
Linear Time Erasure Codes With Nearly Optimal Recovery
(Extended Abstract)

Noga Alon ∗ Jeff Edmonds † Michael Luby ‡

Abstract
An (n, c, `, r)-erasure code consists of an encoding

algorithm and a decoding algorithm with the following
properties. The encoding algorithm produces a set of
`-bit packets of total length cn from an n-bit message.
The decoding algorithm is able to recover the message
from any set of packets whose total length is r, i.e.,
from any set of r/` packets. We describe erasure codes
where both the encoding and decoding algorithms run
in linear time and where r is only slightly larger than
n.

1 Introduction

Most existing and proposed networks are packet
based, where a packet is fixed length indivisible unit of
information that either arrives intact upon transmis-
sion or is completely lost. This model accurately re-
flects properties of Internet and ATM-based networks,
where local error correcting codes can be used (and of-
ten are used) on individual packets to protect against
possible errors as the packet traverses the network.
However, the timely arrival of individual packets sent
long distances over a variety of heterogeneous net-
works is a global property that seems to be harder
to control on a local basis. Thus, it makes sense to
protect real-time traffic sent through such networks
against losses by adding a moderate level of redun-
dancy using erasure codes.

∗Department of Mathematics, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
and Institute for Advanced Study, Princeton, NJ 08540, USA.
Email: noga@math.tau.ac.il. Research supported in part by the
Fund for Basic Research administered by the Israel Academy of
Sciences and by a USA-Israeli BSF grant.
†Computer Science Department, York University, York,

Canada. Email: jeff@cs.yorku.ca. Research done while at the
International Computer Science Institute supported by an NSF
postdoctoral grant and an NSERC fellowship.
‡International Computer Science Institute, Berkeley, Cali-

fornia, 94704, and Computer Science Division, UC Berkeley.
Berkeley, California, 94720. Email: luby@icsi.berkeley.edu. Re-
search supported in part by National Science Foundation op-
erating grant CCR-9304722 and NCR-9416101, United States-
Israel Binational Science Foundation grant No. 92-00226, and
ESPRIT BR Grant EC-US 030.

Algorithms based on this approach have been de-
veloped for applications such as multicasting real-time
high-volume video information over lossy packet based
networks [3, 2, 8] and other high volume real-time ap-
plications [11]. The two most important properties
of erasure codes in these applications are the running
times of the encoding and decoding algorithms and
the amount of encoding sufficient to recover the mes-
sage. An erasure code where any portion of the encod-
ing equal to the length of the message is sufficient to
recover the message is called a maximal distance sep-
arable (MDS) code in the literature. An ideal erasure
code would be a linear time MDS code, but so far no
such code is known.

Standard Reed-Solomon codes can be used to im-
plement quadratic time MDS codes. These methods
have been customized to run in real-time for medium
quality video transmission on existing workstations
[3, 2], i.e., at the rate of a few megabits per second,
but high quality video sent at the rate of hundreds
of megabits per second will require either better al-
gorithms or custom designed hardware. Theoretically
more efficient (but not linear time) MDS codes can
be constructed based on evaluating and interpolat-
ing polynomials over specially chosen finite fields us-
ing Discrete Fourier Transform, but these methods are
not competitive in practice with the simpler quadratic
methods except for extremely large messages. Thus,
the design of highly efficient algorithms for implement-
ing erasure codes is interesting theoretically and im-
portant for practical applications.

All of our schemes have the property that the code
can be constructed for any message length n and re-
dundancy factor c > 1. We call such a code an (n, c)-
code. In applications, c is relatively small (it typically
varies between 1 and 2, but can be as large as 5). Thus,
when stating running times, we ignore the dependence
on c.

A natural relaxation of an MDS code is to allow
slightly more of the encoding than the optimal amount
in order to recover the message: We say a (n, c)-code
is (1 + ε)-MDS if the message can be recovered from
any (1 + ε)n of the encoding. For example, if ε = .05

then only 5% more of the encoding than the optimal
amount is sufficient to recover the message. A fur-
ther relaxation of an MDS code is to allow both the
encoding and decoding algorithms to be probabilistic
(using the same set of random bits for both encoding
and decoding): We say a (n, c)-code is probabilistic
(1 + ε)-MDS if the message can be recovered from any
(1 + ε)n of the encoding with high probability. For
probabilistic codes, the network is assumed to drop
packets independent of their contents.

Of secondary importance, but still important, is the
length ` of the packets. Ideally, the length of the pack-
ets should be as short as possible, e.g., ` = 1, because
an erasure code using longer packets can always be
constructed by concatenating several packets from an
erasure code using shorter packets, but the reverse
is not necessarily true. Internet packets for sending
video are typically moderate sized, e.g., 1000 bytes,
but ATM cells are rather short, i.e., 48 bytes, and
here the payload size is more of a constraint. We try
to minimize the value of ` as much as possible, but in
general ignore this parameter when stating results.

We assume that each packet contains a unique in-
dex. ¿From this index, the portion of the encoding
carried by each received packet can be determined.
We do not count the space for the index as part of
the packet size. In practice, the space for this index
is small compared to the size of the payload of the
packet, and packet based protocols typically include a
unique index for each packet within the packet in any
case.

This paper describes two new erasure code schemes,
the first deterministic and the second probabilistic.
The first scheme has the property that, on inputs n, c,
and ε, the run time of the (n, c)-code is O(n/ε4), it is
(1 + ε)-MDS, and the packet size is O(1/ε4 log(1/ε)).
Note that for constant ε this scheme runs in linear
time. Although this is an interesting theoretical re-
sult, it is not clear if it can be made practical for val-
ues of ε that are reasonable, e.g., ε = .10, because
the (1/ε4) factor is rather large both in terms of the
running time and the packet size.

The second scheme has the property that, on in-
puts n, c, and ε, the run time of the (n, c)-code is
O(n log(1/ε)/ε)), it is probabilistic (1 + ε)-MDS, and
the packet size can be as small as O(log(1/ε)). Partial
implementations of variants of this scheme show it has
promise of being practical.

Both of the schemes we describe are what is called
systematic in the literature, which means that the mes-
sage itself is part of the encoding. This property is
good especially in the case when only a small number

of the packets are lost, because the time to decode the
message from the encoding is proportional only to the
amount of the message that is missing.

Our deterministic scheme is based on the properties
of expanders which are explicit graphs with pseudo-
random properties. The relevance of these graphs to
error correcting codes has been observed in [4], and
indeed we apply some of the ideas of that paper. Our
probabilistic scheme is based on grouping the message
into a hierarchical set of unequal length blocks and
then placing in each redundant packet the value of
a random linear equation evaluated on a randomly
chosen block of the message.

Erasure codes are related to error correcting codes,
and are typically easier to design. For example, an
error correcting code with encoding length cn that can
correct up to bn bit flips can be used as an erasure code
that can recover the message from any (c− b)n of the
encoding: For packets not received, set the missing
bits to zero and then use the error correcting code to
recover the message. This can be improved to (c−2b)n
by setting the missing bits randomly, noting that on
average half of them will be correctly set.

The recent breakthrough result of Spielman [13] on
error correcting codes is directly relevant to both our
schemes. Spielman applies the techniques in [12] and
[7], and constructs linear time error correcting codes
with linear rate and linear minimum distance. This
error correcting code stretches an n-bit message to a
cn-bit message and can recover the message when up
to bn of the encoding bits are flipped. Here, b << 1
and c ≈ 4 are absolute constants. A direct applica-
tion of [13] to the design of an erasure code yields a
linear time code that at best is (4 − 2b)-MDS. Thus,
[13] cannot be used directly to yield an (1 + ε)-MDS
code for an arbitrary value of ε. Nevertheless, [13] is
a crucial ingredient in both of our constructions.

2 Recovering All from Almost All
We assume that ε < 1. Let γ = ε/3, γ′ = γ/4, β =

γ′2/8, and let q = 4 log(1/ε)+log(c)+16. Throughout,
our basic unit of length is a letter, which is a bit string
of length q. We assume operations on letters, such as
the XOR or AND of two letters, can be performed in
constant time. The value of q has been chosen large
enough so that all of the MDS codes we use in our
constructions can be implemented over the finite field
GF[2q].

Let M1, . . . ,Mn be the message consisting of n let-
ters. The first step of both schemes constructs an
encoding M1, . . . ,Mn, S1, . . . , Sγn with the property
that the message can be recovered from any fraction
1− β of this encoding.

The first step proceeds in two stages. The first
stage uses expander graphs to construct S1, . . . , Sγ′n
from the message. The property of the first stage is
that the entire message can be recovered from any
n−βn portion of the message given all of S1, . . . , Sγ′n.
The second stage directly uses the constructions of
Spielman [13] to stretch S1, . . . , Sγ′n to S1, . . . , Sγn.
This stage has the property that all of S1, . . . , Sγ′n can
be recovered from any γn−βn portion of S1, . . . , Sγn.
Thus, the overall property of the first two stages is
that the message can be recovered when up to a βn
portion of M1, . . . ,Mn, S1, . . . , Sγn is missing.

2.1 Stage 1: Restricted erasures
The main result of this subsection is the following.

Lemma 1 There is a scheme for generating, for any
given message M1, . . . ,Mn of n letters, a sequence of
γ′n additional letters S1, . . . , Sγ′n with the following
properties.

(i) The encoding time is O(n/ε).

(ii) If S1, . . . , Sγ′n are known, and at most a frac-
tion β of M1, . . . ,Mn are missing, then all of
M1, . . . ,Mn can be recovered in time O(n).

The construction used in the proof of the above is
similar to the one in [12], and is based on properties of
expanders. Let us call an infinite increasing sequence
of integers dense if the ratio between consecutive el-
ements of the sequence tends to 1. The known con-
structions of expanders supply, for every admissible
degree of regularity, infinite families of graphs on sets
of nodes whose cardinalities form a dense sequence.
To simplify the presentation we assume here that there
are sufficiently many expanders in these families whose
number of nodes is divisible by any desired constant.
It is not difficult to show that this assumption can be
omitted.

Definition (Expanders): A graph is called a (d, λ)-
expander if it is d-regular and the absolute value of
each of its nontrivial eigenvalues is at most λ.

By [9], [10] the sequence of integers m for which there
is a (d, 2

√
d− 1)-expander on m nodes is a dense se-

quence. We need the following from [5].

Proposition 1 [5] The number of edges induced by
any set of x nodes in a (d, λ)-graph on m nodes does
not exceed

1
2
x(d

x

m
+ λ(1− x

m
)).

Proof of Lemma 1: Fix an integer d, where
64
γ′2 < d ≤ 128

γ′2 , and let λ = 2
√
d− 1. Let G = (V,E)

be a (d, λ)-expander on m = 2n/d nodes. Given a
sequence {Me : e ∈ E} of n letters we define the
corresponding sequence S1, . . . , Sγ′n by assigning each
node v of G a set of γ′d/2 letters Sv,1, . . . , Sv,γ′d/2
as described below. Note that the total number of
letters Sv,j is mγ′d/2 = γ′n, as needed. Let v
be a node of G and let e1, . . . , ed be the edges in-
cident with it. Use a quadratic time MDS code
to map the message Me1 , . . . ,Med to an encoding
Me1 , . . . ,Med , Sv,1, . . . , Sv,γ′d/2. Such a code can be
implemented so that the encoding time is proportional
to d · γ′d/2 = O(d/ε) and the decoding time is pro-
portional to d2, plus an additive O(d) for each missing
message letter. Note that the letter length q is suffi-
cient to implement such a code.

We claim that this scheme satisfies the two proper-
ties required in the proposition. The validity of (i) is
clear, as the total encoding time isO(md/ε) = O(n/ε).

Since we assume we are missing at most βn message
letters, and since the time for recover of each missing
message letter is O(d2), and since βd2 = O(1), it fol-
lows that the decoding time is at most O(n).

We now prove that the entire message can be recov-
ered if we are given all the letters associated with the
nodes and at most βn = γ′2n/8 of the original message
letters are missing. The decoding algorithm works as
follows. If there is some node v in the graph where
at most γ′d/2 of the message letters associated with
the edges incident with v are missing, then, because
Sv,1, . . . , Sv,γ′d/2 are also known, we know a total of
at least d letters of the MDS code associated with v,
and thus from the properties of the MDS code we can
recover all the missing message letters associated with
edges incident to v. Repeating this process as long as
there are such nodes v, we either recover the entire
message, or we are left with a nonempty set of edges
corresponding to the missing message letters that form
a subgraph of minimum degree greater than γ′d/2 in
G.

We now show that Proposition 1 implies that if the
subgraph is non-empty then it must contain more than
βn edges, and from the assumption that we started
with at most βn such edges it will follow that the
subgraph must be empty, i.e., the entire message is
recovered. Let x denote the number of nodes incident
with edges of this subgraph. Then, since each such
node has degree at least γ′d/2 in the subgraph, the
total number of edges of the subgraph exceeds xγ′d/4.
Thus, by Proposition 1,

xγ′d/4 ≤ 1
2
x(dx/m+ λ(1− x/m)).

Therefore,

γ′d

2
≤ dx

m
+ λ(1− x

m
) ≤ dx

m
+ λ.

Since λ = 2
√
d− 1 < 2

√
d, and d > 64/γ′2, the in-

equality γ′d/2− λ ≥ γ′d/4 holds and hence

dx/m ≥ γ′d/2− λ ≥ γ′d/4,

implying that the number of edges corresponding to
missing letters exceeds

xγ′d/4 ≥ γ′2md

16
=
γ′2

8
n = βn,

contradicting the assumption. This completes the
proof.

2.2 Stage 2: Spielman-like Construction
We need the following result, which is an easy con-

sequence of the main result of Spielman in [13].

Proposition 2 [13] There is an absolute positive con-
stant b so that for all m there is an explicit construc-
tion that maps messages of m letters into 4m letters
so that:

(i) The encoding time is O(m).

(ii) If at most bm letters are missing then the original
m letters can be recovered in time O(m).

We note that since we are interested here only in
erasure codes, whereas the construction of Spielman
supplies error correcting ones, it is possible to im-
prove the constant b that follows from his construc-
tion considerably, but since we are not optimizing the
constants here we do not include the details. For sim-
plicity hereafter, we assume b ≥ γ′/8, which implies
that bγ′ ≥ β.

The second stage of the construction uses the con-
struction of Proposition 2 to stretch S1, . . . , Sγ′n to
S1, . . . , Sγn. The next lemma follows directly from
Lemma 1 and Proposition 2.

Lemma 2

(i) The encoding M1, . . . ,Mn, S1, . . . , Sγn can be
computed in O(n/ε) time from the message
M1, . . . ,Mn.

(ii) The message can be decoded in time O(n) when
at most βn letters of the encoding are missing.

3 The Deterministic Scheme
Let c′ = c/(1 + γ), N = (1 + γ)n, and ` = 8/(γ2β).

The final goal is to stretch the encoding produced by
the first step by a factor of c′. The second step parti-
tions M1, . . . ,Mn, S1, . . . , Sγn produced from the first
step into blocks B1, . . . , BN/` of ` letters each and then
uses a standard MDS erasure codes to produce, for
each i ∈ {1, . . . , N/`}, an encoding Ei based on Bi
consisting of c′` letters. Note that the letter length q
is sufficient to implement such a code. The properties
of the second step are the following.

Lemma 3

(i) If, for at least a fraction 1−β of the N/` encodings
E1, . . . , EN/`, at least ` letters of the encoding are
recovered, then the entire message M1, . . . ,Mn

can be recovered.

(ii) Both the encoding and decoding times are O(n`).

Proof of Lemma 3: By properties of MDS codes,
for each i where at least ` letters of Ei are recovered,
the corresponding block of Bi can be completely re-
covered. From Lemma 2 and the conditions of the
lemma, it follows that the message can be completely
recovered. The time for both encoding and decoding
using a quadratic time MDS code is (N/`) · `2 = N`.

The third step of the scheme is to use a c′`-regular
expander graph with N/` nodes to deterministically
simulate a “random mapping” of the letters of the
encodings E1, . . . , EN/` into N/` packets P1, . . . , PN/`
containing c′` letters each.

Lemma 4 There is a scheme for mapping the letters
of E1, . . . , EN/` into packets P1, . . . , PN/` containing
c′` letters each such that:

(i) The time for both the mapping and the inverse
mapping is O(n).

(ii) Every set I ⊆ {1, . . . , N/`} with |I| ≥ (1+ε)n
c′` has

the following property: For at least a fraction 1−β
of i ∈ {1, . . . , N/`}, at least ` letters of Ei are
contained in the set of packets indexed by I.

Proof of Lemma 4: Let λ = 2
√
c′`− 1. Let G =

(V,A) be a (c′`, λ)-expander with V = {1, . . . , N/`}.
The mapping of the letters of E1, . . . , EN/` into pack-
ets P1, . . . , PN/` is defined as follows: For each i ∈ V ,
let (i, w1), . . . , (i, wc′`) be the edges incident to i in G.
Then, the jth letter of the encoding Ei is placed into
packet Pwj .

Let I be any subset of V with |I| = (1+ε)n
c′` . For

each i ∈ V , let di denote the number of letters of Ei
that are in the packets indexed by I. By a lemma in
[5] (see also [6], page 122),∑
i∈V

(di−|I|c′`2/N)2 ≤ λ2|I|(1−|I|`/N) ≤ 4c′`|I| ≤ 8n.

(1)
Note that

|I|c′`2

N
=

(1 + ε)n`
N

=
(1 + ε)`
1 + γ

≥ (1 + γ)`. (2)

Let M be the set of i ∈ V for which the packets in-
dexed by I contain less than ` letter of Ei. ¿From
Equation (2) it follows that, for each i ∈M ,

(di − |I|c′`2/N)2 ≥ (γ`)2,

and thus the left-hand side of Inequality (1) is at least
|M |·(γ`)2. This and Inequality (1) implies that |M | ≤

8n
(γ`)2 . Recalling that ` = 8

γ2β , this implies that |M | ≤
βn/` ≤ βN/` as desired.

We now state and prove the main theorem.

Theorem 1 There is a scheme that, on input n, c
and ε, has the following properties:

(i) A message of n letters is encoded into packets con-
taining a total of cn letters, where each packet
contains O(1/ε4) letters.

(ii) The message can be decoded from any set of pack-
ets containing in total at least (1 + ε)n letters.

(iii) The run time for both the encode and decode al-
gorithms is O(n/ε4).

Proof of Theorem 1: The encoding consists of
applying the constructions described in steps 1, 2, and
3, in sequence. The decoding guarantee and the run
time follow from combining Lemma 4 with Lemma 3.

4 The Probabilistic Scheme
In this section, we relax the requirements

on the erasure code to a probabilistic guaran-
tee and thereby improve the running time from
O(n/ε4) to O(n log(1/ε)/ε) and the packet size from
O(1/ε4 log(1/ε)) to O(log2(1/ε)). We will first present
a simple way of using randomness in the above de-
terministic scheme that allows the block size ` to
be O(log(1/ε)/ε2) instead of O(1/ε4 log(1/ε)). Au-
tomatically, this deceases running time O(n`) to
O(n log(1/ε)/ε2).

Starting from Lemma 3, we are given the N/` en-
codings E1, . . . , EN/` consisting of c′` letters each. Re-
call, the deterministic scheme used an expander graph
to simulate “randomly mapping” these letters. In-
stead, the probabilistic scheme simply randomly per-
mutes the c′N = cn letters and puts one into each
of the packets (as opposed to c′` letters per packet).
When one receives any (1 + ε′)N = (1 + ε)n of the
packets, one receives a random subset of (1 + ε′)N of
the letters. Note the expected number received about
a particular block is (1 + ε′)`. What remains is to
prove that with high probability for at least a fraction
1−β of the N/` encodings E1, . . . , EN/`, at least ` let-
ters are received. Lemma 3 then states that the entire
message can be recovered. (For the rest of this section
the ’ will be dropped on the ε and the c.)

A key parameter to this block based encoding
scheme is the block size `. If it is too big, then the run-
ning time is too large. If it is too small, then the prob-
ability of failure is too large. For example, consider the
extreme example when the blocks are of size one. In
this case, each packet would contain the jth message
letter with probability 1/N . Receiving (1 − β)N of
the letters, becomes the classical coupon collector or
occupancy problem. It is well known that N ln(1/β)
>> (1+ε)N packets would need to be received, before
one could expect to receive (1−β)N distinct message
letters. The optimal block size is ` = Θ(ln(1

β)/ε2).

Lemma 5 When
the blocks have size ` = Ω(ln(1

β)/ε2), the probability
of not being able to recover at least (1 − β)N of the
message is at most e−Ω(βε2N).

Proof of Lemma 5: A complication in the proof
is that there is dependency between the number of
letters of the encoding received about the different
blocks. To simplify things, we will first consider a
different distribution, in which the number received
about each block is chosen independently according
to the Poisson distribution with mean (1 + ε)`. Stan-
dard bounds on the Poisson distribution give the
probability of not receiving at least ` letters about
a particular block when you expect (1 + ε)` is at
most e−Ω(ε2`). Then the recovery of each block is
an independent Bernoulli trial. Standard Chernoff
bounds state that the probability of failing to re-
cover at least a 1 − β fraction of the N/` blocks
is at most e−Ω(β(N/`)[ε2`−ln(1/β)]) = e−Ω(βε2N). (For
small message sizes N = O(ln(1

δ)/βε2), a block size
of ` = O

(
ln(mδ`)/ε

2
)

gives a failure probability of at
most δ.)

What remains is to adjust for the change in distri-
bution. The key observation is that the only differ-
ence between the distributions is that in the original
distribution, the total number of letters received is def-
initely (1 + ε)N , while in the new one the number re-
ceived is a random variable. Let K denote this number
received. It happens that if one takes the new distribu-
tion with the added constraint thatK = (1+ε)N , then
one (more or less) gets the original distribution, i.e.
Prold[E] ≤ Prnew[E |K = (1+ε)N], where E denotes
the event that not enough of the message is recovered.
Decreasing the number of letters of the encoding re-
ceived only increases the probability of E. Therefore,
Prold[E] ≤ Prnew[E | K ≤ (1 + ε)N]. The variable
K has the Poisson distribution with mean (1 + ε)N .
Therefore, Prnew[K ≤ (1 + ε)N] ≥ 1

e . We can con-
clude that Prold[E] · 1

e . ≤ Prnew[E | K ≤ (1 + ε)N]
·Prnew[K ≤ (1 + ε)N] ≤ Prnew[E].

Both the deterministic and the above probabilis-
tic scheme use a standard deterministic MDS erasure
code to expand each of the N/b blocks Bj from ` let-
ters to c′` letters. This takes time O(`2) for a total
of O(N`) time. Hence, the running time of the prob-
abilistic scheme can be improved to O(N log(1/ε)/ε)
simply by using instead a probabilistic erasure code
with the following properties.

Lemma 6 There is a deterministic encoding scheme
mapping a block B of ` letters into an encoding E with
c` letters and the following properties.

(i) If a random subset of the letters of the encoding
is received, where the number received is Poisson
with mean (1 + ε)`, then the probability of not
recovering all ` letters of the message is at most
e−Ω(ε2`).

(ii) The encoding and the decoding times are O(ε`2).

(iii) It is systematic, meaning that the message itself
is part of the encoding.

The encoding scheme is as follows. As required, the
first ` letters of the encoding consist of the message it-
self. The message then is broken into a hierarchy of
blocks. The message itself is considered to be a block
of size `. (Recall in Lemmas 3 and 5, the N letter mes-
sage is broken into blocks of size `.) This block is then
broken into two sub-blocks, which are further broken
into two even smaller sub-blocks, and so on. (Recall
that smaller blocks lead to a faster computation.) Let
f = log(1/ε2)−O(1) be the number of different block
sizes and for s ∈ {0, . . . , f}, let B〈s,i〉 ⊆ {1, . . . , `} be
the set of letters of the message in the ith block of

size `s = `/2s. Let r0 = 0; for s ∈ {1, . . . , f}, let
rs = cε2s/2`; and let rf+1 = (c − 1)`. The encoding
will consist of (rs+1− rs)/2s letters “about” the block
B〈s,i〉, for s ∈ {0, . . . , f} and i ∈ {1, . . . , 2s}. This
gives rs+1 − rs letters about blocks of size `s, (c− 1)`
letters about some block, and c` letters in total.

The scheme is also spec-
ified by a fixed ((rs+1 − rs)/2s × `s) boolean matrix
Vs for reach s ∈ {0, . . . , f}. (It is sufficient to choose
these matrices randomly and then to fix them.) Of the
(rs+1 − rs)/2s letters about the block B〈s,i〉, the jth

letter will be the linear combination (over GF[2]) of
the letters in B〈s,i〉 specified by the jth row of the ma-
trix Vs. (It is sufficient for all the blocks of the same
size to use the same matrix). The ` letters of the mes-
sage can be recovered from the received letters of the
encoding if the equations defining the received letters
have full rank.
Proof of Lemma 6(i): To simplify the analysis, we
will initially not use fixed matrices Vs. Instead, we will
independently for each letter of the encoding randomly
choose a subset of the letters from the appropriate
block. This is done by including each letter of the
block with probability 1

2 . The letter of the encoding
is a linear combination of the chosen letters.

We will say that a letter of the encoding contributes
to a block B〈s,i〉 if it is about the block, about one of
its sub-blocks, or is itself one of the letters of the block.
Denote by c〈s,i〉 the number of letters received that are
about the block B〈s,i〉. If c〈s,i〉 exceeds the size of the
block `s, then the message block is over-determined
and the excess encoding letters are necessarily useless.
Consider each block B〈s,i〉 of size `s < ` starting with
the smallest blocks. The first step is to compute the
expected value of c〈s,i〉. Being a block of size `s, the ex-
pected number of letters received that are themselves
one of the letters of the block is 1+ε

c `s. The expected
number received about a block B〈s′,i′〉 of size `s′ is
1+ε
c (rs+1− rs)/2s. The number of sub-blocks of B〈s,i〉

of size `s′ is `s
`s′

= 2s
′−s. Hence, E(c〈s,i〉) = 1+ε

c `s +∑
s′∈[s..f]

`s
`s′

[1+ε
c (rs′+1 − rs′)/2s

′
] = (1 − Ω(ε2s/2))`s.

Chernoff bounds give that Pr
[
c〈s,i〉 > (1− ε22s)`s

]
≤ e−Ω(ε22s`s) = e−Ω(ε2`). Now assume, that we re-
ceive fewer than (1 − ε22s)`s letters contributing to
the block B〈s,i〉.

The next step is to bound the probability that the
equations defining these (1−ε22s)`s letters are linearly
independent. Consider the kth letter contributing to
B〈s,i〉. If it is about a sub-block of B〈s,i〉, then we
considered the possibility of the equation defining this
letter being linearly dependent on the previous equa-

tions when we considered that sub-block. On the other
hand, if the kth letter is about B〈s,i〉, then the equation
is randomly chosen from a space of dimension `s. The
previous k − 1 equations span a sub-space of dimen-
sion at most k−1. Hence, the probability that the kth

equation is within this sub-space is at most 2−(`s−k+1).
The probability that the (1 − ε22s)`s equations are
dependent is at most

∑
k∈{1,...,(1−ε22s)`s} 2−(`s−k+1)

≤ 2−Ω(ε22s`s) = e−Ω(ε2`).
Even after multiplying this probability by the num-

ber of blocks B〈s,i〉 of size `s < `, the probability is
still at most e−Ω(ε2`). Hence we can conclude that with
high probability all the letters that are about blocks
of size smaller than ` are linearly independent.

What remains is the consider the letters of the en-
coding that are about the block of size `. By the state-
ment of the lemma, the number of letters of the encod-
ing received is Poisson with mean (1 + ε)`. Therefore,
the probability that at least (1 + 2ε2)` letters are re-
ceived is at least 1−e−Ω(ε2`). With the same argument
just given, the first (1 − ε2)` of these are linearly de-
pendent with probability at least 1 − e−Ω(ε2`). Now
consider one of the remaining 3ε2` equations. If the
equations before it do not have full rank, then the
probability that it increases the rank is at least 1

2 .
Hence, choosing these 3ε2` equations can be thought
of as 3ε2` Bernoulli trials. The matrix has full rank if
at least ε2` of the trials succeed. The expected num-
ber of successes is 1.5ε2`. The probability of getting
fewer than ε2` is at most e−Ω(ε2`).

The remaining step is to prove that it is sufficient
to use a fixed matrix Vs for each size of block. Assume
by way of induction that the probability of success is
the same as proven above even if a fixed matrix Vs′
is used for each size of block `s′ for s′ < s, while
the equations for the letters about larger blocks are
still chosen independently at random. Now change
the scheme so that the equations for the letters about
blocks of size `s are chosen as follows. First choose the
((rs+1 − rs)/2s × `s) boolean matrix Vs by choosing
each entry independently from {0, 1} with probability
1
2 . Then for each block of this size independently do
the following. For each of the letters received about
the block choose independently without replacement
a row from the matrix Vs. For a particular block of
size `s, the probability distribution has not changed
at all. The only change is that using the same Vs for
each block of size `s adds some dependence between
the events for these blocks. This is not a problem
for the following three reasons. First, the equations
about different blocks are on different variables and
hence will not be linearly dependent. Second, much

of the randomness in choosing the equations comes
from choosing (1 + ε)/c of the rows of Vs. Finally, re-
call that in the above proof, the probability of failure
for one block was multiplied by the number of blocks.
Hence, the proof does not assume independence be-
tween these events. Therefore, the overall probability
of failure remains unchanged. We can conclude that if
the overall probability of failure is e−Ω(ε2`) when Vf is
chosen randomly, then there exists a fixed matrix Vf
that leads to a probability that is at least as good. Fix
Vf to be such a matrix. This completes the induction
step.

Proof of Lemma 6(ii): The encoding is done via
boolean matrix multiplication V ×M = E, where V is
the (cn×`) matrix described by the equations for each
letter of the encoding and M and E are respectively
are the (`× q) and the (c`× q) boolean matrixes rep-
resenting the message and the encoding. (Recall that
a message for this lemma is ` letters of q bits each.)
As stated a single operation is considered to be the
XOR of two q bit letters. This is done once for every
non-zero value in V . The number of letters about the
the block of the largest size ` is r1− r0 = O(cε`) Each
corresponding row of V has at most ` ones. Hence,
the number of ones in these rows is at most O(cε`2).
The number of ones in the rows of V for all blocks of
size `s decreases geometrically in s making the total
number and the encoding time also O(cε`2).

Decoding is a little harder. It requires solving the
system V̂ ×M = Ê, where V̂ and Ê are the rows of the
matrices V and E corresponding to those letters of the
encoding that are received. Here again, the fact that
V̂ is sparse should help. However, inverting a (`× `)-
boolean matrix with only O(`) non-zero entries seems
to require more than O(`2) bit operations. The main
reason is that the inverse of a sparse matrix is not
necessarily sparse. This is no improvement at all over
the standard deterministic MDS erasure codes used
above. To improve the computation time, we take
advantage of the fact that V has a block hierarchical
structure. A ((1 + ε)`× `)-boolean matrix V̂ is said to
have its rows blocked by B1, . . . , B(1+ε)` ⊆ {1, . . . , `},
if each row is zero outside of its block Bi, i.e. j 6∈ Bi
implies that V̂〈i,j〉 = 0. These blocks are said to have a
hierarchical structure if the rows are partially ordered
with respect to containment of the blocks, i.e. for i <
j, either Bi ⊆ Bj or Bi ∩Bj = ∅.

This block hierarchical structure improves the com-
putation time for the following reason. During Gaus-
sian elimination, the ith row may be added to the jth

row in order to remove one non-zero entry from the jth

row. In a general sparse matrix, the non-zero entries

of these rows do not necessarily fall in the same places.
Hence, the jth row will gain most of the non-zero en-
tries of the ith row. The effect is that the number
grows exponentially with the number of row opera-
tions. This provides intuition into why the inverse of a
sparse matrix is not necessarily sparse. This exponen-
tial growth in the number of non-zero entries, however,
does not occur when the matrix has the block hierar-
chical structure. By the definition of the partial order,
Bi is either disjoint from or contained in Bj . In the
first case, adding the ith and the jth row would not
cancel any entries, hence these rows are never added
together. In the second case, adding the ith row to
the jth will change which entries in the block Bj are
one, but will not contribute ones outside of the block.
Hence, as the matrix V̂ is zeroed below the diago-
nal, the block hierarchical structure is maintained. On
the other hand, when zeroing above the diagonal, this
structure is destroyed, because the jth row is added to
the ith row where Bi ⊂ Bj . In fact, the inverse of V̂
is not likely to be sparse. However, once the matrix is
upper triangular, the system can be solved quickly.

The decoding time has two components. We will
first consider the number of letter operations within
the matrix Ê and later consider the number of bit
operations within V̂ . One letter operation within Ê
(i.e. the XOR of two q bit letters) is required for ev-
ery row operation in V̂ . The number of row oper-
ations when zeroing below the diagonal is at most∑
j∈{1,...,(1+ε)m} |Bj |, because the ith row is added to

the jth at most once and only if i ∈ Bj . The num-
ber of row operations when zeroing above the diago-
nal is the number of one’s that are above the diago-
nal of the upper triangular matrix. The block struc-
ture of the matrix does not change when zeroing below
the diagonal. Hence, the number of ones is at most∑
j∈{1,...,(1+ε)`} |Bj |. Note that this is the same as the

encoding, except for the fact that there are (1 + ε)`
instead of c` rows. Hence, Gaussian elimination of
V̂ requires O(ε`2) row operations and the time is as
required in Lemma 6(ii).

If we instead considered a single operation to be a
single bit operation, then the time spent in Ê blows
up by a factor of q. On the other hand, measuring the
length of the message in bits blows the length up by
the same factor. Hence, the time is still linear with the
same constant. For the algorithm, the letter size (also
the packet size) q could be a single bit. The reason
for having it larger is to “amortize” the number of bit
operations required to invert V̂ .

The main sub-task during Gaussian elimination of
V̂ is that of taking the ith row, which has a one on

the diagonal, and adding it to every row below it that
contains a one in the ith column. Let us compute the
number of bit operations required to do this. The first
obvious savings in time comes from never looking at
or even storing the entries of V̂ outside of the block
structure. There are, however, two additional tricks
that save a considerable amount of time.

The first trick is not to check every row j > i,
but only those for which Bi ⊆ Bj . This can be done
by associating with each row i, a pointer to the next
row j for which Bi ⊆ Bj . A property of the par-
tial order is that following this linked list of pointers
starting at any row i will reach every row j for which
Bi ⊆ Bj . (The same would not be true in reverse.)
If Bi is of size `s, then the expected number of rows
j for which Bi ⊆ Bj is at most the geometric sum∑
s′∈{0,...,s}

1+ε
c (rs′+1 − rs′)/2s

′
= O(ε`).

What now is the cost each time the ith row is added
to some row j? The second trick is that this cost
should be the number of ones in the ith row and not
the size `s of Bi. There are two ways of achieving this.
Either at the beginning of this sub-task a succinct list
of the ones of the ith row can be made or the block
Bi in the ith row can scanned and each time a one is
found the above linked list giving all rows j for which
Bi ⊆ Bj could be followed. The expected number of
ones in the ith row is `s minus the number of entries
that have already been zeroed. The number of entries
that have been zeroed is the number of rows j before
it for which Bj ⊆ Bi. This is close to the expected
number of letters contributing to the block and was
computed as being (1−O(ε2s/2))`s. Hence, the total
number of ones remaining is at most O(ε2−s/2`).

The expected number of rows i whose block Bi is
of size `s is 1+ε

c (rs+1 − rs) = O(ε2s/2`). We can con-
clude that the total number of bit operations in the
Gaussian elimination then is

∑
s∈{0,...,f}O(ε2s/2`) ×

O(ε`)×O(ε2−s/2`) = O(log(1/ε2)ε3`3). If a single op-
eration is considered to be q = O(ln(1/ε)ε2`) bit op-
erations, then decoding only takes O(ε`2) operations
as required.

In the full version of the paper, we prove the lower
bound, that for no setting of the parameters (i.e. the
sizes of the blocks and the number of letters about each
letter) are the encoding and decoding times for this
scheme more than a constant factor better than we
have achieved. It is interesting that this goes against
our initial intuition. Initially, we planned for the ex-
pected number of letters received contributing to a
block of size `s to be larger than (1− Ω(ε2s/2))bs. In
such a case, it is very possible that a particular block
is over defined, i.e. c〈s,i〉 > `s. However, averaged

over many such blocks, with high probability not too
many letters of the encoding will be wasted in this
way. The advantage of doing this is that having more
small blocks decrease the computation time. It turns
out, however, that a large fraction of the computation
time is spent on the letters about the blocks of size `
and making this change means increasing the number
of them and hence increases the overall time.

5 Concluding remarks and open prob-
lems

It would be interesting to obtain a construction
similar to the one in Theorem 1 in which the packet
size is smaller. It is not difficult to prove, using
the Plotkin bound, that the minimum possible packet
size in any erasure code with the parameters in the
theorem (without any assumption on the efficiency
of its encoding and decoding procedures) is at least
Ω(log((c−1)/ε)) for all ε ≥ 1/n, and the algebraic ge-
ometry codes show that this is essentially tight. Our
construction supplies much bigger packet sizes, but
has the advantage of linear encoding and decoding
time.

It is probably possible to construct a scheme that
has a theoretical run time that is polylogarithmic in
1/ε and linear in n, using Discrete Fourier Transform
methods in place of quadratic time methods for MDS
codes, but details of this need to be checked. Even if
this is the case, it is unlikely that using these methods
in places where we use quadratic time MDS codes will
be as efficient in practice.

The construction in Section 3 can be improved by
using walks in expanders instead of edges, using the
methods of [1]. The relevance of this method to the
case of expander based error correcting codes has been
observed in (cf. [12]), and a similar remark holds here
also.

Combining our technique here with the methods of
Spielman in [13] we can obtain explicit, linear time
encodable and decodable error correcting codes over a
large alphabet, whose rate and minimum distance in
the range close to the MDS bound are close to optimal.
We omit the details.

References
[1] M. Ajtai, J. Komlós, E. Szemerédi, “Determin-

istic Simulation in Logspace”, Proc. of the 19th

STOC, 1987, pp. 132-140.

[2] A. Albanese, J. Blömer, J. Edmonds, M. Luby, M.
Sudan, “Priority Encoding Transmission”, Pro-
ceedings of 35th FOCS, 1994.

[3] A. Albanese, J. Blömer, J. Edmonds, M. Luby,
“Priority Encoding Transmission”, ICSI Techni-
cal Report No. TR-94-039, August 1994.

[4] N. Alon, J. Bruck, J. Naor, M. Naor, R. Roth,
“Construction of asymptotically good, low-rate
error-correcting codes through pseudo-random
graphs”, IEEE Transactions on Information The-
ory, Vol. 38, 1992, pp. 509-516.

[5] N. Alon, F. R. K. Chung, “Explicit construction
of linear sized tolerant networks”, Discrete Math.,
Vol. 72, 1988, pp. 15-19; (Proc. of the First Japan
Conference on Graph Theory and Applications,
Hakone, Japan, 1986.)

[6] N. Alon, J. H. Spencer, The Probabilistic
Method, Wiley, 1991.

[7] L. A. Bassalygo, V. V. Zyablov, M. S. Pinsker,
“Problems in complexity in the theory of cor-
recting codes”, Problems of information trans-
mission, 13, Vol. 3, 1977, pp. 166-175.

[8] E. Biersack, “Performance evaluation of forward
error correction in ATM networks”, Proceedings
of SIGCOMM ’92, Baltimore, 1992.

[9] A. Lubotzky, R. Phillips, P. Sarnak, “Explicit ex-
panders and the Ramanujan conjectures”, Pro-
ceedings of 18th ACM STOC, 1986, pp. 240-
246; (See also: A. Lubotzky, R. Phillips, P. Sar-
nak, “Ramanujan graphs”, Combinatorica, Vol.
8, 1988, pp. 261-277).

[10] G. A. Margulis, “Explicit group-theoretical con-
structions of combinatorial schemes and their ap-
plication to the design of expanders and super-
concentrators” Problemy Peredachi Informatsii,
Vol. 24, 1988, pp. 51-60 (in Russian). (English
translation in Problems of Information Transmis-
sion, Vol. 24, 1988, pp. 39-46).

[11] M. Rabin, “Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance”,
J. ACM, Vol. 36, No. 2, April 1989, pp. 335-348.

[12] M. Sipser and D. Spielman, “Expander codes”,
FOCS 1994.

[13] D. Spielman, “Linear-Time Encodable and De-
codable Error-Correcting Codes” STOC 1995,
ACM Press, 388-397.

