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Abstract

The problem of properly coloring the vertices (or edges) of a graph using for each vertex

(or edge) a color from a prescribed list of permissible colors, received a considerable amount of

attention. Here we describe the techniques applied in the study of this subject, which combine

combinatorial, algebraic and probabilistic methods, and discuss several intriguing conjectures

and open problems. This is mainly a survey of recent and less recent results in the area, but it

contains several new results as well.
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1 Introduction

Graph coloring is arguably the most popular subject in graph theory. An interesting variant of the

classical problem of coloring properly the vertices of a graph with the minimum possible number

of colors arises when one imposes some restrictions on the colors available for every vertex. This

variant received a considerable amount of attention that led to several fascinating conjectures and

results, and its study combines interesting combinatorial techniques with powerful algebraic and

probabilistic ideas. The subject, initiated independently by Vizing [51] and by Erdős, Rubin and

Taylor [24], is usually known as the study of the choosability properties of a graph. In the present

paper we survey some of the known recent and less recent results in this topic, focusing on the

techniques involved and mentioning some of the related intriguing open problems. This is mostly

a survey article, but it contains various new results as well.

A vertex coloring of a graph G is an assignment of a color to each vertex of G. The coloring is

proper if adjacent vertices receive distinct colors. The chromatic number χ(G) of G is the minimum

number of colors used in a proper vertex coloring of G. An edge coloring of G is, similarly, an

assignment of a color to each edge of G. It is proper if adjacent edges receive distinct colors. The

minimum number of colors in a proper edge-coloring of G is the chromatic index χ′(G) of G. This

is clearly equal to the chromatic number of the line graph of G.

If G = (V,E) is a (finite, directed or undirected) graph, and f is a function that assigns to each

vertex v of G a positive integer f(v), we say that G is f-choosable if, for every assignment of sets

of integers S(v) ⊂ Z to all the vertices v ∈ V , where |S(v)| = f(v) for all v, there is a proper

vertex coloring c : V 7→ Z so that c(v) ∈ S(v) for all v ∈ V . The graph G is k-choosable if it

is f -choosable for the constant function f(v) ≡ k. The choice number of G, denoted ch(G), is

the minimum integer k so that G is k-choosable. Obviously, this number is at least the classical

chromatic number χ(G) of G. The choice number of the line graph of G, which we denote here by

ch′(G), is usually called the list chromatic index of G, and it is clearly at least the chromatic index

χ′(G) of G.

As observed by various researchers ([51], [24], [1]), there are many graphs G for which the choice

number ch(G) is strictly larger than the chromatic number χ(G). A simple example demonstrating

this fact is the complete bipartite graph K3,3. If {u1, u2, u3} and {v1, v2, v3} are its two vertex-

classes and S(ui) = S(vi) = {1, 2, 3} \ {i}, then there is no proper vertex coloring assigning to

each vertex w a color from its class S(w). Therefore, the choice number of this graph exceeds its

chromatic number. In fact, it is easy to show that, for any k ≥ 2, there are bipartite graphs whose

choice number exceeds k; a general construction is given in the following section. The gap between

the two parameters ch(G) and χ(G) can thus be arbitrarily large. In view of this, the following
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conjecture, suggested independently by various researchers including Vizing, Albertson, Collins,

Tucker and Gupta, which apparently appeared first in print in the paper of Bollobás and Harris

([15]), is somewhat surprising.

Conjecture 1.1 (The list coloring conjecture) For every graph G, ch′(G) = χ′(G).

This conjecture asserts that for line graphs there is no gap at all between the choice number and the

chromatic number. Many of the most interesting results in the area are proofs of special cases of

this conjecture, some of which are described in Sections 2, 3 and 4. The proof for the general case (if

true) seems extremely difficult, and even some very special cases that have received a considerable

amount of attention are still open.

The problem of determining the choice number of a given graph is difficult, even for small

graphs with a simple structure. To see this, you may try to convince yourself that the complete

bipartite graph K5,8 is 3-choosable; a (lengthy) proof appears in [42]. More formally, it is shown in

[24] that the problem of deciding if a given graph G = (V,E) is f -choosable, for a given function

f : V 7→ {2, 3}, is Πp
2-Complete. Therefore, if the complexity classes NP and coNP differ, as is

commonly believed, this problem is stricly harder than the problem of deciding if a given graph is

k-colorable, which is, of course, NP -Complete. (See [27] for the definitions of the complexity classes

above.) More results on the complexity of several variants of the choosability problem appear in

[38], where it is also briefly shown how some of these variants arise naturally in the study of various

scheduling problems.

The study of choice numbers combines combinatorial ideas with algebraic and probabilistic tools.

In the following sections we discuss these methods and present the main results and open questions

in the area. The paper is organized as follows. After describing, in Section 2, some basic and initial

results, we discuss, in Section 3, an algebraic approach and some of its recent consequences. Various

applications of probabilistic methods to choosability are considered in Section 4. A new result is

obtained in Section 5 which presents a proof of the fact that the choice number of any simple graph

with average degree d is at least Ω(log d/ log log d). Thus, the choice number of a simple graph

must grow with its average degree, unlike the chromatic number. The final Section 6 contains some

concluding remarks and open problems, in addition to those mentioned in the previous sections.

2 Some basic results

One of the basic results in graph coloring is Brooks’ theorem [17], that asserts that the chromatic

number of every connected graph, which is not a complete graph or an odd cycle, does not exceed
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its maximum degree. The choosability version of this result has been proved, independently, by

Vizing [51] (in a slightly weaker form) and by Erdős, Rubin and Taylor [24]. (See also [40]).

Theorem 2.1 ( [51], [24]) The choice number of any connected graph G, which is not complete

or an odd cycle, does not exceed its maximum degree.

Note that this suffices to prove the validity of the list coloring conjecture for simple graphs of

maximum degree 3 whose chromatic index is not 3 (known as class 2 graphs), since by Vizing’s

theorem [50], the chromatic index of such graphs must be 4.

A graph is called d-degenerate if any subgraph of it contains a vertex of degree at most d. By

a simple inductive argument, one can prove the following result.

Proposition 2.2 The choice number of any d-degenerate graph is at most d+ 1.

This simple fact implies, for example, that every planar graph is 6-choosable. It is not known if

every planar graph is 5-choosable; this is conjectured to be the case in [24]- in fact, it may even be

true that every planar graph is 4-choosable.

A characterization of all 2-choosable graphs is given in [24]. If G is a connected graph, the core

of G is the graph obtained from G by repeatedly deleting vertices of degree 1 until there is no such

vertex.

Theorem 2.3 ([24]) A simple graph is 2-choosable if and only if the core of each of its connected

components is either a single vertex, or an even cycle, or a graph consisting of two vertices with

three even internally disjoint paths between them, where the length of at least two of the paths is

exactly 2.

Of course, one cannot hope for such a simple characterization of the class of all 3-choosable graphs,

since, as observed by Gutner it follows easily from the complexity result mentioned in the intro-

duction that the problem of deciding if a given graph is 3-choosable is NP -hard; in fact, as shown

in [28], this problem is even Πp
2-complete.

In Section 1 we saw an example of a graph with choice number that exceeds its chromatic

number. Here is an obvious generalization of this construction. Let H = (U,W ) be a k-uniform

hypergraph which is not 2-colorable; that is, every edge w ∈ W has precisely k elements and

for every 2-vertex coloring of H there is a monochromatic edge. If |W | = n we claim that the

complete bipartite graph Kn,n is not k-choosable. Indeed, denote the vertices of H by 1, 2, . . ., and

let A = {aw : w ∈ W} and B = {bw : w ∈ W} be the two vertex classes of Kn,n. For each w ∈ W ,

define S(aw) = S(bw) = {u ∈ U : u ∈ w}. One can easily check that there is a proper coloring c

of the complete bipartite graph on A ∪B assigning to each vertex aw and bw a color from its class
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S(aw) (= S(bw)) if and only if the hypergraph H is 2-colorable. Thus, by the choice of H, the

choice number of Kn,n is stricly bigger than k.

As shown by Erdős [23], for large values of k there are k-uniform hypergraphs with at most

n = (1 + o(1)) e ln 2
4 k22k edges which are not 2-colorable, showing that there are bipartite graphs

with that many vertices on each side whose choice number exceeds k. We note that this estimate

is nearly sharp, as a very simple probabilistic argument shows that, if n < 2k−1, then Kn,n is

k-choosable. Indeed, given a list S(v) of k colors for each vertex v in the two vertex classes A and

B, let S be the set of all the colors used in the union of all the lists and let us choose a random

partition (SA, SB) of S into two disjoint parts, where, for each s ∈ S randomly and independently,

s is chosen to be in SA or in SB with equal probability. The colors in SA will be used to color

vertices in A and those in SB to color the vertices in SB. For a fixed vertex a in A, the probability

that its coloring will fail- that is, we will not be able to color it by a color from SA- is precisely 1/2k,

as this is the probability that all the colors in its class S(a) were chosen to be in SB. A similar

estimate holds for the members of B, and hence the probability that there exists a vertex that will

fail to receive a color is at most |A ∪B|/2k < 1. This estimate can be slightly improved, using the

method (or the result) of Beck ([10]), but the above simple argument suffices to demonstrate the

relevance of probabilistic techniques in the study of choice numbers.

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum number of colors

required to color all the vertices and edges of G, so that adjacent or incident elements receive

distinct colors. The following conjecture is due to Behzad [11].

Conjecture 2.4 (The total coloring conjecture) The total chromatic number of every simple

graph G with maximum degree ∆ is at most ∆ + 2.

There are several papers dealing with this conjecture, and the following estimates are known. If G

is a simple graph on n vertices with maximum degree ∆ then, as shown by Hind [33], [34]:

χ′′(G) ≤ ∆ + 1 + 2d
√

∆e,

and

χ′′(G) ≤ ∆ + 1 + 2d n
∆
e.

Chetwynd and Häggkvist [31] showed that, if t! > n, then

χ′′(G) ≤ ∆ + 1 + t.

Note that, as observed by the authors of [15], the validity of Conjecture 1.1 (the list coloring

conjecture) would imply that, for every simple graph with maximum degree ∆,

χ′′(G) ≤ χ′(G) + 2 ≤ ∆ + 3.
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Indeed, let S = {1, 2, . . . , χ′(G) + 2} be our set of colors. Start with an arbitrary proper vertex

coloring of G using these colors; this certainly exists, for example, by Brooks’ Theorem and by the

fact that χ′(G) ≥ ∆. Now associate with each edge e of G a list S(e) of all the colors in S except

the ones appearing on its two ends. By the list coloring conjecture, there is a proper edge coloring

of G using, for each edge e, a color from S(e); this would give a proper total coloring of G. The

fact that |S| ≤ ∆ + 3 now follows from Vizing’s theorem ([50]). It seems, however, that getting a

∆ +O(1) upper estimate for the total chromatic number of a simple graph with maximum degree

∆ should be much easier than getting a similar bound for the list chromatic index of such a graph.

3 An algebraic approach and its applications

An algebraic technique that, in various cases, supplies useful information on the choice numbers

of given graphs, has been developed by M. Tarsi and the present author in [9]. In this section we

describe this method and present some of its recent applications.

A subdigraph H of a directed graph D is called Eulerian if the indegree d−H(v) of every vertex

v of H is equal to its outdegree d+
H(v). Note that we do not assume that H is connected. H is

even if it has an even number of edges, otherwise, it is odd . Let EE(D) and EO(D) denote the

numbers of even and odd Eulerian subgraphs of D, respectively. (For convenience we agree that

the empty subgraph is an even Eulerian subgraph.) The following result is proved in [9].

Theorem 3.1 Let D = (V,E) be a digraph, and define f : V 7→ Z by f(v) = d+
D(v) + 1, where

d+
D(v) is the outdegree of v. If EE(D) 6= EO(D), then D is f-choosable.

Note that the assertion of the theorem for the special case of acyclic digraphs, which implies

Proposition 2.2, can be proved by a simple inductive argument. The general case seems much more

difficult. To prove this theorem, we need the following simple statement.

Lemma 3.2 Let P = P (x1, x2, . . . , xn) be a polynomial in n variables over the ring of integers Z.

Suppose that the degree of P as a polynomial in xi is at most di for 1 ≤ i ≤ n, and let Si ⊂ Z be a set

of di+ 1 distinct integers. If P (x1, x2, . . . , xn) = 0 for all n-tuples (x1, . . . , xn) ∈ S1×S2× . . .×Sn,

then P ≡ 0.

Proof We apply induction on n. For n = 1, the lemma is simply the assertion that a non-zero

polynomial of degree d1 in one variable can have at most d1 distinct zeros. Assuming that the

lemma holds for n− 1, we prove it for n (n ≥ 2). Given a polynomial P = P (x1, . . . , xn) and sets
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Si satisfying the hypotheses of the lemma, let us write P as a polynomial in xn- that is,

P =
dn∑
i=0

Pi(x1, . . . , xn−1)xin,

where each Pi is a polynomial with xj-degree bounded by dj . For each fixed (n − 1)-tuple

(x1, . . . , xn−1) ∈ S1 × S2 × . . . × Sn−1, the polynomial in xn obtained from P by substituting the

values of x1, . . . , xn−1 vanishes for all xn ∈ Sn, and is thus identically 0. Thus Pi(x1, . . . , xn−1) = 0

for all (x1, . . . , xn−1) ∈ S1 × . . . × Sn−1. Hence, by the induction hypothesis, Pi ≡ 0 for all i,

implying that P ≡ 0. This completes the induction and the proof of the lemma. 2

The graph polynomial fG = fG(x1, x2, . . . , xn) of a directed or undirected graph G = (V,E) on

a set V = {v1, . . . , vn} of n vertices is defined by fG(x1, x2, . . . , xn) = Π{(xi−xj) : i < j , {vi, vj} ∈
E}. This polynomial has been studied by various researchers, starting already with Petersen [44]

in 1891. See also, for example, [46], [39].

For 1 ≤ i ≤ n, let Si ⊂ Z be a set of di + 1 distinct integers. For each i, 1 ≤ i ≤ n, let

Qi(xi) be the polynomial Qi(xi) = Πs∈Si(xi − s). Let I be the ideal generated by the polynomials

Qi in the ring of polynomials Z[x1, . . . , xn]. It is obvious that if fG(x1, . . . , xn) ∈ I, then fG

vanishes on every common zero of all the polynomials Qi. But this means that fG vanishes on

every (x1, . . . , xn) ∈ S1 × S2 × . . . × Sn; hence, for each assignment of values xi ∈ Si, there is an

edge vivj of G with xi = xj . Therefore, there is no proper vertex coloring of G assigning to each

vertex vi a color from its set Si. The following Nullstellensatz-type result asserts that the converse

is also true.

Proposition 3.3 Let G = (V,E) be a graph on the set of vertices V = {v1, . . . , vn}, and let

Si, 1 ≤ i ≤ n, be sets of integers. Let fG = fG(x1, . . . , xn) be the graph polynomial of G, and let

Qi(xi) and I be as above. Then fG ∈ I if and only if there is no proper vertex coloring c of G

satisfying c(vi) ∈ Si, for all 1 ≤ i ≤ n.

Proof We have already seen that, if there is a coloring as above, then fG is not in I. It remains

to show that if there is no such coloring, then fG ∈ I. The assumption that the required coloring

does not exist is equivalent to the statement:

fG(x1, . . . , xn) = 0 for every n-tuple (x1, . . . , xn) ∈ S1 × S2 × . . .× Sn. (1)

For each i, 1 ≤ i ≤ n, put

Qi(xi) = Πs∈Si(xi − s) = xdi+1
i −

di∑
j=0

qijx
j
i .
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Observe that,

if xi ∈ Si then Qi(xi) = 0- that is, xdi+1
i =

∑di
j=0 qijx

j
i . (2)

Let fG be the polynomial obtained by writing fG as a linear combination of monomials and replac-

ing, repeatedly, each occurrence of xfii (1 ≤ i ≤ n), where fi > di, by a linear combination of smaller

powers of xi, using the relations (2). The resulting polynomial fG is clearly of degree at most di in

xi, for each 1 ≤ i ≤ n, and satisfies fG ≡ fG (mod I). Moreover, fG(x1, . . . , xn) = fG(x1, . . . , xn),

for all (x1, . . . , xn) ∈ S1× . . .×Sn, since the relations (2) hold for these values of x1, . . . , xn. There-

fore, by (1), fG(x1, . . . , xn) = 0 for every n-tuple (x1, . . . , xn) ∈ S1× . . .×Sn and hence, by Lemma

3.2, fG ≡ 0. This implies that fG ∈ I, and completes the proof. 2

The special case of the last proposition, for the case in which all the sets Si are equal, implies

that, for every fixed polynomial Q(x) of one variable with k distinct integer roots, a graph G is not

k-colorable if and only if the graph polynomial fG lies in the ideal generated by the polynomials

Q(xi). In fact, the assumption that the roots of Q(x) are integral is not essential, as the proof works

equally well in the ring of polynomials K[x1, . . . , xn] over any field K. See [9] for more details.

This result is related to a theorem of Kleitman and Lovász ([41]) , who applied a method similar

to that of [39], and showed that a graph G = (V,E) is not k-colorable if and only if fG lies in the

ideal generated by the set of all graph polynomials of complete graphs on k + 1 vertices among

those in V . As shown by De Loera in [19], the set of graph polynomials of complete (k+ 1)-graphs,

as well as the set of polynomials Q(xi) above, are both universal Gröbner bases for the ideals they

generate. See [19] for more details.

It is not too difficult to see that the coefficients of the monomials that appear in the standard

representation of fG as a linear combination of monomials can be expressed in terms of the ori-

entations of G. For each oriented edge e = (vi, vj) of G, define its weight w(e) by w(e) = xi if

i < j, and w(e) = −xi if i > j. The weight w(D) of an orientation D of G is defined to be the

product Πw(e), where e ranges over all oriented edges e of D. Clearly fG =
∑
w(D), where D

ranges over all orientations of G. This is simply because each term in the expansion of the product

fG = Π{(xi − xj) : i < j , {vi, vj} ∈ E} corresponds to a choice of the orientation of the edge

{vi, vj} for each edge {vi, vj} of G. Let us call an oriented edge (vi, vj) of G decreasing if i > j.

An orientation D of G is called even if it has an even number of decreasing edges; otherwise, it is

called odd.

For non-negative integers d1, d2, . . . , dn, let DE(d1, . . . , dn) and DO(d1, . . . , dn) denote, respec-

tively, the sets of all even and odd orientations of G in which the outdegree of the vertex vi is di,

for 1 ≤ i ≤ n. By the last paragraph, the following lemma holds.
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Lemma 3.4 In the above notation

fG(x1, . . . , xn) =
∑

d1,...,dn≥0

(|DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|)Πn
i=1x

di
i . 2

Consider, now, a fixed sequence d1, . . . , dn of nonnegative integers and let D1 be a fixed orienta-

tion inDE(d1, . . . , dn)∪DO(d1, . . . , dn). For any orientationD2 ∈ DE(d1, . . . , dn)∪DO(d1, . . . , dn),

let D1 ⊕D2 denote the set of all oriented edges of D1 whose orientation in D2 is in the opposite

direction. Since the outdegree of every vertex in D1 is equal to its outdegree in D2, it follows that

D1⊕D2 is an Eulerian subgraph of D1. Moreover, D1⊕D2 is even as an Eulerian subgraph if and

only if D1 and D2 are both even or both odd. The mapping D2 −→ D1 ⊕D2 is clearly a bijection

between DE(d1, . . . , dn) ∪DO(d1, . . . , dn) and the set of all Eulerian subgraphs of D1. In the case

D1 is even, it maps even orientations to even (Eulerian) subgraphs, and odd orientations to odd

subgraphs. Otherwise, it maps even orientations to odd subgraphs, and odd orientations to even

subgraphs. In any case,∣∣∣∣|DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|
∣∣∣∣ = |EE(D1)− EO(D1)|

where EE(D1) and EO(D1) denote, as before, the numbers of even and odd Eulerian subgraphs

of D1, respectively. Combining this with Lemma 3.4, we obtain the following.

Corollary 3.5 Let D be an orientation of an undirected graph G = (V,E) on a set V = {v1, . . . , vn}
of n vertices. For 1 ≤ i ≤ n, let di = d+

D(vi) be the outdegree of vi in D. Then the absolute value of

the coefficient of the monomial Πn
i=1x

di
i in the standard representation of fG = fG(x1, . . . , xn) as a

linear combination of monomials, is |EE(D) − EO(D)|. In particular, if EE(D) 6= EO(D), then

this coefficient is not zero. 2

Proof of Theorem 3.1 Let D = (V,E) be a digraph on the set of vertices V = {v1, . . . , vn}
and let di = d+

D(vi) be the outdegree of vi. Suppose that EE(D) 6= EO(D). For 1 ≤ i ≤ n, let

Si ⊂ Z be a set of di + 1 distinct integers. We must show that there is a legal vertex-coloring

c : V 7→ Z such that c(vi) ∈ Si, for all 1 ≤ i ≤ n. Suppose that this is false and there is no such

coloring. Then, by Proposition 3.3 and its proof, fD ≡ 0, where, as before, fD is the reduction

of the graph polynomial fD using the relations (2). However, by Corollary 3.5, the coefficient

of Πn
i=1x

di
i in fD is nonzero, since, by assumption, EE(D) 6= EO(D). Since the degree of each

xi in this monomial is di, the relations (2) will not affect it. Moreover, as the polynomial fD is

homogeneous and each application of the relations (2) strictly reduces the degree, the process of

replacing fD by fD will not create any new scalar multiples of Πn
i=1x

di
i . Thus, the coefficient of

Πn
i=1x

di
i in fD is equal to its coefficient in fD, and is not 0. This contradicts the fact that fD ≡ 0.
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Therefore, our assumption was false, and there is a legal coloring c : V 7→ Z satisfying c(vi) ∈ Si,
for all 1 ≤ i ≤ n. 2

An interesting application of Theorem 3.1 has been obtained by Fleischner and Stiebitz in [26],

solving a problem raised by Du, Hsu and Hwang in [21], as well as a strengthening of it suggested

by Erdős.

Theorem 3.6 ([26]) Let G be a graph on 3n vertices, whose set of edges is the disjoint union of a

Hamilton cycle and n pairwise vertex-disjoint triangles. Then the choice number and the chromatic

number of G are both 3.

The proof is based on a subtle parity argument that shows that, if D is the digraph obtained from G

by directing the Hamilton cycle as well as each of the triangles cyclically, then EE(D)−EO(D) ≡
2(mod 4 ). The result thus follows from Theorem 3.1. We note that the result supplies no efficient

algorithm for finding a proper 3-vertex coloring of such a graph, although the methods of [3], [25]

or [5] do supply an efficient algorithm for the related (easier) problem of finding a proper 4-vertex

coloring of a graph on 4n vertices, whose set of edges is the disjoint union of a Hamilton cycle and

n pairwise vertex disjoint copies of K4. Several extensions appear in [25], [5].

Another simple application of Theorem 3.1 is the following result, that solves an open problem

from [24].

Theorem 3.7 ([9]) The choice number of every planar bipartite graph is at most 3.

This is tight, since ch(K2,4) = 3.

Recall that the list coloring conjecture (Conjecture 1.1) asserts that ch′(G) = χ′(G) for every

graph G. In order to try to apply Theorem 3.1 for tackling this problem, it is useful to find a more

convenient expression for the difference EE(D)− EO(D), where D is the appropriate orientation

of a given line graph. Here is a brief derivation of such an expression for line graphs of regular

graphs of class 1. Let G = (V,E) be a d-regular graph satisfying χ′(G) = d. Observe that the

line graph L(G) of G is (2d − 2)-regular, and hence has an Eulerian orientation D in which every

outdegree is precisely d− 1. Let fD(x1, . . .) denote the graph polynomial of D. Our objective is to

compute the coefficient of the monomial Πxd−1
i in the standard representation of fD as a sum of

monomials. Let us denote this coefficient by C(D). Note that, by Corollary 3.5 and its proof, the

absolute value of C(D) is the absolute value of the difference between the number of even Eulerian

orientations of L(G) and the number of odd Eulerian orientations of it.

It is convenient to consider both this combinatorial interpretation and the interpretation as the

appropriate coefficient. Starting with the latter, observe that the edges of the line graph L(G)

consist of |V | edge disjoint cliques, each of size d. For every v ∈ V , there is a clique in L(G)
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on all the d edges of G (which are vertices of L(G)) that are incident with v. Therefore, the

graph polynomial fD is a product of |V | graph polynomials of complete graphs, each of size d.

However, the graph polynomial of a complete graph is a Vandermonde determinant, and hence

one can express fD as a product of |V | Vandermonde determinants. Interpreting the coefficient

of the monomial Πxd−1
i in this new expresion, we conclude that its absolute value is the absolute

value of the difference between the number of even Eulerian orientations of L(G) and the number

of odd ones, where we count only (Eulerian) orientations in which each of the |V | tournaments

corresponding to the cliques around the vertices of G is acyclic. (It is not too difficult to show

directly that the other orientations cancel each other, without using the interpretation as a product

of Vandermonde determinants, but we omit the detailed argument using this direct approach.) Since

an acyclic orientation of a tournament defines a permutation in the obvious way (or by expanding

the Vandermonde determinants according to their definition), the last difference can be rewritten

as follows.

For each vertex v ∈ V , let πv be an arbitrary permutation of the edges of G incident with v.

It is convenient to consider such a permutation as a bijection from the d edges above to the set

{0, 1, . . . , d−1}. Let SP denote the class of all sets of |V | permutations Σ = {σv : v ∈ V }, where σv
is a permutation of the edges of G incident with v so that for each edge e = uv, σu(e)+σv(e) = d−1.

For each Σ ∈ SP , let sign(Σ) denote the product of the signs of all |V | permutations π−1
v (σv), v ∈ V.

Then

|C(D)| = |
∑

Σ∈SP
sign(Σ)|. (3)

Next, associate with each Σ = {σv : vıV } a partition P = P (Σ) of the set of edges of G into

s = b(d + 1)/2c classes P0, P1, . . . , Ps−1, by letting Pi denote the set of all edges e = uv with

σu(e) = i (and σv(e) = d− 1− i). Notice that for 0 ≤ i < (d− 1)/2, Pi is a 2-factor of G, whereas

for odd d, the last class P(d−1)/2 is a perfect matching. If there is some 2-factor Pi that contains an

odd cycle, then let v0, v1, . . . , vr = v0 be the vertices of the first such cycle in the first such 2-factor,

and suppose that σvj (vjvj+1) = i and σvj+1(vjvj+1) = d − 1 − i, where the indices are reduced

modulo r. Then we can define Σ′ ∈ SP as the collection of permutations σ′v obtained from Σ, by

defining σ′vj (vjvj+1) = d−1− i and σ′vj+1
(vjvj+1) = i, where, in each other place, each σ′v coincides

with the corresponding σv. One can easily check that this is a fixed-point-free involution on the

members of SP of this type that switches the sign. Therefore, these members cancel each other in

equation (3). We are thus left with the members Σ ∈ SP for which every class in P (Σ) is a 2-factor

of even cycles (and one class is a perfect matching, in case of odd d). From each such partition

P (Σ), with l even cycles in all its 2-factors together, one can get 2l proper edge colorings of G with

d colors, by coloring the edges of each even cycle in Pi alternately with the colors i and d− 1− i.
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It can easily be checked that this correspondence is a bijection between the remaining members of

SP and the proper edge colorings. This yields the following interpretation of the coefficient C(D).

For every proper edge coloring c of G with the d-colors {0, . . . , d − 1}, the sign of c, denoted by

sign(c), is defined as the product of the signs of all the |V | permutations (π−1
v c(e) : v ∈ e ∈ E(G)).

Let EC(G) denote the set of all proper d edge colorings of G, and define

ec(G) =
∑

c∈EC(G)

sign(c).

Proposition 3.8 With the above notation

|C(D)| = |ec(G)|. 2

This proposition is described (very briefly, and only for the special case G = Kn,n ) in [9]. The

case d = 3 of it appears in [35] (see also [46] for the case of planar cubic graphs). Combining this

proposition with Theorem 3.1, we conclude.

Corollary 3.9 The list coloring conjecture holds for any d-regular graph G with chromatic index

d that satisfies ec(G) 6= 0. 2

Are there any interesting examples of graphs G as above, for which one can prove that ec(G) 6=
0? Any cubic graph with chromatic index 3, in which there is a perfect matching that appears

in every proper 3-edge coloring, is such an example, and one can give infinitely many examples of

this type. More interesting is the following result, observed in conversations with F. Jaeger and M.

Tarsi and, independently, by M. Ellingham and L. Goddyn [22].

Corollary 3.10 For every 2-connected cubic planar graph G, ch′(G) = 3.

Proof It is known ([49]; see also [35] for a short proof) that all the 3-edge colorings of a planar

cubic graph have the same sign. On the other hand, the fact that every 2-connected cubic planar

graph has chromatic index 3 is well known to be equivalent to the Four Color Theorem. The result

thus follows from Corollary 3.9. 2

Note that the above result is a strengthening of the Four Color Theorem. The proof supplies no

efficient procedure for finding a proper 3-edge coloring for a given 2-connected planar cubic graph

with a list of 3 colors for each of its edges, that assigns to each edge a color from its list. As shown

in [22], it is possible to extend the above proof to any d-regular planar multigraph with chromatic

index d, establishing the following.

Theorem 3.11 ([22]) The list chromatic index of any d-regular planar multigraph with chromatic

index d is d.

11



4 Probabilistic techniques

Probabilistic arguments have been applied by various researchers in the study of restricted colorings.

We have already seen a simple example in Section 2. Here is another simple and elegant example,

due to Chetwynd and Häggkvist ([31]), which deals with a variant of the restricted coloring problem,

in which we color edges trying to avoid a forbidden color on each edge.

Proposition 4.1 ([31]) Let G = (V,E) be a graph with n vertices, maximum degree ∆, and

chromatic index r (≥ ∆). For each edge e ∈ E, let d(e) ∈ {1, . . . , r} be a forbidden color for e. If t

is the smallest integer satisfying t! > n, then there is a proper edge coloring c : E 7→ {1, 2, . . . , r+ t}
satisfying c(e) 6= d(e), for all e ∈ E.

Proof Fix a proper edge coloring of G with the colors 1, 2, . . . , r, and consider a random permu-

tation of these colors. For a fixed vertex v of G, the probability that there will be at least t edges

incident with v that receive (after the permutation) their forbidden color, is at most(
∆
t

)
1

r(r − 1) . . . (r − t+ 1)
≤ 1
t!
< 1/n.

Therefore, with positive probability, there is no vertex v in which there are at least t edges that

received a forbidden color after the permutation. Let H be the subgraph of violations- that is, the

subgraph of G consisiting of all edges that received their forbidden colors. We have seen that there

is a permutation for which the maximum degree of H is at most t− 1. Moreover, if there are any

pairs of parallel edges in H, we can exchange the colors on such a pair and reduce the number of

violations locally. Therefore, we may assume that H is simple and hence, by Vizing’s Theorem [50],

its edges can be properly colored with the additional t colors r + 1, . . . , r + t, supplying a proper

edge coloring of G with the colors 1, . . . , r + t, as needed. 2

It is shown in [31] that the same reasoning can be applied to obtain an r + t upper bound for

the total chromatic number of any multigraph with n vertices and chromatic index r, provided that

t! > n. A similar result has been proved by McDiarmid ([43]).

Returning to the list coloring conjecture, observe that, by Proposition 2.2, ch′(G) ≤ 2∆− 1 for

any graph G with maximum degree ∆; this can be improved to 2∆ − 2 for ∆ > 2, by Theorem

2.1. Probabilistic methods are particularly powerful, when one tries to obtain asymptotic results.

For the case of simple graphs G with maximum degree ∆, a (7
4 + o(1))∆ upper bound for ch′(G)

has been obtained by Bollobás and Hind [16], improving a (11
6 + o(1))∆ upper bound proved by

Bollobás and Harris [15]. (Here, and in the next sentence, the o(1) term tends to 0 as ∆ tends

to infinity.) The final asymptotic result for this problem has been obtained recently by J. Kahn
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[36], who proved an asymptotically optimal (1 + o(1))∆ upper bound. His proof applies delicate

probabilistic arguments, which are based on the technique developed by Rödl in [45]. For upper

bounds for the maximum possible value of ch′(G) for multigraphs with maximum degree ∆, see

[18], [32].

Probabilistic arguments are applied in [6] to obtain a sharp estimate for the choice numbers of

complete multipartite graphs with equal color classes. For two positive integers m and r, let Km∗r

denote the complete r-partite graph with m vertices in each vertex class. For r = 1, Km∗r has no

edges and hence, obviously, ch(Km∗1) = 1, for all m. Another trivial observation is the fact that

ch(K1∗r) = r, for all r. In [24] it is shown that ch(K2∗r) = r for all r. The following theorem

determines, up to a constant factor, the choice number of Km∗r for all the remaining cases.

Theorem 4.2 ([6]) There exist two positive constants c1 and c2 such that, for every m ≥ 2 and

for every r ≥ 2,

c1r logm ≤ ch(Km∗r) ≤ c2r logm.

A simple application of this theorem is the following.

Corollary 4.3 There exists a positive constant b such that, for every n, there is an n-vertex graph

G such that

ch(G) + ch(Gc) ≤ bn1/2(log n)1/2,

where Gc is the complement of G.

This settles a problem raised in [24], where the authors ask whether there exists a constant

ε > 0 so that, for all sufficiently large n and for every n-vertex graph G, ch(G) + ch(Gc) > n1/2+ε.

Another simple corollary of the above theorem deals with the choice numbers of random graphs.

It is convenient to consider the common model Gn,1/2 (see, for example, [14]), in which the graph

is obtained by taking each pair of the n labelled vertices 1, 2, . . . , n to be an edge, randomly and

independently, with probability 1/2. (It is not too difficult to obtain similar results for other models

of random graphs as well.) As proved by Bollobás in [13], almost surely (that is, with probability

that tends to 1 as n tends to infinity), the random graph G = Gn,1/2 has chromatic number

(1 + o(1))n/2 log2 n.

It is also known and easy- see for example, [14], [8], that almost surely G contains no independent

set of size greater than 2 log2 n. Therefore, for r = n/ log2 n and m = 2 log2 n, say, G has almost

surely a proper coloring with r colors in which no color appears more than m times. It follows that

G is almost surely a subgraph of Km∗r and hence, by Theorem 4.2, almost surely

ch(G) ≤ ch(Km∗r) = O(r logm) = O(n
log log n

log n
).
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Hence, for almost all the graphs G on n vertices, ch(G) = o(n) as n tends to infinity. This solves

another problem raised in [24].

A sharper estimate has been obtained by Jeff Kahn (private communication), who determined

the correct asymptotic behaviour of the choice number of the random graph. Here is the result,

and its surprisingly simple proof.

Proposition 4.4 The choice number of the random graph Gn,1/2 on n vertices is almost surely

(1 + o(1))n/2 log2 n.

Proof As the choice number is at least as large as the chromatic number, the known estimate of

the chromatic number of the random graph shows that the choice number of Gn,1/2 is almost surely

at least (1 + o(1))n/2 log2 n. In [13], Bollobás shows that G = Gn,1/2 satisfies almost surely the

following property: every set of at least n/ log2 n vertices of G contains an independent set of size

q = (1 + o(1))2 log2 n. Suppose, therefore, that G satisfies this property, and suppose that, for each

vertex v of G, we are given a set S(v) of at least n/q + n/ log2 n (= (1 + o(1))n/2 log2 n) colors.

As long as there is a color c that appears in at least n/log2n sets S(v), take an independent set of

size at least q among the vertices whose color lists contain c, color them by c, delete them from the

graph, and omit c from the color lists of the other vertices. When this process terminates, every

vertex still has at least n/ log2 n colors in its list, and no color appears in more than n/ log2 n color

lists. Therefore, by Hall’s theorem, one can assign to each of the remaining vertices a color from

its list so that no two vertices will get the same color. This completes the proof. 2

It is worth noting that, by applying martingales as in [47] (see also [8], pp. 84-86), one can show

that, if En is the expectation of the choice number of Gn,1/2, then, for any λ > 0, only a fraction

of at most 2e−λ
2/2 of the graphs on n labelled vertices have choice numbers that deviate from En

by more than λ
√
n.

The following proposition establishes the upper bound for ch(Km∗r), asserted in Theorem 4.2.

Although, as observed by J. Kahn, the proof of this proposition given in [6] can be simplified, we

sketch the original proof here, since it applies an interesting splitting technique which has other

applications as well (see, for example, [5]). To simplify notation, we omit all the floor and ceiling

signs whenever these are not crucial. All the logarithms are to the natural base e, unless otherwise

specified.

Proposition 4.5 There exists a positive constant c such that, for all positive integers m ≥ 2 and

r, ch(Km∗r) ≤ cr logm.

Proof Since rm is a trivial upper bound for ch(Km∗r) and since, for c ≥ 4, say, rm ≤ cr logm for

all m satisfying m ≤ c, we may assume that m > c (where c will be chosen later). Let V1, V2, . . . Vr
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be the vertex classes of K = Km∗r, where |Vi| = m for all i, and let V = V1 ∪ . . . ∪ Vr be the

set of all vertices of K. For each v ∈ V , let S(v) be a set of at least cr logm distinct colors. We

must show that there is a proper coloring of K, assigning to each vertex v a color from S(v). Since

ch(Km∗r) is a non-decreasing function of r, we may (and will) assume that r is a power of 2.

We consider two possible cases.

Case 1: r ≤ m.

Let S = ∪v∈V S(v) be the set of all colors. Put R = {1, 2, . . . , r}, and let f : S 7→ R be a random

function, obtained by choosing the value of f(c), randomly and independently for each color c ∈ S,

according to a uniform distribution on R. The colors c for which f(c) = i will be the ones to be

used for coloring the vertices in Vi. To complete the proof for this case, it thus suffices to show

that, with positive probability for every i (1 ≤ i ≤ r), and for every vertex v ∈ Vi, there is at least

one color c ∈ S(v) such that f(c) = i.

Fix an i, and a vertex v ∈ Vi. The probability that there is no color c ∈ S(v) such that f(c) = i

is clearly

(1− 1
r

)|S(v)| ≤ (1− 1
r

)cr logm ≤ e−c logm ≤ 1
mc

<
1
rm

,

where the last inequality follows from the fact that r ≤ m and c ≥ 4 > 2. There are rm possible

choices of i (1 ≤ i ≤ r) and v ∈ Vi, and hence the probability that, for some i and some v ∈ Vi,
there is no c ∈ S(v) such that f(c) = i is smaller than 1; this completes the proof in this case.

Case 2: r > m.

Here we apply a splitting trick, similar to the one used in [5]. As before, define R = {1, 2, . . . , r} and

let S = ∪v∈V S(v) be the set of all colors. Put R1 = {1, 2, . . . , r/2} and R2 = {r/2 + 1, . . . , r}. Let

f : S 7→ {1, 2} be a random function obtained by choosing f(c) ∈ {1, 2}, for each c ∈ S randomly

and independently, according to a uniform distribution. The colors c for which f(c) = 1 will be

used for coloring the vertices in ∪i∈R1Vi, whereas the colors c for which f(c) = 2 will be used for

coloring the vertices in ∪i∈R2Vi.

For every vertex v ∈ V , put S0(v) = S(v), and define S1(v) = S0(v) ∩ f−1(1) if v belongs to

∪i∈R1Vi, and S1(v) = S0(v) ∩ f−1(2) if v belongs to ∪i∈R2Vi. Observe that in this manner the

problem of finding a proper coloring of K in which the color of each vertex v is in S(v) = S0(v)

has been decomposed into two independent problems. These are the problems of finding proper

colorings of the two complete r/2-partite graphs on the vertex classes ∪i∈R1Vi and ∪i∈R2Vi, by

assigning to each vertex v a color from S1(v). Let s0 = cr logm be the number of colors in each

original list of colors assigned to a vertex. Using the standard tail estimates for binomial variables

(see, for example, [8]), it is not too difficult to show that, for all sufficiently large c, with high
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probability,

|S1(v)| ≥ 1
2
s0 −

1
2
s

2/3
0 , (4)

for all v ∈ V .

Let s1 denote the minimum cardinality of a set S1(v), for v ∈ V . As shown above, we can

ensure that

s1 ≥
1
2
s0 −

1
2
s

2/3
0 .

We have thus reduced the problem of showing that the choice number of Km∗r is at most s0 to

that of showing that the choice number of Km∗(r/2) is at most s1.

Repeating the above decomposition technique, which we can repeat as long as r/2i > m, we

obtain, after j iterations, a sequence si, where s0 = cr logm and

si+1 ≥ si/2− s2/3
i /2, for 1 ≤ i < j. (5)

In order to show that the choice number of K = Km∗r is at most s0, it suffices to show that, for

some i, the choice number of Km∗(r/2i) is at most si.

Let the number of iterations j be chosen so that j is the minimum integer satisfying r/2j ≤ m.

Clearly, in this case, r/2j > m/2 ≥ c/2. A simple (but tedious) computation, which we omit, shows

that

sj ≥
s0

2j+1
,

provided that c is sufficiently large.

To complete the proof of the proposition, observe that it suffices to show that the choice number

of Km∗(r/2j) is at most sj . However, r/2j ≤ m and

sj ≥ s0/2j+1 ≥ c

2
r

2j
logm.

For a sufficiently large c, the result thus follows from Case 1. This completes the proof. 2

The lower bound in Theorem 4.2 can also be derived by probabilistic arguments, which we

omit. Let us, however, present the simple derivation of Corollary 4.3 from the upper bound of this

theorem.

Proof of Corollary 4.3 Define m =
√
n log n and r = n/m =

√
n√

logn
, and let G be the graph

Km∗r. The complement Gc of G is a disjoint union of r cliques, each of size m, and thus ch(Gc) =

m = O(
√
n log n). By Theorem 4.2, ch(G) = O(r logm) = O(

√
n log n). Thus,

ch(G) + ch(Gc) = O(
√
n log n),

as required. 2
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For a graph G = (V,E), and for two integers a ≥ b ≥ 1, G is called (a : b)-choosable if, for

every assignment of sets of colors S(v) ⊂ Z, each of cardinality a, for every vertex v ∈ V , there are

subsets T (v) ⊂ S(v), |T (v)| = b for all v, so that, if u and v are adjacent, then T (u) and T (v) are

disjoint. In particular, (k : 1)-choosability coincides with the previous definition of k-choosability.

This definition is introduced in [24], where the authors raise the following question:

Suppose G is (a : b)-choosable, and suppose that c/d > a/b, where a ≥ b and c ≥ d are positive

integers. Does it follow that G is (c : d)-choosable as well?

S. Gutner [28] showed that the answer is ”no”, by establishing the following result, proved by

a simple probabilistic argument.

Proposition 4.6 ([28]) For every two integers n ≥ k and for every ε > 0, there is a c0 = c0(n, k, ε)

such that the following holds: for every graph G on n vertices with chromatic number k, and for

every two positive integers c > c0 and d satisfying c(1− ε) ≥ kd, G is (c : d)-choosable.

Proof Let us fix a proper k-coloring of G = (V,E), and let V1, . . . , Vk be the k color classes. Given

sets of colors S(v) ⊂ Z of cardinality c for each vertex v of G, let S be the union of all the sets

S(v), and let us split S randomly into k pairwise disjoint subsets S1, . . . , Sk, where each s ∈ S

is chosen randomly and independently as a member of one of the sets Si, according to a uniform

distribution. The colors in Si will be used for defining the sets T (v), for v ∈ Vi. To complete

the proof, it suffices to check that, if c is sufficiently large and c(1 − ε) ≥ kd, then with positive

probability, |S(v) ∩ Si| ≥ d for every 1 ≤ i ≤ k and for every v ∈ Vi. However, for each such v,

|S(v) ∩ Si| is a binomial random variable with expectation c/k and variance c
k (1 − 1

k ) < c/k, and

hence, by Chebyshev’s Inequality, the probability that there is a vertex v in Vi for some i so that

|S(v) ∩ Si| < d, is at most

n
ck2

kε2c2
< 1,

where the last inequality holds for all sufficently large c (as a function of ε, n and k). (Observe

that this estimate can be improved by applying the more accurate known estimates for binomial

distributions.) This completes the proof. 2

By the last proposition (with n = 2m, k = 2, ε = 1/3 and c = 3d) for each integer m, the

complete bipartite graph Km,m is, (3d : d)-choosable for all sufficiently large d, and yet it is not,

say, (100 : 1)-choosable, if m is large enough, as mentioned in Section 2. As 100/1 > 3d/d, this

implies that the answer to the question preceding the last proposition is negative.
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5 The minimum degree and choice numbers

Despite the close connection between choice numbers and chromatic numbers, these two invariants

do not have the same properties. In this section, we prove a result that supplies an essential

difference between the two. Let us call two graph invariants α(G) and β(G) related if there are

two functions f(x) and g(x), both tending to infinity as x tends to infinity, such that, for every

(simple) graph G, β(G) ≥ f(α(G)) and α(G) ≥ g(β(G)). Roughly speaking, two invariants are

related if they grow together, although one may grow much slower than the other. Examples of

related parameters are the chromatic index of a graph and its maximum degree. Other examples

of related parameters are the chromatic number of a graph and the minimum number of bipartite

graphs required to cover all its edges. On the other hand, the chromatic number and the choice

number of a graph are not related, as for any k there are graphs of chromatic number 2 whose

choice number exceeds k.

The definition of a d-degenerate graph appears before Proposition 2.2. For a simple graph G, let

d(G) denote the minimum integer d so that G is d-degenerate. Equivalently, d(G) is the maximum

integer d such that G has a subgraph with minimum degree d. The parameter d(G) arizes naturally

in the study of various problems and it is not diffciult to show that it is related, in the above sense,

to the arboricity of G, which is the minimum number of forests whose union covers all edges of G.

By Proposition 2.2, for any graph G, d(G) ≥ ch(G)−1 ≥ χ(G)−1. On the other hand, for every k

there are graphs with χ(G) = 2 and d(G) > k as shown by the family of complete bipartite graphs.

Therefore the parameters d(G) and χ(G) are not related. On the other hand, the parameters ch(G)

and d(G), are related. One can show that the choice number of any simple graph with minimum

(or average) degree d is at least Ω(log d/ log log d). This is proved in the following theorem; in its

statement and proof, we make no attempt to optimize the constants.

Theorem 5.1 Let G be a simple graph with average degree at least d. If s is an integer and

d > 4

(
s4

s

)
log(2

(
s4

s

)
), (6)

then ch(G) > s.

Proof Let G be a simple graph with average degree at least d. We first show that, as is well known,

every such G contains a bipartite graph, whose minimum degree is at least d/4. To see this, observe

that G has an induced subgraph with minimum degree at least d/2, since one can repeatedly delete

vertices of degree smaller than d/2 from G, as long as there are such vertices; since this process

increases the average degree, it must terminate in a non-empty subgraph G′ with minimum degree
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at least d/2. In G′, one can take a spanning bipartite subgraph H with the maximum possible

number of edges. If a vertex here has degree smaller than half of its degree in G′, then shifting

it to the other class of the bipartite graph will increase the number of edges and contradict the

maximality in the choice of the bipartite graph.

Now let H = (V,E) be a bipartite subgraph of G, with minimum degree δ ≥ d/4 and with vertex

classes A and B, where |A| ≥ |B|. Let S = {1, 2, . . . , s4} be our set of colors. Our objective is to

show that there are subsets S(v) ⊂ S, where |S(v)| = s for all v ∈ V , such that there is no proper

coloring c : V 7→ S that assigns to every v ∈ V a color c(v) ∈ S(v). This will imply that

ch(G) ≥ ch(H) > s,

and complete the proof.

The proof is probabilistic. For each vertex b ∈ B, let S(b) be a random subset of cardinality s

of S, chosen uniformly and independently among all the
(s4
s

)
subsets of cardinality s of S. Call a

vertex a ∈ A good if, for every subset C ⊂ S with |C| = s, there is a neighbor b of a in H such that

S(b) = C. For a fixed a ∈ A, the probability that a is not good is at most(
s4

s

)
(1− 1(s4

s

))δ ≤ 1/2,

where the last inequality follows from the fact that δ ≥ d/4 and from assumption (6). Therefore,

the expected number of good vertices a ∈ A is at least |A|/2, and hence there is some choice of the

s-subsets S(b), b ∈ B such that there are at least |A|/2 good vertices in A. Let us fix these subsets

S(b) and choose, for each a ∈ A, a subset S(a) ⊂ S, |S(a)| = s, randomly and independently

according to a uniform distribution on the s-subsets of S. To complete the proof, we show that

with positive probability there is no proper coloring c : A ∪ B 7→ S of H assigning to each vertex

v ∈ A ∪B a color from its class S(v).

There are s|B| possibilities for the restriction c|B of c to the vertices in B so that c(b) ∈ S(b)

for all b. Fix such a restriction, and let us estimate the probability that this restriction can be

extended to a proper coloring c of the desired type. The crucial observation is that, if a ∈ A is

good, then the set of all colors assigned by c|B to the neighbors of a is a set that intersects every

s-subset of S, since every s-subset is S(b) for some neighbor b of a. Therefore, at least s4 − s + 1

distinct colors are assigned by c|B to the neighbors of a. It is thus possible to choose a proper color

for a from its set S(a), only if S(a) contains one of the set of at most s− 1 colors which differ from

c(b) for all the neighbors b of a. The probability that the randomly chosen set S(a) satisfies this is

at most
(s− 1)

(s4−1
s−1

)(s4
s

) =
s(s− 1)
s4

<
1
s2
.
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Moreover, all these events for distinct good vertices a ∈ A are mutually independent, by the

independent choice of the sets S(a). It follows that, if there are g (≥ |A|/2) good vertices in A,

the probability that a fixed partial coloring c|B can be extended to a full coloring c : A ∪ B 7→ S,

assigning to each vertex a color from its class, is strictly less than

(1/s2)g ≤ (1/s2)|A|/2 ≤ 1
s|B|

,

since |A| ≥ |B|. As there are only s|B| possibilities for the partial coloring c|B, and (as just shown)

the probability that a fixed partial coloring would extend to a full coloring is strictly less than

1/s|B|, we conclude that with positive probability there is no coloring of the required type; this

shows that ch(H) > s, completing the proof. 2

As shown in Section 2, the complete bipartite graphs Kd,d supply an example with minimum

degree d and choice number (1 + o(1)) log2 d, thus showing that Theorem 5.1 is nearly tight. Note

also that there is a very simple polynomial time algorithm that finds, for a given input graph G, the

value of the parameter d(G)- the minimum d so that G is d-degenerate. In view of Theorem 5.1,

this supplies a polynomial algorithm that finds, for a given input graph G, a number s so that the

choice number of G lies between s and O(s4s log s). Although this is a very crude approximation,

there is no known similar efficient approximation algorithm for the chromatic number of a graph. In

fact, it would be very interesting to find any function f : Z 7→ Z and a polynomial time algorithm

that finds, for a given input graph G, a number s so that the chromatic number of G is between

s and f(s). Although the problem of approximating the chromatic number of a graph received a

considerable amount of attention, no such algorithm is known.

6 Concluding remarks and open problems

The most interesting open problem in the area is the list coloring conjecture (Conjecture 1.1),

which is wide open, although it has been verified in several cases. It is easy to see that it is true

for forests and for graphs with maximum degree 2. It also holds for graphs with no cycles of length

bigger than 3, as shown in [28]. As mentioned in Section 2, the assertion of the conjecture holds

for graphs with maximum degree 3 and edge chromatic index 4, by Theorem 2.1. Häggkvist [30]

gave an interesting proof for all complete bipartite graphs Kr,n with r ≤ 2
7n and as discussed in

Section 3 it holds for every planar d-regular multigraph with chromatic index d, by the result of

[22] which applies the technique of [9]. It has also been proved for K3,3 by H. Taylor (private

communication); in [9], it is derived for K4,4 and K6,6 from Corollary 3.9. The last three examples

are special cases of the case G = Kn,n of the list coloring conjecture, which was formulated by J.

Dinitz in 1979. Although Vizing had already raised the general conjecture in 1975, the special case

20



of Dinitz became more popular, as it has the following appealing reformulation: given an arbitrary

n by n array of n-sets, it is always possible to choose one element from each set, keeping the chosen

elements distinct in every row and distinct in every column. (If all the n-sets are equal, then every

n by n Latin square provides a good choice, and although it does seem that in any other case one

has even more freedom, nobody has been able to transform this intuitive feeling into a rigorous

proof.) As mentioned above, Dinitz’s Conjecture is true for all n ≤ 4 and for n = 6, but is not

known for any other case, despite a considerable amount of effort by various researchers. Corollary

3.9 for this special case implies the following. Define the weight w(L) ∈ {−1, 1} of an n by n Latin

square to be the product of the signs of the 2n permutations appearing in its rows and its columns.

If the sum
∑
w(L) is not 0, as L ranges over all n by n Latin squares, then the assertion of Dinitz’s

Conjecture holds for n. It is easy to see, however, that this sum is 0 for every odd n ≥ 3, but it is

conjectured in [9] to be non-zero for all even n (and this holds for n = 2, 4, 6).

The total coloring conjecture (Conjecture 2.4) is another problem that has received a consider-

able amount of attention. It would be nice to prove a ∆+O(1) upper bound for the total chromatic

number of any simple graph with maximum degree ∆.

There are many known proofs in combinatorics that supply no efficient procedures for solving

the corresponding algorithmic problems; see, for example, [4] for various representative examples.

Some of the results described in Section 3 also have this flavour. Thus, for example, we know by

Corollary 3.10 that ch′(G) = 3, for every 2-connected cubic planar graph G, but the proof supplies

no polynomial time (deterministic or randomized) algorithms that produce, for a given such graph

G = (V,E) and given lists of colors S(e), e ∈ E, each of size 3, a proper edge-coloring of G assigning

to each edge a color from its list. Similarly, there is no known efficient procedure for solving the

algorithmic problem suggested by Theorem 3.6. We note that, in contrast, one can give an efficient

procedure for solving the algorithmic problem suggested by Theorem 3.7, based on Richardson’s

Theorem (see [12]), whose relevance to the problem has been pointed out by Bondy, Boppana and

Siegel.

Another interesting problem is that of determining the largest possible choice number of a planar

graph. This number is known to be at least 4 and at most 6, and in [24] it is conjectured that it

is, in fact, 5.

The Hadwiger number h(G) of a graph G is the maximum number h such that there are h

pairwise vertex disjoint connected subgraphs of G with at least one edge of G between any pair

of them. A well-known conjecture of Hadwiger [29] asserts that the Hadwiger number h = h(G)

of any graph is at least its chromatic number χ(G). This is known to be the case for all graphs

with h ≤ 4, where the case h = 4 is equivalent to the Four Color Theorem. Very recently, the
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case h = 5 has also been shown, by Robertson, Seymour and Thomas, to be equivalent to the Four

Color Theorem. P. Seymour (private communication) has suggested that the stronger conjecture

h(G) ≥ ch(G) may also hold. For graphs G with h(G) ≤ 3, this can be deduced from Proposition

2.2. If it is true for h(G) = 4, then every planar graph has a choice number at most 4, contradicting

the above mentioned conjecture of [24]. Needless to say, a proof of the general case seems beyond

reach at present, but it may not be so difficult to find a counterexample, if one exists. We note

that, by combining Proposition 2.2 with the known fact that the Hadwiger number of simple graphs

with average degree at least d is at least Ω(d/
√

log d) (see [37], [48]), one easily concludes that, for

every graph G, h(G) ≥ Ω(χ(G)/
√

log(χ(G))).

Recall the definition of an (a : b)-choosable graph, given in the end of Section 4. In [24], the

authors ask whether for any positive integers a, b and m, any (a : b)-choosable graph is (am : bm)-

choosable as well. This is proved in [28] for the special case a = 2, b = 1 and m = 2. The general

case is still open, but we can prove the following partial result.

Proposition 6.1 For any positive integers a, b and n, there is a positive integer f = f(a, b, n) such

that, for every integer m which is divisible by all integers smaller than f , any graph G on n vertices

which is (a : b)-choosable, is (am : bm)-choosable as well.

The proof applies the techniques of [7]. We omit the details.
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comments.
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