
Improved Approximation for Directed Cut Problems

Amit Agarwal
∗

Dept. of Computer Science
Princeton University

35 Olden St
Princeton, NJ 08540, USA

aagarwal@cs.princeton.edu

Noga Alon
†

Tel Aviv University
Tel Aviv 69978, Israel

and
Institute for Advanced Study
Princeton, NJ 08540, USA

nogaa@tau.ac.il

Moses Charikar
‡

Dept. of Computer Science
Princeton University

35 Olden St
Princeton, NJ 08540, USA

moses@cs.princeton.edu

ABSTRACT
We present improved approximation algorithms for directed
multicut and directed sparsest cut. The current best known
approximation ratio for these problems is O(n1/2). We ob-

tain an Õ(n11/23)-approximation. Our algorithm works with
the natural LP relaxation used in prior work. We use a
randomized rounding algorithm with a more sophisticated
charging scheme and analysis to obtain our improvement.
This also implies a Õ(n11/23) upper bound on the ratio
between the maximum multicommodity flow and minimum
multicut in directed graphs.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms

General Terms
Algorithms, Theory

Keywords
approximation algorithm, directed multicut, directed spars-
est cut, linear programming relaxation

∗Supported by NSF ITR grant CCR-0205594, NSF CA-
REER award CCR-0237113, MSPA-MCS award 0528414,
and a Gordon Wu fellowship.
†Research supported in part by the Israel Science Foun-
dation, by a USA-Israeli BSF grant, by NSF grant CCR-
0324906, by a Wolfensohn fund and by the State of New
Jersey.
‡Supported by NSF ITR grant CCR-0205594, NSF CA-
REER award CCR-0237113, and MSPA-MCS award
0528414,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

1. INTRODUCTION
Graph cut problems have a number of important appli-

cations in divide and conquer algorithms (see the survey by
Shmoys [13] for details). In their seminal paper, Leighton
and Rao [12] initiated the study of graph partitioning and
cut problems like sparsest cut and developed basic tools
for exploiting LP relaxations for these problems. A lot of
progress has been made on the undirected versions of these
problems starting from [12] and culminating in the recent
breakthrough result of Arora, Rao and Vazirani [2] on ex-
ploiting the geometric structure of SDP relaxations for graph
partitioning problems. Much less is known about the di-
rected versions of these problems. The first non-trivial result
for directed multicut was obtained by Cheriyan, Karloff and
Rabani [5], who gave an LP based O(

√
n log n) approxima-

tion. This was simplified and improved slightly by Gupta
[7] who gave an O(n1/2) approximation. Hajiyaghayi and
Räcke [9] later obtained a matching result for the closely
related problem, directed sparsest cut.

The duality between cuts and flows as well as powerful
tools from metric embeddings have played an important role
in the development of algorithms for undirected versions of
these problems. The work of Leighton and Rao showed that
the ratio of the sparsest cut to maximum multicommodity
flow in undirected networks is at most logarithmic in the
number of vertices. The known bounds on the correspond-
ing flow cut ratio for directed graphs are much weaker. Low
distortion embeddings of finite metrics into ℓ1 have been
valuable in the design of algorithms for undirected sparsest
cut. However, directed metrics that arise in natural math-
ematical programming relaxations of the directed problems
are much less understood than undirected metrics. Recent
papers by Agarwal, Charikar, Makarychev and Makarychev
[1] and Charikar, Makarychev and Makarychev [6] study di-
rected metrics, but the results do not apply to directed mul-
ticut and directed sparsest cut that we study in this paper.
Our results give Õ(n11/23) approximations for these prob-

lems (improving on the previous best O(n1/2)) and show
that there is still scope for improvement using LP based
relaxations.

There is a sharp contrast between directed and undirected
versions of these problems. Minimum directed multicut with
two source-sink pairs is NP-hard [8], but solvable in polyno-
mial time for the undirected version [10]. Moreover, the
integrality gap of directed multicut with k ≤ log n

log log n
s-

t pairs is Ω(k) [14], whereas for the undirected case it is



O(log k). Chuzhoy and Khanna [4] have recently made sig-
nificant progress on understanding the complexity of di-
rected multicut. They show that it is hard to approxi-
mate directed multicut and sparsest cut to within a factor

of 2Ω(log1−ǫ n) for any constant ǫ > 0, unless NP ⊆ ZPP .
They also show an integrality gap of Ω̃(n1/7) for the natural
LP relaxation for this problem.

2. PRELIMINARIES
The input is a directed graph G = (V, E) with positive

weights we : E → R+ and k source-sink pairs {(si, ti)}k
i=1.

The minimum directed multicut problem is to find a subset
of edges C with minimum total weight

P

e∈C we that sepa-
rates all the si, ti pairs. An si, ti pair is separated by C if
there is no directed path from si to ti in the graph after the
removal of the edges in C. Wlog, we assume that k ≤ n2.
In the minimum directed sparsest cut problem, a demand di

is associated with the ith source-sink pair. The objective is

to find a subset of edges C which minimizes
P

e∈C we

DC
where

DC is the sum of demands of source-sink pairs separated
by C. Henceforth, we focus on directed multicut. In the
last section, we will explain how our results extend to the
directed sparsest cut problem.

The standard LP formulation for directed multicut is as
follows:

min
X

e∈E

wele (1)

s.t.
X

e∈p

le ≥ 1, ∀si − ti paths p, ∀i ∈ [k] (2)

le ≥ 0, ∀e ∈ E (3)

The value of the objective for a optimum solution to the
above linear program is denoted by OPTLP . The LP can
be solved in polynomial time using the ellipsoid algorithm
with the shortest path algorithm as a separation oracle. Al-
ternately, one can write down a polynomial sized equivalent
formulation of the LP.

2.1 Definitions
For si-ti, the subgraph of nodes and edges on various si-ti

paths is denoted by Hi. Further Vi denotes the nodes in Hi

and Ei denotes the edges of Hi.

Definition 2.1. The LP volume w(S), of a set of edges
S, is defined to be

P

e∈S wele.

Definition 2.2. d(u, v) = LP length of the shortest di-
rected path from u to v induced by le. If v is not reachable
from u, d(u, v) = ∞. dG(u, v) denotes the shortest path
distance between u and v in graph G.

Note that the distances in graph G are unweighted dis-
tances (i.e. they ignore weights on edges).

Definition 2.3. diam(H) = maxx,y∈V (H)dH(x, y) denotes
the diameter of H.

We say u →i v iff there is a directed path from u to v in
Hi.

Definition 2.4. Let Ti(e) be the set of edges reachable
from e = (u, v) in Hi, i.e.

Ti(e) = {e′ = (u′, v′) ∈ Ei| v →i u′}.

Define S(r, s1) = {v| d(s1, v) ≤ r}. This is the ball of
radius r around s1.

Definition 2.5. Level Range. Notation 〈a, b〉i will be
used to denote the subgraph of Hi starting from distance a
from si and ending at distance b from si. Formally,

〈a, b〉i , S(b, si) − S(a, si).

The parameter ǫ used in the algorithm and in the ensuing
definitions and analysis is a small constant with value 1

46
.

2.2 Cuts in Level Ranges
In this section we explain how min-cuts and random level

cuts are done in level ranges.
Min-Cut in < a, b >i. Connect all the nodes via which

paths enter from si into < a, b >i to a common source s
and all the nodes via which paths leave < a, b >i for ti to a
common sink t by edges of infinitely large cost. Now in this
graph output the minimum s-t cut.

Random Level Cut in < a, b >i. A random level cut
in 〈a, b〉i is produced as follows: Choose a number R uni-
formly at random in (a, b) and remove all edges e = (u, v)
s.t. d(si, u) < R and d(si, v) ≥ R.

2.3 Gupta’s Algorithm
As a warmup we explain Gupta’s algorithm and analysis

[7] first:
Initially we start with an empty set of edges. The al-

gorithm will keep adding edges to the set as it proceeds.
First the algorithm solves the LP for directed multicut and
includes all edges with le ≥ n−1/2. Then the algorithm con-
siders si-ti pairs in arbitrary order. For each si-ti pair, the
min-cut in 〈1/3, 2/3〉i is included in the multicut produced
by the algorithm. For analysis, the cost of the min-cut in
〈1/3, 2/3〉i is charged to all the edges in Hi. We need the
following lemma to formalize the cost of this cut:

Lemma 2.6. The cost of the min-cut in 〈1/3, 2/3〉i is at
most 3w(Ei).

Proof. We use LP duality to bound the cost of the min
cut in 〈1/3, 2/3〉i. The LP dual is a length function on
edges such that the LP length of any s-t path is at least
1. (recall that s and t are the common source and common
sink introduced in producing the min cut). The cost of the
min cut is then bounded above by the volume of any such
LP solution. We obtain this length function by increasing
the length of edges in 〈1/3, 2/3〉i by a factor of 3. Note that
the LP volume of this solution is at most 3w(Ei) proving
the lemma.

Every edge in Hi receives a charge which is at most 3
times its LP contribution. In order to bound the cost of the
solution, we need to bound the total charge on an edge e, i.e.
bound the number of Hi’s it belongs to. Edge e is said to
be on the left of the min-cut if it is connected to the source
after the min-cut has been produced. If e is connected to
the sink then it is said to be on the right of the min-cut. We
define two counters for each edge e ∈ E: Al(e) (and Ar(e))
which count the number of si-ti pairs for which e ∈ Hi and
e occurs on the left (on the right, resp.) of the min-cut.

Lemma 2.7. Al(e) + Ar(e) = O(n1/2).



Proof. We will show that Al(e) is O(n1/2). Let L(e) be
the set of indices i such that e ∈ Hi and e lies to the left
of the min-cut for si-ti. Then Al(e) = |L(e)|. For i ∈ L(e),
define Qi(e) to be the portion of Hi reachable from e, lying
on the right of the min-cut. Note that |Qi(e)| ≥ √

n/3.
Further, for i, j ∈ L(e), i 6= j, we claim that Qi(e) and
Qj(e) are disjoint. Suppose for contradiction, that ∃v ∈
Qi(e) ∩ Qj(e). Assume wlog that i came before j in the
ordering. After the min-cut for si-ti is produced, there is
no path from e to v, contradicting the fact that v ∈ Qj(e).
Hence Al(e) = |Q(e)| is O(

√
n). A similar analysis can be

done for Ar(e). This implies the claimed guarantee.

The O(n1/2) approximation follows from the previous lemma.
This disjointness argument will play a role in our analysis
as well.

3. THE MULTI-CUT ALGORITHM
Our new algorithm is the following:

Algorithm Multi-Cut
1. Solve the LP.
2. All edges e with le ≥ n−1/2+ǫ are added to the solution.
3. Randomly order the s-t pairs. Let the order be denoted

by π.
4. for j = 1 to k
5. Let i = πj . Pick the ith pair and produce a cut

in the subgraph Hi as follows:
6. Let Mi denote the min-cut in 〈1/3, 2/3〉i.
7. if w(Mi) ≤ n−2ǫ

P

e∈Hi
lewe.

8. then Add Mi to the solution.
9. else Add to the solution, the min-cut in

〈4/9, 5/9〉i and random level cuts in
〈1/3, 4/9〉i and 〈5/9, 2/3〉i.

10. if the cost of the solution returned above is more than
10000n1/2−ǫ(log n)10OPTLP

11. Output the solution returned by Gupta’s algo-
rithm;

Remark: All quantities with i in their notation are ran-
dom variables that depend on the specific ordering chosen
by the algorithm and the random cuts produced before the
ith pair.

We will deal with two kinds of distances in this paper: one
is the shortest path distance according to the lengths given
by the LP solution and shortest path distances in the graph
itself. Since any edge that survives step 2 of the algorithm
has LP length at most n−1/2+ǫ, a path between nodes u and
v of LP length p has graph distance at least n1/2−ǫp. The
min-cut produced by the algorithm for some s-t pair (say
si-ti) divides the Hi into two parts. The side of the cut that
contains the source is called the left part and the part that
contains the sink is called the right part. We state the main
theorem about the performance of the algorithm. The proof
of the theorem is given in section 4.

Theorem 3.1. The expected cost of the cut returned by
algorithm Multi-Cut is Õ(n11/23)OPTLP .

4. ANALYZING CHARGING SETS

4.1 Key Ideas in Our Proof
Our analysis begins with something similar to Gupta’s

analysis. The cost of the cuts made on line 9 of the algorithm

can be bounded as follows: the cost of the min-cut is at
most 9w(Ei). The expected cost of each random level cut
is 9w(Ei). Therefore the total expected cost of the cuts is
27w(Ei). Similarly the cost of the cut added in line 8 can be
bounded by n−2ǫw(Ei). We charge the cost of the cuts to
edges in Hi. So the number of times an edge is charged is the
same as the number of Hi’s it is present in. Let’s focus on an
arbitrary edge e and assume that it was present in k Hi’s. In
such a case we can associate a special graph structure with
e of size k. We formally call it a charging set (see definition
4.1) and denote it by P e. Unlike Gupta’s analysis, every
time an edge is charged, it is typically charged O(n2ǫ) times

its LP contribution. (details in Section 5). If k ≤ n1/2−3ǫ,
we get an improved analysis. The harder case is when k is
more than n1/2−3ǫ for some edges.

For each subgraph Hi that e belongs to, the size of the
associated witness |Qi(e)| is Ω(n1/2−ǫ). So the charging set

associated with e has kn1/2−ǫ nodes. For k ≥ n1/2−3ǫ, the
number of nodes is n1−4ǫ. Intuitively most charging sets
should have many nodes in common. This is formalized
by the concept of a cover which is a set of node-disjoint
subgraphs which intersects all other charging sets in many
nodes (definition 4.2).

Let us look more closely at P e. Assume, for ease of un-
derstanding at this stage, that all nodes in P e are present
in subgraphs in C. Now one of two cases can arise:

The first case is that every subgraph H of P e intersects
few subgraphs of C (the technically precise term is long
intersections which we define later). We redistribute the
amount e was charged for Hi’s it is contained in to other
edges. Our analysis charges the cut for si-ti only to the
edges in < 1/3, 4/9 >i. If e ∈< 1/3, 4/9 >i is overcharged
then we redistribute to < 5/9, 2/3 >i. We do this for all

edges e′ ∈ Hi with
˛

˛

˛P e′
˛

˛

˛ ≥ n1/2−3ǫ. This is fine because

we can show that the edges in < 5/9, 2/3 >i have enough
LP volume to take care of such a redistribution (proved in
the ratio lemma 5.2). Intuitively the LP volume should be
the same everywhere in Hi because the cost of the min-cut
is comparable to the total LP volume w(Ei) (line 7 of the
algorithm).

Next we bound the number of times edges get “re-charged”
this way (denoted by A(e), see definition 5.3). Here the ran-
dom level cuts produced by the algorithm are useful as they
decrease connectivity in subgraphs of G. The number of
times the recharging happens and the number of times ran-
dom level cuts are performed is the same. Using a counter
based on connectivity, we bound the number of times such
recharging happens (Lemma 5.9 proves this).

So far we have discussed the case when subgraphs of P e

intersect a few subgraphs of C. The second case is when
they intersect with a lot of subgraphs of C. Using the main
theorem and a combinatorial game over the random ordering
of the s-t pairs, we can show that the total cost incurred by
the algorithm in this case is O(n1/2−ǫOPTLP ) with high
probability.

4.2 Structural Definitions
In this section we define some graph structures which will

help us analyze the algorithm. We associate charging sets
with edges in the graph. Let V (E) denote the nodes in set
of edges E.

Definition 4.1. A p-charging set is a collection



{G1, . . . , Gp} of node-disjoint induced subgraphs of G s.t.

|V (Gi)| ≤ n1/2+3ǫ, ∀i. The size of a charging set is the
number p of subgraphs it contains.

Let Se be the set of s-t pairs for which e lies on the left of
the min-cut. We define charging sets associated with edges
e and denoted by P e to be

˘

V (Ti(e)) ∩ 〈5/9, 2/3〉i |
|V (Ti(e)) ∩ 〈5/9, 2/3〉i | ≤ n1/2+3ǫ, i ∈ Se}

The size of the charging set associated with an edge is con-
nected to the number of times it is charged. We begin with
some simple claims about the structure of n1/2−3ǫ-charging
sets.

Definition 4.2. Subgraph H is said to be covered by a

set of nodes N if ∀ path p ∈ H : |V (p) \ N | ≤ n1/2−ǫ

36
. Let

S be a set of n1/2−3ǫ-charging sets over a set of nodes N .
We say that S covers a charging set if it covers all except at
most n1/2−3ǫ subgraphs of the charging set.

The reason for the value n1/2−ǫ

36
in the above definition

will be clear later.

Lemma 4.3. ∃ a cover C of n1/2−3ǫ-charging sets, (|C| ≤
36n4ǫ) which covers the charging set of every edge with size

more than n1/2−3ǫ.

Proof. We will construct a set C with the claimed prop-
erties. Let us start with an empty set C and consider charg-
ing sets of edges in any arbitrary order. Suppose the current
charging set being considered is P e. There are two possibil-
ities:

1. The charging set P e has at most n1/2−3ǫ subgraphs
which are not covered by V (C). In this case C covers the
charging set and we move on to the next charging set.

2. Otherwise, P e has ≥ n1/2−3ǫ subgraphs which are not
covered by V (C). For each subgraph H ∈ P e which is not

covered by C, there is at least one path which has n1/2−ǫ

36
nodes not in V (C). Let one such path be denoted pH . The
new charging set is composed of such paths, one for each
subgraph H ∈ P e not covered by C.

These paths themselves are node-disjoint and hence form
a charging set. Add this charging set to C. Each charg-

ing set added increases |V (C)| by at least n1−4ǫ

36
. Thus the

addition can happen at most 36n4ǫ times.

Note that C is a function of the coin tosses made by the
algorithm. Moreover, the way C is defined it is composed of
charging sets which are in turn composed of paths and not
subgraphs. We will abuse notation and view C as both a col-
lection of charging sets and a collection of subgraphs/paths.
The meaning intended will be clear from the context. Note
that all the paths in C are node disjoint. Let Cu denote the
path in C containing node u (if such a path exists).

Consider the execution of the algorithm for si-ti. Let
pi

e, ∀e ∈ 〈5/9, 2/3〉i be the probability of edge e getting cut
in the random level cut in 〈5/9, 2/3〉i for si-ti. The reason

for working with probabilities pi
e is that the LP lengths of

edges (le values) do not represent true probabilities of edges
being cut in random level cuts. 1 Intuitively one can still
1Some portions of some si-ti paths might be long in LP
length but have small probability of being cut in a random
level cut.

think of them as values of some LP solution as they still
satisfy the length constraints of the LP. Also since pi

e ≤ 9le,
if a path has a probability p of being cut, it will have a graph

length of at least pn1/2−ǫ

9
.

Definition 4.4. For a path p ∈ Hi and subgraph H, let

[p, H ]i denote the quantity
X

e=(u,v)∈p:v∈V (H)

pi
e.

We say that path p ∈ Hi intersects H at long length if

[p, H ]i ≥ n−4ǫ

36 log3 n
(4)

If [p, H ]i < n−4ǫ

36 log3 n
, we say that path p ∈ Hi intersects H

at short length.

Definition 4.5. A path p ∈ Hi is said to be formed by
short intersections if ∃H1, . . . , Hm ∈ C such that

Pm
j=1[p, Hj ]i ≥ 1

36
and ∀j ∈ [m], [p, Hj ]i < n−4ǫ

36 log3 n
.

Definition 4.6. Hi is called bad if at least one of its
paths is composed of short intersections.

5. THE CHARGING SCHEME

5.1 Intuition
The charging scheme is an extension of the scheme in [7].

We first explain how the charging for the cuts in step 10 of
the algorithm for Hi is done. Unlike Gupta’s scheme, we
cannot charge the cost to all the edges in Ei. Instead we
charge to a specific subset E′

i ⊆ Ei of edges with w(E′
i) ≥

n−2ǫ

20
w(Ei) which we choose. The choice of E′

i is handled by
lemma 5.1. The reason for doing this is the facilitation of
the redistribution of charge later. Note that the algorithm
does not need to find E′

i.
First, we show that the number of times any edge is

charged due to bad subgraphs in its charging set is n1/2−3ǫ.
If indeed some edge (say e) is charged more than n1/2−3ǫ

times, then charging sets in C and P e intersect in a special
way. We give a combinatorial argument to show that the
contribution of these special structures to any charging set
is bounded by O(n1/2−3ǫ) (section 5).

After this we redistribute charge for edges that have been
charged more than n1/2−3ǫ times. Again, some edges cannot
participate in this redistribution. Lemma 5.2 shows that
such edges contribute little to the LP volume overall and so
do not hinder the redistribution.

Next we bound the amount of redistribution for all edges.
Now we only need to deal with subgraphs in charging sets
which are not bad, i.e. all their paths are formed by long in-
tersections with subgraphs of C. Every recharge of an edge e
is associated with a random level cut which destroys connec-
tivity in the corresponding subgraph in C. The counter we
use to track this is the number of ordered node pairs (x, y)
s.t. y is reachable from x. Note that one can only sepa-
rate a bounded number of node pairs which are at a large
distance in any graph before the graph gets cut into low di-
ameter pieces. After this happens, no large intersections are
possible. This number is exactly A(e) that we bound later.

5.2 Charging Lemma
In this section we show how to choose E′

i. The cost of the
cuts produced in step 9 of the algorithm can be bounded



by 27w(Ei). If we can find a set E′
i such that w(E′

i) =
Ω(n−2ǫw(Ei)) then the cuts in step 9 can be charged to
edges in E′

i; edge e ∈ E′
i is charged O(n2ǫ)wele. Recall

that u →i v iff there is a directed path from u to v in
Hi and Ti(E) = ∪e∈ETi(e). Note once again that these
quantities are defined exactly when the si-ti pair was cut
and are random variables which depend on the choices made
by the algorithm.

Lemma 5.1 (Charging Lemma).
If w(Mi) ≥ n−2ǫw(Ei), then ∃E′

i ⊆ Ei s.t. w(E′
i) ≥

n−2ǫw(Ei)
20

and for each Li ⊆ E′
i, w

`

Ti(Li) ∩ 〈5/9, 2/3〉i

´

≥
n−2ǫw(Li)

20
.

Proof. We construct such a E′
i. Initially E′

i = Ei ∩
〈1/3, 4/9〉i. If there is a subset J ⊆ E′

i of edges for which

w
`

Ti(J) ∩ 〈5/9, 2/3〉i

´

< n−2ǫw(J)
20

, then E′
i = E′

i/J . Re-
peat this procedure until there is no such subset J .

Let Ai = Ti(Ei \ E′
i) ∩ 〈5/9, 2/3〉i. The set E′

i that re-

mains at the end is such that w(Ai) < n−2ǫw(Ei)
20

. The
above is true as each subset J that we removed from E′

i had

w
`

Ti(J) ∩ 〈5/9, 2/3〉i

´

< n−2ǫw(J)
20

and for the total set re-
moved (i.e. Ei\E′

i) , Ai consists of all the Ti(J)∩〈5/9, 2/3〉i.

Assume for contradiction that w(E′
i) < n−2ǫw(Ei)

20
. We

will show that we can construct a cheap min-cut in Hi. Let
the set of si-ti paths in Hi be denoted by Pi. Construct an
LP solution where

l′e = 9le, ∀e ∈ Ai ∪ E′
i

For any path p ∈ Pi, we claim that either all of its edges in
< 1/3, 4/9 >i belong to E′

i or all of its edges in < 5/9, 2/3 >i

belong to Ai. Suppose p contains an edge e′ ∈< 1/3, 4/9 >i

such that e′ 6∈ E′
i. Then Ti(e

′)∩ < 5/9, 2/3 >i is a subset
of Ai. Hence all edges of p in < 5/9, 2/3 >i belong to Ai.
From this, it is easy to see that the length of any path in Pi

(according to length function l′e) is at least 1.

The value of this LP solution is 9w(E′
i)+9w(Ai) ≤ 18n−2ǫw(Ei)

20
which is an upper bound on the cost of the min-cut w(Mi).

This contradicts w(Mi) ≥ n−2ǫw(Ei). Thus, w(E′
i) ≥ n−2ǫw(Ei)

20
proving the lemma.

5.3 Ratio Lemma
Let Qi = Pi ∩ Ti(E

′
i) ∩ 〈5/9, 2/3〉i which is the portion of

the paths in Pi in 〈5/9, 2/3〉i which are reachable from E′
i.

For every Hi, we take another arbitrary subset of edges E′′
i ⊆

Ti(E
′
i) ∩ 〈5/9, 2/3〉i which satisfies the following property:

∀p ∈ Qi,
X

e∈p,e∈E′′
i

pi
e ≥ 1

2

We will prove that any such subset E′′
i has LP volume which

is comparable to the LP volume of E′
i and hence Ei.

Lemma 5.2. [Ratio Lemma] For any set E′′
i of edges

for which the following length constraints are true:

∀p ∈ Qi,
X

e∈p,e∈E′′
i

pi
e ≥ 1

2

satisfies w(Ei) = O
“

n2ǫ P

e∈E′′
i

pi
ewe

”

if step 9 of the algo-

rithm was executed.

Proof. To prove this we construct an LP solution (de-
noted by l′e) which satisfies all the properties required of a
feasible si-ti length function just as in the proof of Lemma 5.1.
Let Bi = Ti(Ei \ E′

i) ∩ 〈5/9, 2/3〉i.
Construct an LP solution where

l′e = 2pi
e ∀ e ∈ E′′

i

l′e = 9le, ∀ e ∈ Bi

For any path p ∈ Pi, we claim that either it has an edge in
< 1/3, 4/9 >i belong to E′

i or all of its edges in < 5/9, 2/3 >i

belong to Bi. From this, it is easy to see that the length of
any path in Pi (according to length function l′e) is at least
1.

The value of this LP solution is
X

e∈E′′
i

l′ewe +
X

e∈Bi

l′ewe

= 2
X

e∈E′′
i

pi
ewe + 9

X

e∈Bi

lewe

which is an upper bound on the cost of the minimum cut
w(Mi). Assuming

P

e∈E′′
i

pi
ewe ≤ 1/20n−2ǫw(Ei) gives a

11/40n−2ǫw(Ei) upper bound on the cost of the min-cut.
This contradicts w(Mi) ≥ n−2ǫw(Ei). Thus,

P

e∈E′′
i

pi
ewe ≥

n−2ǫw(Ei)
20

proving the lemma.

5.4 Analysis of Redistribution
We redistribute the charge for the set of edges Si ∈ E′

i

which form large charging sets to edges in Ti(Si) ∩ E′′
i (as

defined in section 4.3). We will set E′′
i to be a subset of

Ti(E
′
i) ∩ 〈5/9, 2/3〉i which is formed by large intersections.

Before going into the details for this case, let’s take an aside
into why we needed so many conditions in the earlier anal-
ysis:

We needed the special set E′
i to charge for the cost of

all the cuts in Hi as for any set of edges in E′
i, we can only

charge to those edges which are reachable from the set. That
is why we required from E′

i that for any subset of edges Li

in it, w
`

Li ∩ 〈5/9, 2/3〉i

´

= Ω
`

n−2ǫw(Li)
´

.
Lemma 5.2 is needed as some edges in the subgraph Ti(Ei)

participate in short intersections with V (C) and some edges
do not intersect with V (C) at all. We do not bound A(e)
for such edges, hence avoid redistributing charge onto them.

To count the number of times edges participates in redis-
tribution, we define a counter A(e),∀e = (u, v) ∈ E.

Intuition for A(e). A(e) counts the number of times e
will have to “handle” redistribution of charge from the set
of edges Si in Hi for different si-ti pairs. For each si-ti

pair, A(e) increases by 1 irrespective of the number of edges
e′ ∈ Ei which redistribute their charge. Edge e gets charged
in redistribution only if two things are true simultaneously:

1. The si-ti pair has an edge e′ whose charging set P e′

:

|P e′ | ≥ n1/2−ǫ.
2. Ti(e

′) ∩ 〈5/9, 2/3〉i has a path that uses e = (u, v) at
“large length”.

Recall that we only redistribute charge on the portions
formed by long intersections. Also note that Cv is used to
denote the path containing v in the cover C.



Definition 5.3.

A(e) =
˛

˛

˘

i| ∃e′ ∈ E′
i, ∃p ∈ Ti(e

′) ∩ 〈5/9, 2/3〉i : [p, Cv]i

≥ n−4ǫ

36 log3 n
}|

We will only analyze charging sets formed by the 〈5/9, 2/3〉i’s
for the edges that lie to the left of the min-cut.

We state the main structural theorem without proof here.
It basically says that large charging sets covered by C cannot

be formed by short intersections of length n−4ǫ

36 log3 n
only.

Theorem 5.4 (Main). ∀e ∈ E, the number of bad sub-

graphs H ∈ P e is at most n1/2−3ǫ with probability at least
1 − n−4.

5.5 Cost Analysis
In this section we prove theorem 3.1 which implies the

approximation factor of the algorithm. We first need the
following theorem which is proved later.

Theorem 5.5. [Re-charging Theorem].
∀e, E[A(e)] = O(n20ǫ log7 n).

Now we prove theorem 3.1.

Proof. We will analyze the charge edge by edge. We will
consider 4 cases which are as follows:

Case 1: The first case is for si-ti pairs such that the
weight of the min-cut w(Mi) ≤ w(Ei)n

−2ǫ. Let X1 be the
random variable for the cost incurred by the algorithm in
this case. Also let counter Bl(e) count the number of times
e lies on the left of the min-cut Mi for which w(Mi) ≤
w(Ei)n

−2ǫ.

Lemma 5.6. Bl(e) = O
“

n1/2+ǫ
”

, ∀e ∈ E.

Proof. Bl(e) = O
“

n1/2+ǫ
”

, ∀e ∈ E because of the dis-

jointness argument which we repeat here:
Let us say some edge e lies to the left of the min-cut for

two different s-t pairs, si1 -ti1 and si2 -ti2 and let’s assume
without loss of generality that ii came before i2 in the ran-
dom order. The set of nodes reachable from e in Hi1 and
those reachable from e in Hi2 and lying to the right of the
min-cut are node-disjoint. Suppose for the sake of contra-
diction that they are not. This implies that some node to
the right of the min-cut for i1 was reachable from e even
after the cut, which is a contradiction.

In this case of there being a cheap min-cut, we charge the
cost of the cut to all the edges in Hi. The charge on edge
e for si-ti is n−2ǫlewe which implies that the total cost of
such cases is bounded by 2n1/2−ǫOPTLP which gives

E[X1] = O
“

n1/2−ǫ
”

OPTLP .

Case 2: The second case is for si-ti pairs such that |Hi| ≥
n1/2+3ǫ. Let X2 be the random variable for the cost incurred
by the algorithm in this case. Also let counter Cl(e) be
defined just as Bl(e) and denote the charge on edge e for

si-ti pairs for which |Hi| ≥ n1/2+3ǫ.

Lemma 5.7. Cl(e) ≤ O(n1/2−3ǫ), ∀e ∈ E.

Proof. Consider any edge e ∈ E, the number of Hi’s
such that the subgraph reachable from e has ≥ n1/2+3ǫ nodes
is ≤ n1/2−3ǫ by the disjointness argument made earlier.

We charge the cost of the cuts in this case to the set of
edges E′

i. Thus each edge e ∈ Ei gets a charge of O
`

n2ǫwele
´

.
Hence, the contribution of this case is also

E[X2] = O
“

n1/2−ǫ
”

OPTLP .

An implication of this case is that we only need to analyze
charging sets composed of subgraphs of size smaller than
n1/2+3ǫ. This will be crucial later in the proof of the re-
charging theorem.

In the remaining 2 cases, we will not charge all of Ei for
the cuts produced by the algorithm, but instead just the
subset E′

i chosen by lemma 5.1. 2

Case 3: In this case we bound the charge on edge e due
to bad subgraphs and the contribution due to subgraphs
that are not covered by C. Let X3 be the random variable
for the cost incurred by the algorithm in this case. Let
counter Dl(e) denote the charge on edge e for s-t pairs whose

subgraphs Hi are bad and for which |Hi| ≤ n1/2+3ǫ.

Lemma 5.8. Dl(e) ≤ O(n1/2−3ǫ), ∀e with probability at
least 1 − n−4.

Proof. From the main theorem, with probability at least
1 − n−4 there can be no charging set of size more than
n1/2−3ǫ formed by short intersections. Also, at most n1/2−3ǫ

subgraphs in the charging set are not covered by C. If
Dl(e) > 3n1/2−3ǫ for some edge e, P e is a charging set of

size more than n1/2−3ǫ formed by short intersections. This
cannot happen with a probability of at least 1 − n−4.

We charge the subset E′
i in this case. Note that every edge

e ∈ E′
i gets a charge of O

`

n2ǫwele
´

. If Dl(e
′) > 3n1/2−3ǫ

for some edge e′, the algorithm might incur a huge cost.
But because of steps 10 and 11, the cost overrun is upper
bounded by n1/2OPTLP .

Thus E[X3] = O
“

n2ǫ
“

n1/2−3ǫ + o(1)
”

OPTLP

”

= O
“

n1/2−ǫ
”

OPTLP .

The next case deals with re-charging the cost of edges
which form large charging sets. The 4 cases handle all the
possibilities.

Case 4: Let Al(e) be the number of s-t pairs for which e
lies to the left of the min-cut. Note that this is exactly the
same counter as defined in Gupta’s algorithm. If Al(e) ≤
3n1/2−3ǫ, we are fine.

Next we deal with edges e for which Al(e) > 3n1/2−3ǫ.
Let X4 be the random variable for the cost incurred by the
algorithm in this case. We re-distribute the charge for such
edges e to edges in < 5/9, 2/3 >i for each si-ti pair. There
is a small complication because some edges in < 5/9, 2/3 >i

might only be part of short intersections and some parts
might have nodes not in common with V (C). We are un-
able to argue anything about such portions. So we have to
avoid them in the redistribution of charge. The remaining
set of edges to which we can indeed re-distribute charge is
denoted by E′′

i . Fortunately, by lemma 5.2,
P

e∈E′′
i

wep
i
e =

Ω
`

n−2ǫw(Ei)
´

. Thus the amount of re-charging for one s-t

2Note that lemma 5.1 states that such a subset must exist
unless the cost of the min-cut w(Mi) < n−2ǫw(Ei).



pair 3 on e is O(n2ǫ)pi
ewe. The total expected amount of

re-charging on edge e ∈ E is O
`

n2ǫ
`P

e∈E E[A(e)] + n4ǫ
´´

.

The last additive term of n4ǫ is for the charging sets in C.
Therefore

E[X4] = O(n22ǫ log7 n)OPTLP giving

E[Multi-Cut] = O
“

n1/2−ǫ + n22ǫpoly(log n)
”

OPTLP . The

two terms are equal when 1/2 − ǫ = 22ǫ. This happens for
ǫ = 1

46
which gives the approximation factor claimed in the

statement of theorem 3.1.

5.6 BoundingA(e)

Let e = (u, v) and H ∈ C be the path that contains v.
The argument is based on the fact that if H contributes to
A(e) for a large number of edges e, then diam(H) becomes
small and hence no path can intersect it at large length. This
implies that H cannot satisfy the conditions for increasing
A(e) for other edges.

Recall that Pk is the set of flow paths in Hk. Let

Sl(H) = |{k| ∃p ∈ Pk, [p, H ]k ≥ l}|

(We will use a value of n−4ǫ

36 log3 n
for l. Note that this is the

same value that we use in the definition of short and large
intersections.) Loosely speaking Sl(H) denotes the number
of sk-tk pairs such that H intersects some path p in Hk at
large length. The main idea used in bounding Sl(H) is that
if Hk has a path p with a large intersection with H , two
things happen at the same time:

First the probability that the random level cut for the ith

s-t pair lies in its intersection with H is large. Secondly,
when a cut does affect H , the number of pairs of nodes in
H that are separated is also large. Consider a simple case
when p has LP length l common with a single path pH of H ,
then the probability that the random level cut affects p ∩ H
is at least l. Moreover when the cut occurs it is expected
to separate Ω(n1−2ǫl2) pairs of nodes in pH because a path

of LP length l has at least n1/2−ǫl nodes. 4 This technique
has also been used previously by [11].

Lemma 5.9. E[Sl(H)] = O
“

|H|2 log n

n1−2ǫl3

”

.

Proof. Let the jth s-t pair be such that ∃p ∈ Qj | [p, H ]j ≥
n−4ǫ

36 log3 n
. Let p1 = [p, H ]j . The probability that the random

level cuts for this pair do not effect H is at most 1−p1 ≤ e−p1

irrespective of what happened for earlier s-t pairs.
The probability that no cut is made in H after a set S

of s-t pairs with a path p ∈ 〈5/9, 2/3〉j , j ∈ S which sat-

isfies [p, H ]j ≥ n−4ǫ

36 log3 n
is at most e−

Ps
i=1 Qi . Hence when

Ps
i=1 Qi ≥ 4 log n, this probability becomes ≤ n2e−4 log n =

1
n2 . Since, we can only guarantee that Qi ≥ n−4ǫ

36 log3 n
, ∀i ∈

[1, . . . , |S|], the best bound on |S| we can have is 4 log n
n−4ǫ

36 log3 n

.

3Note that the number of times edges participate in recharg-
ing is less that the number of times they participate in ran-
dom level cutting. A(e) counts the number of times they
can participate in random level cutting.
4To see this note that with probability l/2 the cut would

be in the middle half of the intersection separating n1−2ǫl2

16
node pairs.

Let

R(G) =
˛

˛

˘

(x, y)| x, y ∈ V (G′)

and there is a directed path from x to y }|

Note that R(H) ≤ |H |(|H | − 1).
To calculate the expected number of times cuts need to

be produced in H before diam(H) becomes small, we define
the following random variables. Let ∆k(H) be the reduction
in R(H) when the kth random level cut effecting H is pro-
duced. Further let X be the random variable for the number
of times cuts are produced in Hi before diam(H) becomes

smaller than n−4ǫ

36 log3 n
.

Intuitively if the random variables ∆k(H) are well-behaved

and each has expectation larger than M , E[X] ≤ R(H)
M

. To
formalize the above intuition, we construct simpler random
variables from the ∆k(H)’s. Let

δk(H) =

8

<

:

0 when ∆k(H) < 1
16

n1−2ǫ
“

n−4ǫ

36 log3 n

”2

1 when ∆k(H) ≥ 1
16

n1−2ǫ
“

n−4ǫ

36 log3 n

”2

Since any of the cuts is made at a uniformly random level,
the probability that it occurs in the middle half is 1/2. When

that happens, at least 1
16

n1−2ǫ
“

n−4ǫ

36 log3 n

”2

u, v pairs are sep-

arated. To see why this is true, note that a LP distance of
n−4ǫ

4x36 log3 n
has at least n1/2−ǫn−4ǫ

144 log3 n
edges since any edge has

LP length at most n−1/2+ǫ.
Also all such edges ee = (u, v) have v ∈ H by definition of

intersections. The nodes in first one-fourth and the last one-
fourth are definitely separated by the cut. Another thing to

note is that the reduction in R(H) of 1
16

n1−2ǫ
“

n−4ǫ

36 log3 n

”2

with probability at least 1/2 is true irrespective of what
happens in any of the previous cuts. This immediately gives

Pr [δk(H) = 1| δj 6=k(H)] ≥ 1/2

Thus δk(H)’s can be treated like independent Bernoulli tri-
als. Therefore,

Pr

2

4

X

1≤k≤m

δk(H) < m/4

3

5 ≤ e−Ω(m)

Substituting m = 4R(H)
1
16

n1−2ǫl2

Pr

2

4

X

1≤k≤m

∆k(H) < R(H)

3

5 ≤ e−Ω(m)

which directly implies Pr[X ≥ m] ≤ e−Ω(m) = o( 1
n2 ) (Note

that |H | ≥ 1/36n1/2−ǫ .)

Thus E[Sl(H)] = O

0

@

|H|2

n1−2ǫ

„

n−4ǫ

36 log3 n

«2
log n
n−4ǫ

36 log3 n

1

A + o(1) =

O

0

@

|H|2 log n

n1−2ǫ

„

n−4ǫ

36 log3 n

«3

1

A.



Remark: Note that we ignore the progress made due to
separation of node pairs outside of 〈5/9, 2/3〉i.

We believe that a stronger version of lemma 5.9 might
actually be true. If so, this would establish a better bound
on the approximation guarantee of our algorithm. We make
the following conjecture:

Conjecture 1. E[Sl(H)] = O
“

|H| log n

n1/2−ǫl2

”

.

Now we are ready to prove our bounds on the counters
A(e). The main work has already been done in the previous
proof.

Proof Proof of the Re-charging Theorem 5.5. Let
e = (u, v) be an edges and P be a charging set that contains
v. Further let H ∈ P denote the subgraph that contains
v. The expected contribution to A(e) due to H is exactly
E[Sl(H)] which by lemma 5.9 is

O

0

@

|H|2 log n

n1−2ǫ

„

n−4ǫ

36 log3 n

«3

1

A , ∀e ∈ E.

Every edge e can belong to at most 1 charging set from C
(as it can belong to at most one subgraph from any charging
set due to the disjointness argument made earlier).

Hence E[A(e)] = O

0

@

n2(1/2−ǫ) log n

n1−2ǫ

„

n−4ǫ

36 log3 n

«3

1

A

= O(n20ǫ log10 n), ∀e ∈ E.

6. PROOF OF THE MAIN THEOREM

Proof. Suppose ∃e ∈ E s.t. ∃P ⊆ P e : |P | ≥ n1/2−3ǫ

and each subgraph H ∈ P is bad i.e. it intersects at least
36n4ǫ log3 n distinct subgraphs from C. We remove all charg-

ing sets c from C which have less than |P | log3 n
2

intersections
with P . We denote the remaining portion of C as C′. For
the ith charging set ci ∈ C′, define ai to be the number of in-
tersections with P and bi = |ci|. There has to be a charging

set cj ∈ C′ s.t.
aj

bj
≥

P|C′|
i=1 ai

P|C′|
i=1 bi

≥ |P |36n4ǫ log3 n
2

/36n1/2+3ǫ ≥
log3 n

2
.

We construct a zero-one matrix M with one row for each
subgraph in the charging set of cj and one column for each
subgraph in the charging set P with Mi,k = 1 iff the ith

subgraph of cj intersects the kth subgraph of P . We delete

any rows and column of M which has ≤ log3 n
6

1’s. Suppose r
rows and c columns were removed during this process, then

the number of 1 entries removed from M is ≤ (r + c) log3 n
6

.
The total number of 1 entries to begin with was more than

max{|P |, |cj |} log3 n
2

. The sub-matrix M ′ that survives has
non-trivial number of rows and columns and we denote the
subsets of P, cj that survive as P ′, c′

j respectively. Further
the subgraphs representing the rows and columns that sur-

vive have the property that each has at least log3 n
6

intersec-
tions with subgraphs of the other.

Each subgraph in c′
j ∪ P ′ is part of the flow graph for

some s-t pair. Let Hl denote the subgraph whose s-t pair
was cut at the very end from c′

j ∪ P ′. Wlog we assume that
Hl belongs to the charging set P . In case Hl belongs to
cj , we will re-define Hl to be the subgraph containing the
path Hl actually represents. This small modification does
not affect anything else. Further let S1 be the set of s-t pairs

from cj that intersect Hl. We first explain a combinatorial
game which abstracts out the interplay between the random
ordering of s-t pairs and intersections of subgraphs in c′

j with
Hl.

Let G = (V, E) be a digraph with n vertices including
two special ones s and t, and suppose each vertex v has
an integral (time dependent) weight wt(v), where initially
w0(v) = n2 for each v. We may and will assume that each
vertex lies on some directed path from s to t, and hence these
vertices will not be mentioned in what follows. Consider the
following game played on G. In each step, an adversary is
allowed to decrease the weights of any subset of the vertices
arbitrarily, keeping them non-negative integers. After that,
a random vertex v is chosen according to the weights, and
then the weights of v and of any vertex u from which there
is a directed path to v are set to 0. The game ends when all
weights are 0. For a directed path P , let g(P ) denote the
total number of vertices on P that have been chosen by the
random process during the game.

Applying lemma 6.1 to the subgraph Hl and the set S1,

|S1| ≤ log3 n
6

with probability at least 1 − n−10 (setting
c2 = 10 in lemma 6.1). Next we see how the combinato-
rial abstracts out the situation in our case:

The weight on node v ∈ Hl is the number of sk-tk pairs
s.t. v ∈ Hk and e ∈ Hk and e →k v. These numbers can
change arbitrarily depending on what cuts are produced by
the algorithm in Hk, but they can only decrease. When a
particular pair (say j) is chosen by the algorithm, s.t. e was
on the left of the min-cut for j, we know that after the cut
there is no path from e to 〈5/9, 2/3〉j . This can happen only
if e is separated from all such Hi’s from which Hj can be
reached using paths in Hl. Another possibility is that the
cuts are such that e is still connected to these Hi’s, but the
paths from them to Hj are cut. But these would include the
paths in Hl as well. This immediately gives the assumption
in the game that the weight of nodes from which the selected
node v can be reached are reduced to 0.

Finally our condition implies that the value of the com-

binatorial game is larger than log3 n
6

. We have n6 choices
as the number of possible values of the s-t pair to which Hl

belongs is n2 and the number of possible choices of charging
sets P and cj is at most n4. This completes the proof of the
theorem.

6.1 A Game over Directed Graphs
Our main result about the combinatorial game is the fol-

lowing.

Lemma 6.1. For every c1 > 0 there is a c2 > 0 so that
with probability at least 1 − 1

nc1 , for every directed path P ,

g(P ) ≤ c2 log2 n.

Proof. It is easy to prove that for any fixed path P the
probability that g(P ) exceeds c2 log2 n is very small. The
trouble is that there may well be an exponential number
of paths, hence a first moment argument does not suffice.
The idea in the proof is to define a polynomial number of
potential “bad” events, show that with high probability none
of them holds, and then prove that if indeed none of these
bad events holds, then (deterministically), for every path
P , g(P ) is small. Throughout the proof we have several
absolute constants c2, c3, c4 etc. All of those can be chosen



easily as functions of the initial constant c1 that appears in
the statement of the lemma, but to simplify the presentation
we do not compute them explicitly. All logarithms are in
base 2.

It is convenient to describe the game in the following
equivalent way. Let V = {y1, y2, . . . , yn} be the set of ver-
tices of G. The game will proceed in time steps, where ini-
tially the time is t = 0, and in time t the weight of vertex y
is denoted by wt(y). Thus initially w0(y) = n2, and the ad-
versary is allowed to decrease the weights in each step before
the corresponding random choice is being performed. The
random choice is a uniform, random integer x in [1, n3]. If
there exists an i such that (i−1)n2 < x ≤ (i−1)n2 +wt(yi),
then this corresponds to picking yi. In this case we say that
yi is chosen, and its weight as well as those of all vertices
u from which there is a directed path to yi are reduced to
zero. Else, we do nothing, pick another random x in the
above range, and proceed as before. Obviously, this game is
equivalent to the original one, where each step in the orig-
inal game takes in this version a random number of steps,
until some vertex is chosen. The equivalent description is
convenient, as it enables us to refer to the time t during the
game in a useful way. For each vertex v, let S(v) denote the
set of all vertices u so that there is a directed path from v
to u in G, and let wt(S(v)) denote the total weight of all
vertices in S(v) at time t, that is wt(S(v)) =

P

u∈S(v) wt(u).

Consider the following events; these are all undesirable
events and we will show that each of them holds with prob-
ability at most 1/nc3 and hence with high probability none
of them holds
(i) Let E denote the event that by time c4n

4 the game still
did not end.
(ii) For each integer j ∈ [0, 3 log n], for each t0 ∈ [0, c4n

4]
and for each v ∈ V , let Aj,v,t0 denote the event that for

every time t ∈ [t0, t0 + c5
n3

2j log n) the weight wt(S(v)) is at

least 2j and also wt(v) > 0.
(iii) For each j, t0, v as above, let Bj,v,t0 denote the event
that for every time

t ∈ It0 = [t0, t0 + c5
n3

2j
log n),

the weight wt(S(v)) is at most 2j+1 and during that time
interval It0 there have been more than 4c5 log n choices of
vertices from S(v).

Lemma 6.2. For every c3 > 0 there is a choice of c4, c5 >
0 so that the probability of E, as well as that of any single
event Aj,v,t0 or Bj,v,t0 is at most 1/nc3 . Therefore, for every
c1 there are c4, c5 so that with probability at least 1 − 1/nc1

none of the above events holds.

Proof:
(i) As long as there are positive weights, the probability that
at time t a vertex is chosen (and hence at least one weight
of a vertex is reduced to zero) is at least 1/n3. Thus, the
probability that after c4n

4 time steps there are still vertices
with positive weights is at most the probability that the
value of a binomial random variable with parameters N =
c4n

4 and p = 1/n3 is less than n, and this is exponentially
small for any choice of a fixed c4 > 1. (Note that it is in
fact easy to improve the O(n4) estimate here, but this is not
essential for our purpose).
(ii) As long as wt(S(v)) is at least 2j , given any history, the
probability that a choice of an x ∈ [1, n3] will correspond

to choosing a vertex in S(v) (and hence reducing wt(v) to
0) is at least 2j/n3. Therefore, the probability that Aj,v,t0

holds is at most the probability that the value of a binomial

random variable with parameters N = c5
n3

2j log n and p =

2j/n3 is 0. This is smaller than n−c3 for an appropriate
choice of c5.
(iii) If wt(S(v)) is at most 2j+1 in time t0 (and hence stays
at most 2j+1 during all the interval It0), then the random
variable that counts the number of choices of vertices in S(v)
during the interval It0 is stochastically dominated by a bino-

mial random variable with parameters N = c5
n3

2j log n and

p = 2j+1

n3 . Thus, the probability that there are more than
4c5 log n such choices is smaller than 1/nc3 for an appropri-
ate choice of c5. 2

Returning to the proof of Lemma 6.1, observe that by
the last lemma it suffices to show that if none of the events
E, Aj,v,t0 and Bj,v,t0 hold, then at the end of the game, for
every directed path P , g(P ) ≤ 12c5 log2 n. We proceed with
a proof of this fact. Let P = v1, v2, . . . , vk be an arbitrary
directed path in G. Let j1 ∈ [0, 3 log n] be the integer for
which 2j1 ≤ w0(S(v1)) < 2j1+1. Since none of the events

Aj1,vi,t0=0 holds, it follows that in time t1 = c5
n3

2j1
log n we

have

wt1(S(vi)) < 2j1 (5)

for every vertex on the path P whose weight in time t1 is
still positive (and in fact for all other vertices in the graph
with positive weights at time t1 as well).

As the event Bj1,v1,t0=0 does not hold, it follows that until
time t1 at most 4c5 log n of the vertices of S(v1) have been
chosen, and in particular, at most 4c5 log n vertices of the
path P have been chosen.

Let i2 be the first vertex along the path P whose weight
in time t1 is still positive, that is, i2 is the minimum number
such that wt1(vi2) > 0. Let j2 be the integer satisfying

2j2 ≤ wt1(S(vi2)) < 2j2+1.

Note that by (5), j2 < j1.
Since none of the events Aj2,v,t1 holds, it follows that in

time t2 = t1 + c5
n3

2j2
log n,

wt2(S(vi)) < 2j2

for every vertex vi whose weight in time t2 is still positive.
As Bj2,vi2

,t1 does not hold, it follows that between time

t1 and time t2 at most 4c5 log n vertices of S(vi2 ) have been
chosen, implying that altogether at time t2 at most 8c5 log n
vertices of the path P have been chosen.

Repeating in this manner we get after 3 log n stages as
above that until that time, call it t, at most 3 log n4c5 log n
vertices of the path have been chosen, and for the first vertex
of the path, say, vs which is still of positive weight (if there is
such a vertex at all), wt(S(vs)) ≤ 1, meaning that there are
no additional vertices of the path following vs with positive
weight. This shows that at the end g(P ) ≤ 12c5 log2 n,
completing the proof. 2

7. APPLICATION TO DIRECTED
SPARSEST CUT

We give an O(log n) reduction from directed sparsest cut
to directed multicut. Hence Theorem 3.1 implies an approx-
imation ratio of Õ(n11/23) for directed sparsest cut. There



is a well known O(log D) reduction between sparsest cut
and multicut (where D is the sum of the demands) (Section
5.3.2 of [13]). We show how to use this recursively to get an
O(log n) factor reduction.

Start by sorting the demands. Let the sorted list be
d1, . . . dk. Next construct k multicut problems, by assuming
that di for each i was the largest demand separated. For de-
mand value di, look at the set Si of s-t pairs with demands
in di

n2 ≤ ds−t ≤ di. The demands are reduced to lie in [1, n2]

by dividing each one of them by di
n2 . Applying the O(log D)

reduction to Si, we get an O(log n) reduction. Adding back

the demands that were smaller than di
n2 can only increase the

total demand separated by a factor of 2. So our reduction
is indeed a O(log n) reduction assuming di was the largest
demand separated. Such a reduction is performed for each
demand value di and the best output is chosen.

8. ACKNOWLEDGEMENTS
The first author would like to thank Eden Chlamtac for

early discussion.

9. REFERENCES
[1] Amit Agarwal, Moses Charikar, Konstantin

Makarychev, and Yury Makarychev. O(
√

log n)
Approximation Algorithms for Min Uncut, Min 2cnf
Deletion, and Directed Cut Problems. In STOC,
pages 573–581, 2005.

[2] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani.
Expander Flows, Geometric Embeddings and Graph
Partitioning. In STOC, pages 222–231, 2004.

[3] Julia Chuzhoy and Sanjeev Khanna. Hardness of Cut
Problems in Directed Graphs. In STOC, pages
527-536, 2006.

[4] Julia Chuzhoy and Sanjeev Khanna. Polynomial
Flow-Cut Gaps and Hardness of Directed Cut
Problems. To appear in STOC 2007.

[5] Joseph Cheriyan, Howard J. Karloff, and Yuval
Rabani. Approximating Directed Multicuts. In
FOCS, pages 320–328, 2001.

[6] Moses Charikar, Konstantin Makarychev, and Yury
Makarychev. Directed Metrics and Directed Graph
Partitioning Problems. In Proc. SODA, 2006.

[7] Anupam Gupta. Improved Results for Directed
Multicut. In SODA, pages 454–455, 2003.

[8] Naveen Garg, Vijay V. Vazirani, and Mihalis
Yannakakis. Multiway Cuts in Directed and Node
Weighted Graphs. In ICALP, pages 487–498, 1994.

[9] MohammadTaghi Hajiaghayi and Harald Raecke. An
O(

√
n)-Approximation Algorithm for Directed

Sparsest Cut. Information Processing Letters.
97(4):156–160, 2006.

[10] T.C. Hu. Combinatorial Algorithms. Addison-Wesley
Publishing Company Advanced Book Program, 1982.

[11] Yana Kortsarts, Guy Kortsarz, and Zeev Nutov.
Greedy Approximation Algorithm for Directed
Multicuts. Networks, 45(4):214–217.

[12] Tom Leighton and Satish Rao. An Approximate
Max-Flow Min-Cut Theorem for Uniform
Multicommodity Flow Problems with Applications to
Approximation Algorithms. In FOCS, pages 422–431,
1988.

[13] David B. Shmoys. In Approximation Algorithms for
NP-Hard Problems, PWS Publishing, pages 192–235,
1997.

[14] Michael E. Saks, Alex Samorodnitsky, and Leonid
Zosin. A Lower Bound on the Integrality Gap for
Minimum Multicut in Directed Networks.
Combinatorica, 24(3):525–530, 2004.


