve?

We note that in the above construction there is an asymmetry between variable-sets and test-
sets. Variable-sets cover portions of many sub-universes: one for each test that depends on the
variable, while test-sets only participate in the covering of a sub-universe of their test. Hence,
if an adversary is to cover the construction composed of all sub-universes, taking variable-sets
is worthier than taking test-sets.

This asymmetry can be used to design Set-Cover gadgets that disallow larger illegal covers,
and, hence, give a better gap. Let us explain the idea by considering a probabilistic construction.

Consider some probability p ∈ (0, 1) (e.g., p = 1
d). Pick m random subsets of a set B by

letting each subset contain each possible element independently at random with probability p.
Consider any collection of s subsets and c complements of subsets. The probability that the
collection does not cover a specific element b ∈ B is at least (1− p)spc ≥ e−(sp(1+p)−c ln p). This
probability is larger than 1

|B| even when s ≈ 1
p ln |B| as long as c is relatively small. Hence, we

expect some element in B not to be covered by such a collection.
Define fp(s, c)

.= sp(1 + p)− c ln p.

Definition 7 (Set-Cover consistency gadget). Given m, l, and d, a Set-Cover consistency
gadget is given by (B, {C1, . . . , Cm}) with the following property: for every cover C for B that
contains

• s subsets of the form Ci for some 1 ≤ i ≤ m.

• c subsets of the form (Ci1 ∪ · · · ∪ Cid)
c for some 1 ≤ i1 < · · · < id ≤ m.

where fp(s, c) ≤ l, there necessarily exist 1 ≤ i1 < · · · < id ≤ m such that

Ci1 , . . . , Cid , (Ci1 ∪ · · · ∪ Cid)
c ∈ C

8.4 Constructing The New Gadget

Note that the problem of finding a Set-Cover consistency gadget can be viewed as a k-
restriction problem for k ≤ dl/pe. For every collection of s subsets and c complements, fp(s, c) ≤
l, not containing d subsets and their complement, we have a demand. The demand requires
some element not to be covered by the collection (this is very similar to what was described in
subsection 8.2 for universal sets).
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Theorem 2 provides an efficient algorithmic construction as long as k = O(log m/ log log m).
We use the Divide and Conquer approach proposed in section 5 to find efficiently a construction
for k which is logarithmic in m.
Input: parameters p, m, l.
Output: a Set-Cover consistency gadget.

1. Construct a k-wise 2-way splitter that splits m coordinates into b
.= dlog le blocks.

2. Find a solution R for the re-scaled problem, with parameters p, m and
⌈

l
b − lnp

⌉
.

3. For every splitter partition π, for every b strings, r1, . . . , rb ∈ R, output a string x composed
of r1, . . . , rb interleaved according to π: for 1 ≤ i ≤ m, π̄(i) = (k, j) → x(i) = rk(j).

The algorithm gives us the following

Lemma 9 (Set-Cover gadget). Fix some constant p ∈ (0, 1). Given parameters m and
l, a Set-Cover consistency gadget, whose universe is of size ellO(log l) logO(log l) m, may be
constructed in time polynomial in m and this size.

Proof. The size of the construction is bounded by |S| |R|b, where |S| ≤ kO(log l) log m bounds
the size of the splitter and |R| ≤ el/bkO(1) log m bounds the size of the solution for the re-scaled
problem. The running-time of the algorithm is linear in the running-time of the splitter con-
struction, the running-time of the algorithm of lemma 2 on the smaller instance and the size of
the construction. Hence, it is polynomial in m and el. It remains to prove correctness. Fix some
position and demand, i.e fix some function v : [m] → {0, 1, ∗} assigning each coordinate either
the binary symbol expected there, or ∗, which means no constraints attached. By definition,
fp(

∣∣v−1(0)
∣∣ ,

∣∣v−1(1)
∣∣) ≤ l. By the property of the splitter, there exists a partition π that splits

both v−1(0) and v−1(1). Hence, for every 1 ≤ j ≤ b,

fp

(∣∣π−1(j) ∩ v−1(0)
∣∣ ,

∣∣π−1(j) ∩ v−1(1)
∣∣) ≤ −lnp

⌈∣∣v−1(0)
∣∣

b

⌉
+ p(1 + p)

⌈∣∣v−1(1)
∣∣

b

⌉

≤ l

b
− lnp (1)

For every 1 ≤ j ≤ b, define vj : [m] → {0, 1, ∗} to represent the appropriate restriction according
to the j’th block,

vj(i)
.=





v(z) ∃z, π̄(z) = (j, i)

∗ otherwise

Note that calculation 1 shows that all vj ’s indeed represent restrictions in the problem on
parameters m,

⌈
l
b − ln p

⌉
. Hence in any solution for the smaller problem each vj appears in

some string xkj . Thus, when combining xk1 , . . . , xkb
according to π, one gets a string that

satisfies restriction v.

8.5 Improved Hardness Result for Set-Cover

In this subsection we prove theorem 7. We present a reduction from the PCP of [10] to a
Set-Cover gap problem. The reduction generalizes that of [16, 8].

A few remarks:
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• The reduction can be used with any PCP with poly-logarithmic small error-probability
which has some constant dependency d. It does not rely on any additional property of
the [10] PCP .

• We can get the same result of theorem 7 under the slightly stronger assumption NP *
ZPP without using the combinatorial tools presented in this paper. They allow us to
relax the assumption to P 6= NP.

Preliminaries - Probabilistically Checkable Proofs

According to the traditional definition [9], NP is the class of all languages having a polynomially
checkable membership proof. Rather surprisingly, NP may be equivalently characterized as the
class of all languages having a Probabilistically Checkable Proof (PCP ) [6]. Such proofs may be
checked, with good probability of being correct, by inspecting only a constant number of their
components, chosen at random. A PCP characterization of NP is derived by showing some
sort of PCP problem – described shortly – is NP-hard.

A PCP instance is a triplet (X,F, Φ). X = {x1, ..., xn} is a set of formal variables that range
over a domain F. Φ = {ϕ1, ..., ϕm} is a collection of local-tests, m = poly(n). Each local test is
a Boolean function on d = O(1) variables. Φ is uniform, i.e., each variable appears in the same
number of tests.

The following PCP theorem was shown by [10]:

Lemma 10 (The PCP theorem of [10]). For every ε > 0, given a PCP instance (X,F,Φ), with
|F| ≤ 2log1−εn, it is NP-hard to distinguish between the case in which there exists an assignment
A : X → F that satisfies all tests in Φ, and the case in which every such assignment A : X → F
satisfies at most 2 |F|−1 of the tests in Φ.

In the context of Set-Cover, a different variant of the PCP theorem is more suitable.
Instead of considering the maximal number of tests that can be satisfied simultaneously, we
consider the minimal number of assignments per variable that is needed in order to satisfy
many tests. More accurately, we consider multi-assignments Â : X → P (F), assigning each
variable a set of values from F. We say Â satisfies a test ϕ over variables xi1 , . . . , xid , if there
exist a1 ∈ Â(xi1), . . . , ad ∈ Â(xid) such that ϕ(a1, . . . , ad) = true. A multi-assignment Â is said
to be (t, γ)-good, if there exists a considerable fraction of tests Φ′ ⊆ Φ, |Φ′| ≥ γ |Φ|, so that for
every ϕ ∈ Φ′, Â satisfies ϕ and the variables ϕ depends on, xi1 , . . . , xid , have few assignments,
0 < |Â(xij )| ≤ t. The following follows from [10] using a simple probabilistic argument:

Lemma 11 (Multi-Assignment PCP ). For any 0 < β, γ < 1, given a PCP instance (X,F, Φ)
with |F| ≤ 2log1−βn, it is NP-hard to distinguish between the case there exists a multi-assignment
which is (1, 1)-good, and the case every multi-assignment is not (t, γ)-good, as long as γ >
2td/ |F|.
Proof. By reduction from the traditional unique-assignment PCP of lemma 10.

(i) If a PCP instance (X,F, Φ) is satisfied by a unique-assignment A : X → F, than Â : X →
P (F) defined by Â(x) = {A(x)} is (1, 1)-good.

(ii) Assume that for a PCP instance (X,F, Φ) there exists a multi-assignment Â : X → P (F)
which is (t, γ)-good for the parameters t, γ stated above. Let us show there exists a unique-
assignment A : X → F which satisfies more than ε̂ = γt−d of the tests in Φ. Note that ε̂ is
larger than the error-probability of our PCP . The existence of such an A will be proven by
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the probabilistic method. Assign each variable x ∈ X a value chosen uniformly at random from
Â(x). By definition, γ of the tests are satisfied and all their variables x have

∣∣∣Â(x)
∣∣∣ ≤ t. Such

tests are satisfied by A with probability at least t−d. Altogether, by the linearity of expectations,
the expected fraction of tests satisfied is γ/td. Thus there exists a unique-assignment which
satisfies that many tests. By [10], distinguishing between the two aforementioned cases is NP-
hard.

The Construction

Fix a PCP instance (X,F, Φ) as in lemma 11, and let us construct a corresponding Set-Cover
instance (U, S).

The construction is along the lines of the description in subsections 8.1 and 8.2. There is
one addition though: the described construction is duplicated D times for D = Θ(|Φ| / |X|).
Each duplicate has its own variable-sets and sub-universes, but the test-sets are common to all
duplicates. This way all subsets (variable-sets and test-sets) participate in covering Θ(|Φ| / |X|)
sub-universes, and the differences are only in the constants (Recall that by the uniformity of
the PCP instance, each variable appears in d |Φ| / |X| tests).

Fix an arbitrary η ≥ 1 and let D =
⌊ |Φ|

η|X|
⌋
. Set m = d · |F| and p = 1/ηd. Denote

the Set-Cover instance of lemma 9 above for p, m and l, which will be defined at will, by
(B, {C1, ..., Cm}). We associate every index 1 ≤ j ≤ d and element of the field a ∈ F with one
of the m = d · |F| sets, denoted Cj,a. Construct a Set-Cover instance (U, S) as follows. Let
the universe be U .= [D]×Φ×B. For each index 1 ≤ i ≤ D let Ui

.= {i}×Φ×B denote the i-th
duplicate. For each duplicate 1 ≤ i ≤ D, a variable x ∈ X and an assignment to that variable
a ∈ F, add a variable-set covering the appropriate portion of every relevant sub-universe,

S(i, x, a) =
⋃

x=ϕ[j]

{i} × {ϕ} × Cj,a

For each test ϕ ∈ Φ and a satisfying assignment to its variables a1, ..., ad ∈ F, add a test-set
covering the appropriate complements in all duplicates,

S(ϕ, a1, ..., ad) =
⋃

1≤i≤D

{i} × {ϕ} × (C1,a1 ∪ ... ∪ Cd,ad
)c

Correctness

Claim 2 (Completeness). If the tests system Φ has a (1, 1)-good multi-assignment ρ, then (U,S)
has a set cover of cardinality

(
1 + 1

η

)
|Φ|.

Proof. Let C contain sets of two types: variable-sets and test-sets,

C .=
⋃

1≤i≤D,x∈X

S(i, x, ρ(x)) ∪
⋃

ϕ(xi1
,...,xid

)∈Φ

S(ϕ, ρ(xi1), ..., ρ(xid))

Note that C is a legal cover of the specified size.
Now let us proceed to prove soundness. We will need the following lemma:

Lemma 12. If for some 1 ≤ i ≤ D, Ui can be covered by at most δl |Φ| test-sets and ηδl |X|
variable-sets, then Φ has a (ηdl, 1−δc)-good multi-assignment for Φ, where c

.= ln ηd+1+1/ηd.
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Proof. Observe only Ui, and let C indicate the given cover. For every ϕ ∈ Φ, denote by Vϕ the
collection of variable sets that participate in covering it, and denote by Tϕ the collection of such
tests sets. Let L denote the tests ϕ ∈ Φ with low cost, L .= {ϕ ∈ Φ | fp(|Tϕ| , |Vϕ|) ≤ l}. Observe
the multi-assignment Â : X → P (F) assigning each x ∈ X, Â(x) = {a ∈ F |S(i, x, a) ∈ C}.
According to lemma 9, for every ϕ(xi1 , ..., xid) ∈ L, there must exist a1, ..., ad ∈ F, such that
ϕ(a1, ..., ad) = true and for every 1 ≤ j ≤ d, S(i, xij , aj) ∈ C. Therefore, for every 1 ≤ j ≤ d,
0 < |Â(xij )| ≤ ηdl. L contains a significant portion of the tests, |L| ≥ |Φ| · (1− δc), as∑

ϕ∈Φ−L fp (|Tϕ| , |Vϕ|) ≥ (|Φ| − |L|) · l, and

∑

ϕ∈Φ

fp (|Tϕ| , |Vϕ|) =
∑

ϕ∈Φ

(
1
ηd

(1 + 1/ηd) |Vϕ|+ ln ηd |Tϕ|
)

=
1
ηd

(1 + 1/ηd)
∑

ϕ∈Φ

|Vϕ|+ ln ηd
∑

ϕ∈Φ

|TΦ|

<
1
ηd

(1 + 1/ηd) · d |Φ|
|X| ηδl |X|+ ln ηd · δl |Φ|

= δl |Φ|
(

1 +
1
ηd

+ ln ηd

)

Hence, the multi-assignment Â is (ηdl, 1− δc)-good.

Claim 3 (Soundness). If no assignment for Φ is (ηdl, γ)-good, then the cardinality of the min-
imal set cover of (U, S) is at least l

c |Φ| · (1− γ), where c
.= ln ηd + 1 + 1/ηd.

Proof. Assume, by way of contradiction, that our Set-Cover instance may be covered by less
than l

c |Φ| · (1− γ) sets. By averaging, there exists a duplicate 1 ≤ i ≤ D whose universe Ui is
covered by less than ηl

c |X| · (1− γ) variable-sets and l
c |Φ| · (1− γ) test-sets. Lemma 12 implies

there exists a multi-assignment for Φ which is (ηdl, γ)-good. This contradicts the premise of
this claim.

Now we set the parameter l of the construction as to optimize the result and prove our
improved hardness of approximation result for Set-Cover:

Theorem 7. For any η ≥ 1, Set-Cover cannot be efficiently approximated to within any
number smaller than c ln n, for c = 1

(1+1/η)(ln ηd+1+1/ηd) , unless P = NP.

Proof. Fix some ε > 0. Let us confine ourselves to values l = O(log |Φ|), so by corollary 9, the
construction is efficient. Also, for γ

.= 2 |F|−1 (ηdl)d, it holds 0 < γ < 1. By lemma 11, deciding
if a PCP instance has either (1, 1)-good assignments, or no (ηdl, γ)-good assignment at all, is
NP-hard. For a PCP instance (X,F, Φ), choose l, so that l ≥ 1−ε

1−γ ln |U| ≥ 1−ε
1−γ (l + 4 ln |Φ|),

e.g, l = 4(1−ε) ln|Φ|
1−γ+ε . By claims 2 and 3, the PCP problem reduces to deciding whether the

constructed Set-Cover instance is coverable by (1+1/η) |Φ| sets or by at least (1− ε) |Φ| ln|U|
c

for the constant c of claim 3. The theorem follows.
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