
On the Exponent of the All Pairs Shortest Path Problem

Noga Alon ∗

Department of Mathematics
Sackler Faculty of Exact Sciences

Tel–Aviv University

Zvi Galil †

Department of Computer Science
Sackler Faculty of Exact Sciences

Tel–Aviv University and Columbia University

Oded Margalit
Department of Computer Science
Sackler Faculty of Exact Sciences

Tel–Aviv University

Abstract

The upper bound on the exponent, ω, of matrix multiplication over a ring that was three
in 1968 has decreased several times and since 1986 it has been 2.376. On the other hand, the
exponent of the algorithms known for the all pairs shortest path problem has stayed at three all
these years even for the very special case of directed graphs with uniform edge lengths. In this
paper we give an algorithm of time O

(
nν log3 n

)
, ν = (3 + ω)/2, for the case of edge lengths in

{−1, 0, 1}. Thus, for the current known bound on ω, we get a bound on the exponent, ν < 2.688.
In case of integer edge lengths with absolute value bounded above by M , the time bound
is O

(
(Mn)ν log3 n

)
and the exponent is less than 3 for M = O(nα), for α < 0.116 and the

current bound on ω.

1 Introduction

Given a directed graph G = 〈V,E〉 and a length function W : E → IR, the All Pairs Shortest Path
problem, APSP in short, is to find, for each pair of vertices, vi, vj ∈ V , the length of the shortest
path from vi to vj . (A length of a path is defined as the sum of the length of its edges.)

The shortest path is an old problem. The first algorithm is due to Dijkstra ([5]) and is 33
years old. Small improvements were made to this algorithm, mostly using sophisticated data
structures (see [2]). All of them, but one, did not improve the O(n3) time bound for dense graphs.
Fredman’s algorithm ([6]) is o(n3), but its exponent is still 3.

This problem is equivalent to matrix multiplication over the closed semi–ring {min,+} (see [1]).
We call it “funny matrix multiplication”. Aho, Hopcroft and Ullman suggest, in their book, that
one may use similar techniques to those used by Strassen ([13]) to get a faster algorithm. Kerr ([8])
showed that one can not compute funny matrix multiplication with less than Ω(n3) operations,
when only minimum and sum are allowed. There is a simple transformation (see [14]) of the
problem to a regular real matrix multiplication, thus yielding an O(nω) time algorithm, where
ω ≤ 2.376 (see [4]). The drawback of this method is the usage of infinite precision real numbers
∗Research supported in part by a United states Israel BSF Grant.
†Work partially supported by NSF Grants CCR-8814977 and CCR-9014605.

1

arithmetic. Thus this method is not efficient at all when taking the more realistic non–uniform
costs on the arithmetic operations.

In this paper we consider a simple version of the APSP problem in which the graph is directed
and all edges have ±1 or 0 length. We then extend our algorithm to the case of edge lengths which
are integers with a small absolute value. Even for the case of uniform edge length (+1 length only),
the best exponent has been 3 so far.

In the rest of this section we give some definitions and basic properties. In Section 2 we show
how to solve some simple cases of the problem. In Section 3 we show how to solve the {−1, 0, 1}
edge lengths case in O(nν) time with ν < 3 by using a similar method to the scaling method
suggested by Gabow ([7]). The algorithm also finds negative cycles. A simple observation extends
this algorithm to the case where edge lengths are small bounded integers. The fastest algorithms
for matrix multiplication have only theoretical value since they are better than the naive way only
when the matrices are impractically huge. Our algorithm uses the fast matrix multiplication as a
black box. So if we use a practical algorithm (for matrix multiplication) we still get an O(nµ) time
practical algorithm, where µ < 3. In Section 4 we give a simple solution for the uniform case (all
edges have unit length). It is faster than the solution obtained from the algorithm of Section 3
by logarithmic factors. In Section 5 we briefly mention some recent results, and in Section 6 we
present a few open problems.

Definitions

Given the input graph G with n vertices and an integer edge length function W , define the length
matrix D = {dij}ni,j=1 as

dij =
{
w(e), ∃ e ∈ E, e = (vi, vj)
∞, Otherwise.

Let J be the funny identity matrix defined as

jik =
{

0, i = k
∞, otherwise.

For an integer ` > 0, define D≤` def= min1≤i≤`D
i, where the matrix multiplications are funny matrix

multiplication ones. Let D≤` = {d≤`ij }ni,j=1. Denote by D∗ = {d∗ij}ni,j=1, the matrix of the shortest
distances between any two vertices, i.e. the minimum over all nonempty paths of the sum of the
length of the edges. Note that if empty paths are allowed we only have to change the entries d∗ii
which are not −∞ to zero. D∗ is the solution of the APSP problem.

An entry d∗ij is called δ–regular iff there is a path from vi to vj in D which has minimal length
(d∗ij) and no more than δ edges. A matrix D is called δ–regular iff all the entries that satisfy
d∗ij > −∞ are δ–regular and for the cases where d∗ij = −∞, there exists a path in D with no more
than δ edges which has a nonpositive length.

Basic properties

• It is easy to see thatD≤` = (J+D)`−1D, using funny matrix multiplications in this expression.

• d≤`ij is the shortest distance from vi to vj which is at least 1 and at most ` edges long. Thus
if d∗ij is δ–regular then d∗ij = d≤δij .

• If `1 ≥ `2 then D≤`1 ≤ D≤`2 , D = D≤1 so D≤` ≤ D for any ` > 0.

2

• D∗ ≤ D≤` for any `.

• If the lengths are nonnegative, or even when G does not contain negative cycles, then D∗ =
D≤n. Note that the nonnegativity is needed here since if the edge length can be negative, d∗ij
can be −∞ but if −∞ 6∈ D then d≤`ij > −∞ for any finite `.

• A ≤ B implies that A∗ ≤ B∗ and that A≤` ≤ B≤`, for any integer ` > 0.

• (A∗)∗ = A∗.

2 Solving a simple case

In this section we solve simple versions of the APSP problem. We present a way to encode the
length matrix so that regular matrix multiplication over the integers will give us the answer.

Lemma 1 Given two integer valued matrices

A = {aij}ni,j=1

and
B = {bij}ni,j=1

such that x < aij , bij < y and y − x < M , we can compute the matrix C which is the funny matrix
multiplication of A and B in O(Mnω logM) time.

Proof . Define the matrices A′ and B′ as follows.

a′ij = (n+ 1)aij−x.

b′ij = (n+ 1)bij−x.

Examine the integer matrix multiplication C ′ = A′B′:

c′ij =
n∑
k=1

(n+ 1)aik+bkj−2x.

It is easy to see that c′ij is divisible by (n+ 1)s iff for all k, a′ik + b′kj − 2x ≥ s. Using binary search
we find sij , the largest such s and cij = sij + 2x in O(logM) time for each entry. So the total time
complexity of the algorithm above is O(nω) operations on integers which are ≤ n(n+ 1)2M . Each
operation on such large numbers takes O(M logM) operations on O(log n) bits numbers, which
yields the complexity stated above.

We actually implemented the algorithm of [14] in integers. The exponent of this algorithm,
even for the {1,∞} case exceeds 3 (M can be as large as n, resulting in an exponent ω + 1 > 3).
We slightly modify our way of computing the funny matrix multiplication, so that it will truncate
distances which are greater than a given bound M after each multiplication, as well as truncating
the input, so we get:

Theorem 1 Given a graph G whose edge lengths matrix D, satisfies dij ∈ {−1, 0, 1,∞}, we can
compute D≤` in O(`nω log2 `) time.

3

Proof . Recall that D≤` = (J + D)`−1D. Apply the above algorithm with ` + 1–truncation
(replace entries larger than ` (and in particular, the infinite entries in J) by ` + 1) and ignore all
the entries which are greater than ` in the output. All the matrices involved in this computation
have entries with absolute value ≤ `+ 1, hence each funny matrix multiplication takes O(`nω log `)
time and there are O(log `) funny matrix multiplications.

Theorem 2 We can solve the APSP problem for graphs with edge length of {1,∞} and small
(≤M) diameter in O(Mnω log n logM) time.

Proof . If d∗ij = k then there is a k–edges long path from vi to vj , so D∗ = D≤M . We can
compute D≤M as described above. We can even detect this case (small diameter) without knowing
it in advance by noticing that D≤M+1 does not contain any M + 1 entry.

There is another way to solve the positive case in which we can save the logarithmic factors.

Theorem 3 Given a graph G with an edge length matrix D, such that dij ∈ {1,∞}, we can find,
all the entries in D∗ which are ≤M , in O(Mnω) time.

Proof . Define A(`) as the matrix

a
(`)
ij =

{
1, d∗ij ≤ `
0, otherwise.

A(1) can be easily derived from D and A(k+1) = A(k) · A(1) where the multiplication is a regular
Boolean matrix multiplication (and/or). This matrix multiplication can be computed in O(nω)
time by computing the multiplication over the integers and then changing each non–zero entry
to 1. Therefore {D(≤i)}Mi=1 can be computed in O(Mnω) time. The entries of D∗ not larger
than M can be computed in the same time by observing for each i, j the first ` such that a(`)

ij = 1.

3 Finding the shortest distances

In this section we describe an algorithm for solving a version of the APSP problem where the edges
lengths are integers with a small absolute value. Negative cycles are allowed and the algorithm
finds all the −∞ distances. We start with the case of edge lengths in {−1, 0, 1,∞}.

The main difficulty with negative edge lengths is that a very small distance (small in absolute
value), even zero, can have a shortest path which realizes it with many edges. For example, a path
of n/2 edges of weight +1, followed by n/2 edges of weight −1. Our solution to that problem is
to find shortcuts: we find all the zero distances and update the edge lengths accordingly. After
this update, the graph satisfies an important property: every distance which has a small absolute
value, is achieved on a path with a small number of edges.

We solve recursively the following problem. We are given a length matrix D such that dij ∈
{−1, 0, 1,∞} and an integer δ such that D is δ–regular. The algorithm computes D∗. The initial
recursive call is with the original length matrix D and δ = n2.

Lemma 2 Any {−1, 0, 1,∞} matrix D is n2-regular.

Proof . If d∗ij > −∞ then there is a shortest path with no cycles and therefore with no more than
n edges. If d∗ij = −∞ then there is a path from vi to vj which includes a single cycle of negative

4

length. Repeating this cycle n− 2 times will ensure that the total length will be nonpositive while
using no more than n2 edges.

In order to find D∗, the algorithm first removes, in some sense which is defined later (Lemma 5),
the zero length edges from D, creating the matrix E; then it computes the matrix E≤2 and recur-
sively solves the problem for the matrix E′ =

⌈
E≤2/2

⌉
and δ′ = dδ/2e. The fact that E does not

contain zero length edges makes (2E′)∗, where (E′)∗ is the recursive solution, approximate quite
well the desired solution and this approximation is enough so that (E′)∗ will “catch” all the zeros
in D∗. Having all the zero distances it is easy to fix E (by adding these shortcuts) to have the
important property mentioned above and to find D∗.

Algorithm

1. This step takes care of the last recursive step when δ = 1. If δ > 1 proceed. If δ = 1 then
D = D≤1 solves all the entries which are > −∞. To find the −∞ entries we first identify the
negative cycles and then use them to find all the −∞ distances.

Lemma 3 If the matrix D is 1–regular then the set of all vi–s such that d∗ii < 0 can be found
in O(nω) time.

Proof . We now show that d∗ii < 0 iff d3
ii < 0 (as an entry of D3 using funny matrix-

multiplication). If d∗ii < 0 then there is a negative cycle which goes through vi. There must
be a negative edge on the negative cycle, denote it by (vj , vk). d∗ij = d∗ki = −∞, so from the δ–
regularity (δ = 1), dij , dki ≤ 0. Since djk < 0, d3

ii < 0. On the other hand, D∗ ≤ D3 therefore
d3
ii < 0 implies that d∗ii < 0. The time complexity is O(nω) since D3 can be computed using

several Boolean matrix multiplications.

All the −∞ distances can now be easily computed.

Lemma 4 D∗ can be computed in O(nω) time.

Proof . Build a directed graph whose vertices are the n vertices of the original problem and
an edge is connecting vi to vj iff dij < ∞ and either d∗ii or d∗jj are −∞. We now show that
d∗ij = −∞ iff there is a path of length 2 from vi to vj in the new graph. Any edge in the new
graph corresponds to a path of −∞ length. Therefore, so does any path in the new graph.
On the other hand, if d∗ij = −∞ then there exists a negative cycle on a path from vi to vj .
Let vk be any vertex on this negative cycle. d∗ik = d∗kj = −∞ and D is 1–regular, therefore
dik, dkj ≤ 0 < ∞. d∗kk < 0, so both edges (vi, vk) and (vk, vj) are in the new graph. Hence
there is a path of length 2 from vi to vj . Paths of length 2 can be computed using Boolean
matrix multiplication in O(nω) time.

2. Define D−, D0 and D+ as follows:

d−ij =
{

1, dij = −1
0, Otherwise.

d0
ij =

{
1, dij = 0
0, Otherwise.

d+
ij =

{
1, dij = +1
0, Otherwise.

5

Find the transitive closure of D0 and denote it by E0. Compute the Boolean matrix multi-
plications

E− = (I + E0)D−(I + E0),

and
E+ = (I + E0)D+(I + E0),

(The identity matrix I is needed iff ∃ i, dii > 0.) Define E as follows:

eij =

−1, e−ij = 1
0, e−ij = 0 and e0

ij = 1
1, e−ij = 0 and e0

ij = 0 and e+
ij = 1

∞, Otherwise.

Note that eij is the length of a shortest path among paths with at most one non–zero length
edge.

Lemma 5 The matrix E satisfies:
D∗ = E∗, (1)

E is δ–regular, furthermore, E satisfies the zero length edge property, namely for any path
from vi to vj in D or E, there is a corresponding path in E which satisfies:

(a) its length is not greater than the length of the original path;

(b) it has no more edges than the original path; and

(c) if the path contains more than one edge, then it does not contain any zero length edge.

E can be computed in O(nω) time.

Proof . By definition, E− ≥ D−, E0 ≥ D0 and E+ ≥ D+. So E ≤ D and hence E∗ ≤ D∗.
On the other hand, since entries in E are lengths of paths in D, we have E ≥ D∗ and
E∗ ≥ (D∗)∗ = D∗. The δ–regularity of E follows from the fact E ≤ D and the δ–regularity
of D.

We now prove the zero–length edges property. If the initial path has length of +∞, then
the path which consists of the single edge eij satisfies the three conditions above. Otherwise,
examine the path in E which has the minimum number of edges among all the paths which
are no longer than the original path. E ≤ D so clearly this path has no more edges and it is
no longer. We only have to show that if it consists of more than one edge, then it does not
contain any zero length edge. Suppose to the contrary, that it contains a zero length edge
eij = 0, so e0

ij = 1. If eij is not the last edge on the path, examine the next edge in the
path: ejk. If ejk = 0 then e0

jk = 1 and from the transitivity of E0, e0
ik = 1, and eik ≤ 0, so

there is another path of not larger length with one less edge — a contradiction. If ejk = ±1
then e±jk = 1 and therefore there exist j′ and k′ such that e0

jj′ = 1, dj′k′ = ±1 and e0
k′k = 1.

From the transitivity of E0, e0
ij′ = 1, so e±ik = 1 and eik ≤ ±1 = eij + ejk yielding the same

contradiction. If eij is the last edge on the path, we derive the contradiction by considering
the previous edge.

The transitive closure can be computed in O(nω) time as described in [1] and all the other
computation can be computed in the same time as well.

6

3. Given the matrix E, find the shortest path which are at most two edges long, E≤2. The
distances we get are e≤2

ij ∈ {−2,−1, 0, 1, 2,∞}. This can be done in O(nω) time as described
in Section 2, or even by several Boolean matrix multiplications.

4. Define the matrix E′ as E′ def=
⌈
E≤2/2

⌉
.

Lemma 6 The matrix E′ satisfies

(E′)∗ = dE∗/2e (2)

and E′ is dδ/2e–regular.

Proof .

(a) Consider a path in E of length λ and µ edges. By Lemma 5 there is a corresponding path
in E of length at most λ and at most µ edges satisfying property (c).The corresponding
path in E′ has length at most dλ/2e and at most dµ/2e edges. Thus E′∗ ≤ dE∗/2e.

(b) To each path in E′ of length λ corresponds a path in E of length ≤ 2λ. Thus E∗ ≤ 2(E′)∗

or (E′)∗ ≥ E∗/2.

Now (2) follows from (a) and (b).

We now prove the dδ/2e–regularity of E′. If (e′)∗ij = −∞ then by (2), e∗ij = −∞; by the

δ–regularity of E, e≤δij ≤ 0 and from (a), (e′)≤dδ/2eij ≤ 0. Otherwise (e∗ij > −∞), examine
the shortest path from vi to vj in E which has no more than δ edges (the one which exists
from the δ–regularity of E). The path in (a) has no more than dδ/2e edges and its length is
≤
⌈
e∗ij/2

⌉
(by (2)). This path must have length (e′)∗ij .

5. Solve, recursively, the problem for E′ and δ′ = dδ/2e. Note that the δ parameter is halved at
each iteration. Therefore the recursion will not be more than

⌈
log2 n

2
⌉

deep. Note that as we
showed in the last lemma, the matrix E′ and dδ/2e satisfy the requirements of the algorithm.

Thus by (2), (2E′)∗ gives correctly the even entries of D∗ (= E∗) and is smaller by 1 for the
odd entries of D∗. We use E′ to add some shortcuts.

6. Compute F as:

fij =
{
eij , (e′)∗ij > 0
min{eij , 0}, (e′)∗ij ≤ 0.

Lemma 7 E∗ = F ∗.

Proof . First note that F ≤ E so F ∗ ≤ E∗. For the other inequality, we will show F ≥ E∗ and
hence F ∗ ≥ (E∗)∗ = E∗. When fij = eij we have fij ≥ e∗ij . Otherwise fij = 0 and (e′)∗ij ≤ 0.
But from (2), e∗ij ≤ (2e′)∗ij ≤ 0 = fij .

We proceed by computing D∗ from F .

7. Compute, using the algorithm of Section 2 (Theorem 1), F≤2`+4, where ` = 1 +
⌈
n∆
⌉
,

∆ = (3− ω)/2. It will provide some of the entries of the output matrix D∗.

Note that
F≤2`+4 ≥ F ∗ = E∗ = D∗. (3)

7

Lemma 8 If there exists a path from vi to vj in D whose length is ≤ λ where |λ| ≤ ` + 1
then f≤2`+4

ij ≤ λ.

Proof . Let vi = u1, u2, . . . , um = vj be a path in D from vi to vj of length µ ≤λ, where
|λ| ≤ ` + 1. First assume that |µ| ≤ ` + 1 and µ ≥ 0 (µ ≤ 0). For 0 ≤ k ≤ µ (−µ ≤ k ≤ 0),
let jk be the index of the last vertex on the path of distance k from vi along the path.
Consider the path u1, uj0 , uj0+1, uj1 , . . . , ujµ (u1, uj0 , uj0+1, uj−1 , . . . , uj−µ) as a path in F of
at most 2µ + 1 = 2` + 3 edges. If two consecutive vertices coincide, delete one of them
and skip that edge. For the edges (vp, vq) in the even (in the original order, before deleting
vertices) numbered positions (p = ijk , q = i(jk+1)), fpq ≤ epq ≤ dpq. Each edge (vp, vq) in an
odd numbered positions (p = i(jk+1), q = ijk+1

) corresponds to a sub–path of length 0 if it is
non–empty (otherwise it would have been deleted) and thus d∗pq ≤ 0. From (1), e∗pq = d∗pq ≤ 0.
Using (2), we get (e′)∗pq ≤ 0, so fpq ≤ 0. It follows that the F–path is no longer than the
D–path and f≤2`+4

ij ≤ d∗ij ≤ λ.

Figure 1 shows a typical path of 22 edges long in E and the path with only 5 edges in F .

���
���
�
��@
@R�
��@
@R
@@R
@@R
@@R
@@R���

���
���
���@@R���@@R���

���
�
��@
@R
@@R

Original E–path→

r -r���r -r���r -r
↑
Shortcut F–path

Figure 1: Shortcuts

Now suppose that µ < −` − 1 and consider the path u1, uj0 , uj0+1, uj−1 , . . . , uj−`−1
, uµ. The

same arguments as above show that the length of this path in F without its last edge is
≤ −` − 1. As for the last edge — it shortcuts a sub–path of negative length in E, therefore
(by (2)), (e′)pq ≤ 0 and fpq ≤ 0. So the total length of the path is ≤ −`− 1 ≤ λ.

Lemma 9 If |f≤2`+4
ij | ≤ ` or |d∗ij | ≤ ` then d∗ij = f≤2`+4

ij .

Proof . First assume that |f≤2`+4
ij | ≤ ` and show that |d∗ij | ≤ `. Suppose that |d∗ij | > `. If

d∗ij > ` then from (3), |f≤2`+4
ij | ≥ f≤2`+4

ij ≥ d∗ij > `. If d∗ij < −` then there exists a path
of length ≤ −` − 1 in D. From Lemma 8, f≤2`+4 ≤ −` − 1 < −`. So |d∗ij | ≤ `. Assume
|f≤2`+4
ij | ≤ ` or |d∗ij | ≤ `. By the argument above |d∗ij | ≤ ` in both cases. Consider a path

from vi to vj in D of length d∗ij . By Lemma 8 with λ = −` − 1 we get f≤2`+4
ij ≤ d∗ij . The

other inequality follows from (3).

8. As for the large positive (negative) distances: For each vertex vi, find two distances; an odd
one s1

i and an even one s2
i . Both of them are in the interval [1, n∆+1] ([−1−n∆,−1]) and both

of them are small separators: there are less than 2n1−∆ vertices which satisfy f≤2`+4
ik = s1

i or

8

f≤2`+4
ik = s2

i . Denote this set of vertices by Si = S1
i ∪ S2

i . This can be done in O(n2) time.
Now compute the large distances using the following lemma.

Lemma 10 Let vi and vj be vertices with f≤2`+4
ij > ` (f≤2`+4

ij < −`). Denote

mij
def= min

vk∈Si
{f≤2`+4
ik + (2e′)∗kj}.

Then
e∗ij =

{
(e′)∗ij , (e′)∗ij = ±∞
mij , otherwise.

Proof . By (2), e∗ij = ±∞ if and only if (e′)∗ = ±∞. So assume that e∗ij is finite. Since
|f≤2`+4
ij | > `, by Lemma 9, |d∗ij | > ` and each path from vi to vj of finite length passes

though Si.

(≤)
e∗ij = min

vk
{e∗ik + e∗kj} ≤ min

vk∈Si
{e∗ik + e∗kj}.

By (3), e∗ik ≤ f
≤2`+4
ik , and by (2), e∗kj ≤ (2e′)∗kj . So

e∗ij ≤ min
vk∈Si

{f≤2`+4
ik + (2e′)∗kj}.

(≥) Suppose that e∗ij is an odd number. Examine a shortest path in E from vi to vj . It
has a length of e∗ij . From the fact that the length matrix E contains only numbers in
{−1, 0, 1} it follows that there is a vertex vk ∈ S1

i whose distance from vi along that
path is s1

i = e∗ik = f≤2`+4
ik (by Lemma 9) and the distance from vk to vj along the

same path is e∗ij − s1
i . e∗kj = e∗ij − s1

i is even, therefore (by (2)) (2e′)∗kj ≤ e∗kj . Hence
e∗ij ≤ f

≤2`+4
ik + (2e′)∗kj .

If e∗ij is an even number, replace S1
i by S2

i in the argument above.

9. Compute D∗ as follows:

d∗ij =

−∞, (e′)∗ij = −∞
f≤2`+4
ij , |f≤2`+4

ij | ≤ `
mij , otherwise.

(Remember that mij is defined above as minvk∈Si{f
≤2`+4
ik + (2e′)∗kj}.)

Lemma 11 The computation above is correct and takes O(n3/`) time.

Proof . The first and third cases follow from Lemma 9; the second case from Lemma 10. The
time analysis is immediate.

Theorem 4 The algorithm above is correct (it computes D∗) and runs in O(nν log3 n) time.

Proof . Denote by T (n, δ) the time complexity of the algorithm on an input of n nodes and a
parameter δ.

9

• Computing E takes O(nω) time.

• Computing E≤2 takes O(nω) time too.

• E′ is easily computed in O(n2) time.

• The recursive step takes T (n, dδ/2e) time.

• F is easily computed in O(n2) time.

• Computing F≤2`+4 takes O(nν log2 n) time.

• Computing D∗ takes O(n3/`) = O(nν) time.

So we get the recursive formula:

T (n, δ) ≤ O(nν log2 n) + T (n, dδ/2e) .

This solves to T (n, δ) = O(nν log2 n log δ) and T (n, n2) = O(nν log3 n).

Small integer length

To solve problems with small (in absolute value) integer edge lengths, transform the given graph
into another graph which has more vertices, but only zero or ±1 length edges.

Lemma 12 Given a graph G which has edge lengths in the interval [x, y], where x ≤ 0 ≤ y and
y−x < M , we can, in time which is linear in the output, compute another graph G′ with M ·V (G)
vertices and edge lengths in {−1, 0, 1} only. Every shortest distance between a pair of vertices in G
can be found as a shortest distance between a corresponding pair of vertices in G′.

Proof . Transform each vertex vi in G into M sub-vertices, {vki }
y
k=x. Call the sub-vertex v0

i

the origin vertex of the vertex vi. Connect the sub-vertices of vi in two paths: one with edges
of length +1 connects the sub-vertices vki with positive k-s and the other path with −1 length
edges, connects the sub-vertices vki with negative k-s. Formally, the edges are: {(vk−1

i , vki)}yk=1 with
length 1, {(vk+1

i , vki)}−1
k=x with length −1. For every edge (vi, vj) of the original graph G which has

a length `, connect an edge (v`i , v
0
j) with zero edge length. It is easy to see that the shortest distance

in G between vi and vj , is the same as the shortest distance in G′ between the corresponding origin
sub–vertices v0

i and v0
j . This transformation enlarges the size of the graph by a factor of M and

the running time accordingly. (Figure 2 shows an example where x = −2 and y = 3.)

4 A simple solution to the positive case

In this section we use the simple case we solved in Section 2 to get an O(nν) time algorithm for the
APSP problem for a directed graph G which has only {1,∞} edge length, where ν = (3+ω)/2 < 3.

Denote by D(`) a matrix which satisfies D∗ ≤ D(`) and if d∗ij ≤ ` then d∗ij = d
(`)
ij .

10

t
t
t

6

+3

?

−2

6
0

The original graph

t -−1 d -−1 d�+1d�+1d�+1d
t -−1 d -−1 d�+1d�+1d�+1d
t -−1 d -−1 d�+1d�+1d�+1d

�
�
�
�
�
�
�3

0
�
�

�
��	

0

6

0

Transformed graph

Figure 2: The transformation

The Algorithm

1. Find, using
⌈
n∆
⌉

Boolean matrix multiplications (as in Theorem 3), d∗ for all pairs with

distance of at most
⌈
n∆
⌉

in the graph, where ∆ = (3 − ω)/2. The time complexity of this
step is O(nν).

2. In Step 1 we computed a D(dn∆e) matrix. For i = 1, . . . ,
⌈
log3/2 n

1−∆
⌉
, iterate the following

step, each time computing a D(d(3/2)in∆e) matrix. This is done by computing a D(d(3/2)ke)

matrix from a D(k) matrix.

(a) Find, for each vertex vi, a distance si in the interval [dk/2e , k] such that there are no
more than 2n/k vertices which are at this shortest distance from vi. Denote this set
by Si. This can be done in O(n2) time by inspecting the matrix.

(b) For every two vertices vi and vj compute mijk
def= minv`∈Si{d

(k)
i` + d

(k)
`j } and

d
(d 3k

2 e)
ij =

d

(k)
ij , d

(k)
ij ≤ k

mijk, d
(k)
ij > k and mijk ≤

⌈
3k
2

⌉
∞, otherwise.

This can be done in O
(
n3/k

)
time.

Lemma 13 The algorithm described above is correct and it runs in time O(nν), where ν =
(3 + ω)/2.

Proof . Correctness is obvious. Step 1 takes O(nν) time by Theorem 3. Step 2 takes

O

(∑
i

(
n3/

⌈
(3/2)i n∆

⌉))
= O(nν)

time.

11

5 Recent results

Recently, the problems of All Pairs Shortest Distances/Paths were investigated by several people.
In this section we sketch the recent results in the area.

1. We improved the algorithm for the undirected case [11]. The algorithm uses base 3 patterns
to compute the distances and works in Õ(nω) time. (Õ(f(n)) def= O(f(n) logc n), where c is
a constant; in this case c = 1.) It generalizes to Õ(M2nω) for the weighted case (where M
is the bound on the weight). Seidel [12] discovered a simpler algorithm with the same time
complexity for the uniform case (M = 1). His algorithm does not seem to generalize to the
non–uniform case even for M = 2. (The transformation of Figure 2 does not work in case of
undirected graphs.)

2. We improved the solution for the case of small distances [11]: We used here a naive method
(the reduction shown in Figure 2), but modifying the algorithm to take care of non–uniform
edges, yields a better algorithm. The algorithms for the directed non–negative and for the
undirected case, used the fact that for every path P from vi to vj of length ` and for every
0 < `′ < `, there must be a vertex vk on the path such that dPik = `′. Now, when large edges
are present, this is not true anymore; we can “skip” some distances by a large edge. So we
modify the algorithms and, for example, instead of the computation A(k+1) = A(k) ·A(1), we
now have A(k+1) =

∨M
j=1A

(k+1−j)A(j).

In the directed non–negative case, we compute L rectangular Boolean matrix multiplications,
of sizes n×Mn by Mn×n. These Boolean matrix multiplications can be packed into L/M2

Boolean matrix multiplications of square matrices of size Mn. It gives us L/M2(Mn)w +
Mn3/L, which is M (ω−1)/2n(3+ω)/2, but this holds only when L > M2; otherwise, we can
pack into M/

√
L multiplications of square Boolean matrices of size

√
Ln. This yields the

time O(Mn(5ω−3)/(ω+1)).

In the undirected case, we compute M rectangular Boolean matrix multiplications of sizes
n ×Mn by Mn × n. These matrix multiplications can be packed into

√
M Boolean matrix

multiplications of square matrices of size
√
Mn. This improves the dependency of the time

on M mentioned above from M2 into M (ω+1)/2.

3. All the algorithms we described in this paper give only the shortest distances. We can find the
shortest paths as well in almost the same time [11]. Of course we cannot list all shortest paths
in less than O(n3) space and time. So instead we compute for each pair (vi, vj), a witness:
the first edge on a shortest path from vi to vj , such that following witnesses we can construct
a simple shortest path for any given pair. The way to do it is to replace each Boolean matrix
multiplication in the algorithm by a witnessed Boolean matrix multiplication: a multiplication
which does not only compute cij =

∨n
k=1 aik ∧ bkj , but also finds a witness k which “proves”

that cij = 1. There is a simple randomized algorithm that computes witnessed Boolean matrix
multiplication (discovered independently by us, by R. Seidel [12] and by D. Krager [10]), in
polylog calls to a non–witnessed matrix multiplication. We can do it deterministically in
O(nω+log−1/3(n)) time, and recently, using derandomization [3] in Õ(nω) deterministic time.

So, the time complexity of finding the paths exceeds that of computing the distances only by
a polylogarithmic factor. This result is not trivial; several steps in our algorithms have to be
changed especially to avoid cycles in the paths.

12

6 Open problems

1. Can we improve the algorithm to Õ(nω)? Our algorithm computes an approximation ((2E′)∗)
for D∗, but then uses it only for the purpose of defining the shortcuts in F . Can we find
a better use? Seidel’s algorithm in the undirected case [12] uses a nice way to compute D∗

from (2E′)∗ directly using a single integer matrix multiplication, but the directed case seems
more difficult.

2. Can we further improve the dependency on M? By solving the problem with arbitrary large
integers we can solve it also with rational numbers and thus approximate the solution in case
of real numbers or even find it. (Good enough approximation for the path may find the right
shortest path and thus its length.)

3. Given the shortest distances, how hard it is to compute witnesses for the shortest paths?
Possibly, this can be solved in O(n2) time. Our recent algorithms [3] use additional Boolean
matrix multiplications and thus require at least Ω(nω) time, even when the distances are
given.

References

[1] A. V. Aho, J. Hopcroft and J. B. Ullman, The Design and Analysis of Computer Algorithms,
(Addison-Wesley 1974.) pp. 201–206.

[2] K. K. Ahuja, K. Mehlhorn, J. B. Orlin and R. E. Tarjan, Faster algorithms for the shortest
path problem, Journal of the Association for Computing Machinery 37(1990) pp. 213–223.

[3] N. Alon, Z. Galil, O. Margalit and M. Naor, On witnesses for Boolean matrix multiplications
and for shortest paths, To appear.

[4] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Journal
of Symbolic Computation 9(1990), pp. 251–280.

[5] E. W. Dijkstra, A note on two problems in connection with graphs, Numerische Mathematik
1(1959) pp. 269-271.

[6] M. L. Fredman, New bounds on the complexity of the shortest path problem, SIAM Journal on
Computing 5(1976) pp. 83–89.

[7] H. N. Gabow, Scaling algorithms for network problems, Proc. 24th Annual Symp. on Founda-
tion Of Comp. Sci. 1983 pp. 248–257

[8] L. R. Kerr, Phd Thesis, Cornell 1970.

[9] S. C. Kleene, Representation of events in nerve nets and finite automata, Automata studies,
Princeton University Press, 1956.

[10] D. Krager, Personal communication, 1992.

[11] O. Margalit, Phd Thesis, Tel Aviv University, to appear.

[12] R. Seidel, On the All-Pairs-Shortest-Path problem, Proc. 24th ACM Annual Symp. on Theory
of Computing 1992, to appear.

13

[13] V. Strassen, Gaussian elimination is not optimal , Numerische Mathematik 13(1969) pp. 354–
356.

[14] G. Yuval, An algorithm for finding all shortest paths using N2.81 infinite–precision multiplica-
tions, Information processing letters, 4(1976) pp. 155–156.

14

