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Abstract

Numerous problems in Graph Theory and Combinatorics can be formulated in terms of the

existence of certain colorings of graphs or hypergraphs. Many of these problems can be solved or

partially solved by applying probabilistic arguments. In this paper we discuss several examples

that illustrate the methods used. This is mainly a survey paper, but it contains some new results

as well.
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1 Probability and Coloring; Older Examples

Probabilistic methods have been useful in combinatorics for almost fifty years. Many examples

dealing with various branches of Combinatorics can be found in [20] and in [31]. Coloring is one of

the most popular areas in Combinatorics and in Graph Theory and has been the source of many

intriguing problems for decades. It is therfore not surprising that there are various rather old known

applications of probabilistic techniques in different coloring problems. In this section we discuss

briefly some representing examples.

Recall that the Ramsey number r(k, l) is the smallest integer r such that in any 2-coloring of

the edges of the complete graph Kr on r vertices there is always either a red Kk or a blue Kl. The

fact that r(k, l) is finite for every two integers k and l is the content of Ramsey Theorem [29]. One

of the first applications of the Probabilistic Method in Combinatorics is the lower bound of Erdös

for the Ramsey numbers, obtained in 1947. (For simplicity we only state the case k = l.)

Theorem 1.1 (Erdös [17]) If
(n
k

)
21−(k2) < 1 then r(k, k) > n. Therefore,

r(k, k) > (1 + o(1))
k

e
√

2
2k/2.

The proof is very simple. Simply color the edges of Kn randomly by two colors by choosing the

color of each edge randomly and independently with equal probability to be either red or blue.

The expected number of monochromatic copies of Kk is clearly
(n
k

)
21−(k2) < 1 and hence there is a

coloring with neither a red Kk nor a blue Kk, showing that indeed r(k, k) > n. A simple (though

a little tedious) derivation of the asymptotics using Stirling’s Formula shows that the largest n for

which the last inequality holds is indeed (1 + o(1)) k
e
√

2
2k/2, completing the proof. 2

Although this is a very simple example, it demonstrates the power of the basic Probabilistic

Method. The bound it supplies is still essentially the best known bound for r(k, k) (it has only been

improved by a factor of 2 by a more delicate probabilistic argument). There is no known explicit

coloring that supplies a bound which is exponential in k.

Turning to a more complicated example, we mention another result of Erdös, which is one of

the most pleasing applications of the Probabilistic Method. The girth of a graph is the length of

the shortest cycle in it.
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Theorem 1.2 ( Erdös [18]) For every two integers k ≥ 2 and l ≥ 3 there exists a graph G with

chromatic number χ(G) > k and with girth at least l.

Here is a sketch of the proof of this theorem. Fix a real number ε < 1/l, define p = nε−1 and

let H be a random graph on n labelled vertices chosen by picking each pair of vertices as an edge

randomly and independently with probability p. It is not too difficult to show that the expected

number of cycles of length smaller than l in H is o(n) and that the probability that H contains

an independent set of size at least d3
p ln ne is o(1). Therefore, with positive probability (if n is

sufficiently large) H contains no such independent set and has less than n/2 of these short cycles.

Let G be the graph obtained from such an H by omitting a vertex from each of these short cycles.

Then the girth of G is at least l and since it contains no independent set of size d3
p ln ne and its

number of vertices is at least n/2 its chromatic number is at least n/(23
p ln n) ≥ nε/(6ln n). To

complete the proof we can now simply choose a sufficiently large n. 2

Another beautiful coloring result proved by probabilistic means is due to Erdös and Lovász, and

deals with hypergraph coloring. A hypergraph is k-uniform if each of its edges contains precisely k

vertices. It is k-regular if each of its vertices is contained in precisely k edges. A hypergraph is 2-

colorable if there is a two-coloring of the set of its vertices so that none of its edges is monochromatic.

Erdös and Lovász proved the following result.

Theorem 1.3 For each k ≥ 9, every k-regular, k-uniform hypergraph is two colorable.

The proof is a simple consequence of the Lovász Local Lemma, proved in [19] (see also, e.g., [31]),

which supplies a way of showing that certain events hold with positive probability, although this

probability may be extremely small. The exact statement (for the symmetric case) is the following.

Lemma 1.4 Let A1, . . . , An be events in an arbitrary probability space. Suppose that the probability

of each of the n events is at most p, and suppose that each event Ai is mutually independent of all

but at most b of the other events Aj. If ep(b + 1) < 1 then with positive probability none of the

events Ai holds.

Here is the proof of Theorem 1.3 based on this lemma. Let (V,E) be a k-uniform, k-regular

hypergraph, and let f : V 7→ {0, 1} be a random 2-coloring obtained by choosing, for each v ∈ V

randomly and independently, f(v) ∈ {0, 1} according to a uniform distribution. For each e ∈ E let
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Ae denote the event that f restricted to e is a constant, i.e., that e is monochromatic. It is obvious

that Prob(Ae) = 2−(k−1) for every e, and that each event Ae is mutually independent of all the

events Ag but those for which g ∩ e 6= ∅. Since there are at most k(k − 1) edges g that intersect e

we can substitute b = k(k − 1) and p = 2−(k−1) in Lemma 1.4 and conclude that for k ≥ 9 with

positive probability none of the events Ae holds, completing the proof. 2

We note that a different, algebraic proof of the statement of Theorem 1.3 (that works for all

k ≥ 8) is given in [12].

The final result we mention in this section is due to Beck. Its proof relies on an elegant but

somewhat complicated probabilistic recoloring, whose details we omit.

Theorem 1.5 ( Beck [15]) There exists a constant c > 0 such that every k-uniform hypergraph

with at most ck1/32k edges is 2-colorable.

We note that there are k uniform hypergraphs with O(k22k) edges which are not 2-colorable and

that the problem of determining more precisely the asymptotic behaviour of the minimum possible

number of edges in a k-uniform hypergraph which is not 2-colorable is still open.

2 Acyclic Coloring

A vertex coloring of a graph G is called acyclic if no two adjacent vertices of G have the same color

and there is no 2-colored cycle of G. The acyclic chromatic number of G, denoted by A(G), is the

minimum number of colors in an acyclic coloring of G. For a positive integer d, let A(d) denote the

maximum possible value of A(G), as G ranges over all graphs with maximum degree d.

It is easy to show that A(d) ≤ d2 + 1. To see this observe that if G has maximum degree d then

the vertices of G can be colored sequentially, using d2 + 1 colors, where each vertex v in its turn

is colored by a color that differs from those of the already colored vertices of distance at most 2

from v. This gives an acyclic coloring of G and shows that A(d) ≤ d2 + 1. In 1976 Erdös (cf. [4])

conjectured that A(d) = o(d2) as d tends to infinity. This conjecture is proved in [13], where the

following stronger result is established.

Theorem 2.1 There exists an absolute constant c ≤ 50 such that for every d, A(d) ≤ cd4/3.
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The estimate given in this theorem is not far from the truth, as shown in the following additional

result proved in [13].

Theorem 2.2 There exists a positive absolute constant b such that for every d,

A(d) ≥ bd4/3/(log d)1/3.

Another result proved in [13] is that the edges of every graph G with maximum degree d can be

colored with O(d) colors so that no two adjacent edges have the same color and there is no two-

colored cycle. This result is obtained by applying a more general but technical result (whose exact

statement is omitted) about acyclic vertex coloring to the line graph of G.

The proofs of all the results mentioned above are probabilistic. Theorem 2.2 is proved by

considering a random graph G on n labelled vertices chosen by picking every pair of vertices to be

an edge, randomly and independently, with probability p = 3( logn
n )1/4. It is easy to see that with

high probability the maximum degree of a vertex of G is at most 6n3/4(log n)1/4. It is slightly more

difficult to show that with high probability in any vertex coloring of G with at most n/2 colors there

is a two colored cycle of length 4. Thus, with positive probability, A(G) > n/2 > Ω(d4/3/(log d)1/3),

implying the assertion of Theorem 2.2. The details appear in [13].

The proof of Theorem 2.1 is more complicated. It is based on the general (non-symmetric)

Lovász Local Lemma, which is the following generalization of Lemma 1.4 (see, e.g., [31] for the

proof).

Lemma 2.3 Let A1, . . . , An be events in an arbitrary probability space. Let the graph H = (V,E)

on the nodes {1, . . . , n} be a dependency graph for the events Ai, that is, assume that for each i,

Ai is mutually independent of the family of events {Aj : {i, j} 6∈ E}. If there are reals 0 ≤ yi < 1

such that for all i

Pr(Ai) ≤ yi
∏

{i,j}∈E
(1− yj)

then the probability that no Ai holds is at least
∏n
i=1(1− yi) > 0.

To prove Theorem 2.1 we must show, given a graph G = (V,E) with maximum degree d, that

A(G) ≤ 50d4/3. Put x = b50d4/3c, and let f : V 7→ {1, 2, . . . x} be a random vertex-coloring of

G where for each v ∈ V independently, the color f(v) ∈ {1, . . . , x} is chosen randomly according
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to a uniform distribution. To complete the proof it suffices to show that with positive (though,

maybe, very small) probability, f is an acyclic coloring of G. This is done by applying the last

lemma to a properly defined set of events. The actual choice of the appropriate events is somewhat

tricky. Let us describe these events, omitting the computation required in the full proof. A pair

of non-adjacent vertices u, v of G is called a special pair if u and v have more than d2/3 common

neighbours. The events considered are of the following four types.

1. Type I: For each pair of adjacent vertices u and v of G, let Au,v be the event that f(u) = f(v).

2. Type II: For each induced path of length 4 v0v1v2v3v4 in G, let Bv0v1v2v3v4 be the event that

f(v0) = f(v2) = f(v4) and f(v1) = f(v3).

3. Type III: For each induced 4−cycle v1v2v3v4 in G, in which neither {v1, v3} nor {v2, v4} is

a special pair, let Cv1v2v3v4 be the event that f(v1) = f(v3) and f(v2) = f(v4).

4. Type IV: For each special pair u, v in G let Du,v be the event that f(u) = f(v).

It is not too difficult to check that if none of the events of the four types above holds then

f is an acyclic coloring of G. It can also be shown, by choosing appropriately the required real

numbers appearing in Lemma 2.3, that indeed with positive probability none of these events holds.

By making the required computation, omitted here, the proof of Theorem 2.1 can be completed. 2

3 The Chromatic Index of Hypergraphs

Proving an old conjecture of Erdös and Hanani concerning the existence of ”almost designs”, Rödl

developed a probabilistic technique which turned out to be very successful in tackling various

difficult coloring problems. His basic idea is, very roughly, that when we try to prove the existence

of a large matching in a hypergraph with certain regularity properties it is helpful to first choose

randomly a small number of edges, delete all the edges that intersect them (including the chosen

ones that intersect other chosen ones), and repeat, while maintaining the regularity properties of

the hypergraph, until a large matching is obtained. The full proof is rather complicated, and can

be found in [30]. Rödl’s result has been generalized by Frankl and Rödl [21], and by Pippenger

and Spencer [28]. The main result in [28] deals with the chromatic index of uniform hypergraphs.
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Recall that the chromatic index of a hypergraph H = (V,E), denoted by χ′(H), is the minimum

number of colors in an edge-coloring of H, so that no two intersecting edges have the same color,

i.e., each color class forms a matching. For two vertices u and v of H, let us denote by d(u) the

number of edges of H containing u, and by d(u, v) the number of edges of H that contain both u

and v.

Theorem 3.1 ([28]) For every k ≥ 2 and every ε > 0 there exists a δ > 0 such that if H is a

k-uniform hypergraph on a set V of vertices satisfying, for some integer D, (1− δ)D < d(v) ≤ D

for all v ∈ V and d(u, v) < δD for all distinct u, v ∈ V , then χ′(H) < (1 + ε)D.

One immediate application of this theorem is a tight asymptotic estimate for the chromatic index of

a Steiner Triple System on n points. A Steiner Triple System on n points is a 3-uniform hypergraph

on n vertices such that each pair of vertices is contained in precisely one edge. Clearly each such

hypergraph is (n − 1)/2-regular and it trivially satisfies the assumptions of the last theorem for

any δ > 0, provided n is sufficiently large. Therefore, the above theorem implies that as n tends

to infinity, the chromatic index of any Steiner Triple System on n vertices is (1 + o(1))n/2. In

particular, each such system contains a matching of size (1 + o(1))n/3.

Kahn [23] has recently generalized Theorem 3.1 significantly, and proved the following result.

Theorem 3.2 For every k ≥ 2 and every ε > 0 there exists a δ > 0 such that the following

statement is true:

If H is a hypergraph on a set V of vertices in which every edge has at most k vertices, and if

d(v) ≤ D for all v ∈ V and d(u, v) < δD for all distinct u, v ∈ V , and if C is a set of colors and for

each edge e of H we have a subset C(e) ⊂ C satisfying |C(e)| > (1 + ε)D, then there is a coloring

f : E(H) 7→ C of the edges of H so that for each edge e, f(e) ∈ C(e) and such that each color class

is a matching.

This Theorem supplies a proof that the well known conjecture of Erdös, Faber and Lovász is

approximately correct (see [22]). It also shows that for any ε > 0, if D is sufficiently large then

for every D-regular simple graph G = (V,E) and any family of sets {C(e)}e∈E satisfying |C(e)| ≥

(1 + ε)D, there is a proper edge coloring f of G satisfyiung f(e) ∈ C(e) for all e ∈ E.
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4 Star Arboricity and Radio Networks

A star forest is a forest whose connected components are stars. The star arboricity of a graph G,

denoted by st(G), is the minimum number of star forests whose union covers all edges of G. For

an integer d ≥ 1 define st(d) = Max{st(G)}, where the maximum is taken over all simple graphs

with maximum degree d.

The star arboricity of graphs was introduced by Akiyama and Kano [2] and has been studied

in various papers. In particular it is shown in [3] that for every complete multipartite graph with

equal color classes and with maximum degree d, st(G) ≤ dd/2e+ 2. The asymptotic behaviour of

st(d) is determined in [14], improving a previous estimate from [5]. This is stated in the following

theorem.

Theorem 4.1 There exist two positive constants c1 and c2 such that for every d ≥ 1,

d

2
+ c1 log d ≤ st(d) ≤ d

2
+ c2 log d.

The somewhat complicated proof is probabilistic, and is based on the Local Lemma (Lemma 1.4).

The study of star arboricity is naturally suggested by the analysis of certain communication

networks. A radio network is a synchronous network of processors that communicate by transmit-

ting messages to their neighbors. A processor P can receive at most one message in one step. Let

us mention here two possible models.

Type I : P receives a message from its neighbor Q in a given step if P is silent, Q transmits and

P chooses to receive from Q in this step.

Type II: P receives a message from its neighbor Q if P is silent, and Q is the only neighbor of P

that transmits in this step.

Suppose, now, that the model is the Type I model and the network is represented by an

undirected graph G = (V,E) whose vertices are the processors and two are adjacent if they can

transmit to each other. Suppose, further, that we need to transmit once along every edge (in one of

the two possible directions), say, in order to check that there is indeed a connection between each

adjacent pair. It is easy to see that the minimum number of steps in which we can finish all the

required transmissions is precisely st(G), since the set of edges corresponding to the transmissions

performed in a single step forms a star forest. Theorem 4.1 thus supplies an upper bound which is

sometimes almost tight for the minimum number of required steps.
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What about the Type II networks? This model is much more popular, and has been considered

in many papers (see, e.g., [7] and its many references). For simplicity let us only consider the

following case. Let G be a bipartite graph with classes of vertices A and B representing the

processors. Each edge ab, with a ∈ A and b ∈ B represents a transmission that a has to transmit

to b. What is the minimum number of steps in which all these transmissions can be performed? It

is not too difficult to see that this is precisely the minimum number of colors in an edge coloring of

G in which each color class is an induced star forest with the centers of each star lying in A. The

following result is a special case of a theorem proved in [7], [8] that bounds this number for graphs

with a given maximum degree.

Theorem 4.2 There exist two positive constants c and b such that

(i) The edges of any bipartite graph with maximum degree d can be covered by cd log d induced star

forests whose centers lie in the first color class.

(ii) For every d there is a bipartite graph with maximum degree d whose edges cannot be covered by

less than bd log d induced star forests as above.

The proof of both parts are probabilistic, and rely, among other combinatorial arguments, on the

Local Lemma and on the FKG Inequality.

5 Linear Arboricity

A linear forest is a forest in which every connected component is a path. The linear arboricity

la(G) of a graph G is the minimum number of linear forests in G, whose union is the set of all

edges of G. The following conjecture, known as the linear arboricity conjecture, was raised in [1]:

Conjecture 5.1 ( The Linear Arboricity Conjecture) The linear arboricity of every d-regular

graph is d(d+ 1)/2e.

Notice that since every d-regular graph G on n vertices has nd/2 edges, and every linear forest

in it has at most n− 1 edges, the inequality

la(G) ≥ nd

2(n− 1)
>
d

2
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is immediate. Since la(G) is an integer this gives la(G) ≥ d(d+ 1)/2e. The difficulty in Conjecture

5.1 lies in proving the converse inequality: la(G) ≤ d(d + 1)/2e. Note also that since every graph

G with maximum degree ∆ is a subgraph of a ∆-regular graph (which may have more vertices, as

well as more edges than G), the linear arboricity conjecture is equivalent to the statement that the

linear arboricity of every graph G with maximum degree ∆ is at most d(∆ + 1)/2e.

Although this conjecture received a considerable amount of attention, the best general result

concerning it, proved without any probabilistic arguments, is that la(G) ≤ d3∆/5e for even ∆ and

that la(G) ≤ d(3∆ + 2)/5e for odd ∆. In this section we sketch a proof of the fact that for every

ε > 0 there is a ∆0 = ∆0(ε) such that for every ∆ ≥ ∆0 the linear arboricity of every graph with

maximum degree ∆ is less than
(

1
2 + ε

)
∆. This result (with a somewhat more complicated proof)

appears in [10] and its proof relies heavily on probabilistic arguments. The proof we sketch here is

different and supplies a much better estimate for the error term.

It is convenient to deduce the result for undirected graphs from its directed version. A d-regular

digraph is a directed graph in which the indegree and the outdegree of every vertex is precisely d.

A linear directed forest is a directed graph in which every connected component is a directed path.

The di-linear arboricity dla(G) of a directed graph G is the minimum number of linear directed

forests in G whose union covers all edges of G. The directed version of the Linear Arboricity

Conjecture, first stated in [26] is:

Conjecture 5.2 For every d-regular digraph D,

dla(D) = d+ 1.

Note that since the edges of any (connected) undirected 2d-regular graph G can be oriented

along an Euler cycle, so that the resulting oriented digraph is d-regular, the validity of Conjecture

5.2 for d implies that of Conjecture 5.1 for 2d.

It is easy to prove that any graph with n vertices and maximum degree d contains an independent

set of size at least n/(d + 1). The following proposition shows that at the price of decreasing the

size of such a set by a constant factor we can guarantee that it has a certain structure.

Proposition 5.3 Let H = (V,E) be a graph with maximum degree d, and let V = V1∪V2∪· · ·∪Vr

be a partition of V into r pairwise disjoint sets. Suppose each set Vi is of cardinality |Vi| ≥ 2ed,
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where e = 2.71828... is the basis of the natural logarithm. Then there is an independent set of

vertices W ⊆ V , that contains a vertex from each Vi.

Here is a sketch of the proof. Clearly we may assume that each set Vi is of cardinality precisely

g = d2ede (otherwise, simply replace each Vi by a subset of cardinality g of it, and replace H by

its induced subgraph on the union of these r new sets). Let us pick from each set Vi randomly and

independently a single vertex according to a uniform distribution. Let W be the random set of the

vertices picked. To complete the proof it suffices to show that with positive probability W is an

independent set of vertices in H. This can be deduced from Lemma 1.4. For each edge f of H,

let Af be the event that W contains both ends of f . Lemma 1.4 easily implies that with positive

probability none of these events holds, implying that W is independent. 2

It is worth noting that a much stronger assertion than that proved in the last proposition is also

true. This is stated in the following theorem, whose proof, that combines probabilistic arguments

with some additional combinatorial ideas, appears in [11].

Theorem 5.4 There is an absolute constant c with the following property: For any two graphs

G1 = (V,E1) and G2 = (V,E2) on the same set of vertices, where G1 has maximum degree at most

d and G2 is a vertex disjoint union of cliques of size cd each, the chromatic number of the graph

G = (V,E1 ∪ E2) is precisely cd.

Returning to Linear Arboricity we next observe that Proposition 5.3 suffices to proves Conjec-

ture 5.2 for digraphs with no short directed cycle. The directed girth of a digraph is the minimum

length of a directed cycle in it.

Theorem 5.5 Let G = (U,F ) be a d-regular digraph with directed girth g ≥ 4ed. Then

dla(G) = d+ 1 .

Proof. As is well known, Hall’s Theorem implies that F can be partitioned into d pairwise disjoint

1-regular spanning subgraphs F1 . . . Fd of G. Each Fi is a union of vertex disjoint directed cycles

Ci1, Ci2 . . . Ciri . Let V1, V2 . . . Vr be the sets of edges of all the cycles {Cij : 1 ≤ i ≤ d, 1 ≤ j ≤ ri}.

Clearly V1, V2 . . . Vr is a partition of the set F of all edges of G, and by the girth condition,

|Vi| ≥ g ≥ 4ed for all 1 ≤ i ≤ r. Let H be the line graph of G, i.e., the graph whose set of vertices
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is the set F of edges of G in which two edges are adjacent iff they share a common vertex in G.

Clearly H is 2d − 2 regular. As the cardinality of each Vi is at least 4ed ≥ 2e(2d − 2), there is,

by Proposition 5.3, an independent set of H containing a member from each Vi. But this means

that there is a matching M in G, containing at least one edge from each cycle Cij of the 1-factors

F1 . . . Fd. Therefore M,F1 \M,F2 \M . . . Fd \M are d+1-directed linear forests in G (one of which

is a matching) that cover all its edges. Hence

dla(G) ≤ d+ 1 .

As G has |U | · d edges and each directed linear forest can have at most |U | − 1 edges,

dla(G) ≥ |U |d/(|U | − 1) > d.

Thus dla(G) = d+ 1, completing the proof. 2

The last theorem shows that the assertion of Conjecture 5.2 holds for digraphs with sufficiently

large (directed) girth. In order to deal with digraphs with small girth, we show that most of the

edges of each regular digraph can be decomposed to a relatively small number of almost regular

digraphs with high girth. To do this, we need the following statement.

Lemma 5.6 Let G = (V,E) be a d-regular directed graph, where d ≥ 100, and let p be an integer

satisfying 10
√
d ≤ p ≤ 20

√
d. Then, there is a p-coloring of the vertices of G by the colors

0, 1, . . . , p − 1 with the following property; for each vertex v ∈ V and each color i, the numbers

N+(v, i) = |{u ∈ V ; (v, u) ∈ E and u is colored i}| and N−(v, i) = |{u ∈ V : (u, v) ∈ E and u is

colored i}| satisfy:

(5.1)

|N+(v, i)− d
p | ≤ 3

√
d/p
√

log d ,

|N−(v, i)− d
p | ≤ 3

√
d/p
√

log d .

The proof is again probabilistic. Let f : V → {0, 1, . . . , p − 1} be a random vertex coloring

of V by p colors, where for each v ∈ V , f(v) ∈ {0, 1, . . . , p − 1} is chosen according to a uniform

distribution. Combining the standard estimates for Binomial distributions with Lemma 1.4 one

can show that with positive probability f is a coloring satisfying the assertion of the lemma. We

omit the details.
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We are now ready to deal with general regular digraphs. Let G = (V,E) be an arbitrary d-

regular digraph. Throughout the argument we assume, whenever it is needed, that d is sufficiently

large. Let p be a prime satisfying 10d1/2 ≤ p ≤ 20d1/2 (it is well known that for every n there

is a prime between n and 2n). By Lemma 5.6 there is a vertex coloring f : V → {0, 1 . . . p − 1}

satisfying (5.1). For each i, 0 ≤ i < p, let Gi = (V,Ei) be the spanning subdigraph of G defined by

Ei = {(u, v) ∈ E : f(v) ≡ (f(u) + i) mod p}. By inequality (5.1) the maximum indegree ∆−i and

the maximum outdegree ∆+
i in each Gi is at most d

p + 3
√

d
p

√
log d. Moreover, for each i > 0, the

length of every directed cycle in Gi is divisible by p. Thus, the directed girth gi of Gi is at least

p. Since each Gi can be completed, by adding vertices and edges, to a ∆i-regular digraph with the

same girth gi and with ∆i = max (∆+
i ,∆

−
i ), and since gi > 4e∆i (for all sufficiently large d), we

conclude, by Theorem 5.5, that dla(Gi) ≤ ∆i + 1 ≤ d
p + 3

√
d
p

√
log d+ 1 for all 1 ≤ i < p. For G0,

we only apply the trivial inequality

dla(G0) ≤ 2∆0 ≤ 2
d

p
+ 6

√
d

p

√
log d

obtained by, e.g., embedding G0 as a subgraph of a ∆0-regular graph, splitting the edges of this

graph into ∆0 1-regular spanning subgraphs, and breaking each of these 1-regular spanning sub-

graphs into two linear directed forests. The last two inequalities, together with the fact that

10
√
d ≤ p ≤ 20

√
d imply

dla(G) ≤ d+
d

p
+ 3

√
pd
√

log d+ 3

√
d

p

√
log d+ p− 1 ≤ d+ c · d3/4(log d)1/2

We have thus proved;

Theorem 5.7 There is an absolute constant c > 0 such that for every d-regular digraph G

dla(G) ≤ d+ cd3/4(log d)1/2 .

2

We note that by using recursion to cover G0 instead of the naive method above (and by changing

the parameters), we can improve the error term to c′d2/3(log d)1/3. Since the edges of any undirected

d = 2f -regular graph can be oriented so that the resulting digraph is f -regular, and since any

(2f − 1)-regular undirected graph is a subgraph of a 2f -regular graph the last theorem implies;
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Theorem 5.8 There is an absolute constant c > 0 such that for every undirected d-regular graph

G

la(G) ≤ d

2
+ cd3/4(log d)1/2.

2

6 The Algorithmic Aspect

In a typical application of the probabilistic method we try to prove the existence of a combinatorial

structure (or a substructure of a given structure) with certain prescribed properties. To do so,

we show that a randomly chosen element from an appropriately defined sample space satisfies all

the required properties with positive probability. In most applications, this probability is not only

positive, but is actually high and frequently tends to 1 as the parameters of the problem tend to

infinity. In such cases, the proof usually supplies an efficient randomized algorithm for producing a

structure of the desired type, and in many cases this algorithm can be derandomized and converted

into an efficient deterministic one. By efficient we mean here, as usual, an algorithm whose running

time -(or expected running time, in case we consider randomized algorithms)- is polynomial in the

length of the input.

There are, however, certain examples, where one can prove the existence of the required com-

binatorial structure by probabilistic arguments that deal with rare events; events that hold with

positive probability which is exponentially small in the size of the input. Such proofs usually

yield neither randomized nor deterministic efficient procedures for the corresponding algorithmic

problems.

A class of examples demonstrating this phenomenon is the class of results proved by applying

the Local Lemma. Many examples are given in the previous sections of this paper. For several years

there has been no known method of converting the proofs of any of these examples into an efficient

algorithm. Very recently J. Beck [16] found such a method, that works for many of the examples

mentioned here, with some loss in the constants. Beck demonstrated his method by considering

the problem of hypergraph 2-coloring, an example which generalizes the one described in Theorem

1.3. The derivation of the following theorem from the local lemma is almost identical to that of

Theorem 1.3
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Theorem 6.1 If e(d+ 1) < 2n−1 then any n-uniform hypergraph in which no edge intersects more

than d other edges is 2-colorable.

Let H be such an n-uniform hypergraph with N edges, and suppose n, d are fixed. Can we find

a proper two coloring of H (i.e., a vertex coloring in which no edge is monochromatic) efficiently?

Beck showed that indeed we can, in case d is somewhat smaller, say d < O(2n/11). In this case

there is a randomized as well as a deterministic algorithm whose running time is polynomial in

N for finding a proper two coloring. Beck’s method does not seem to provide a parallel efficient

algorithm (i.e., an algorithm that runs in poly-logarithmic time using a polynomial number of

processors). We describe here a modified version of his algorithm which is parallelizable. For

simplicity we describe the randmoized version of the algorithm and only comment briefly on the

possibilities to derandomize and parallelize it. Let us denote, as usual, the binary entropy function

by H(x) = −x log2 x− (1− x) log2(1− x).

Theorem 6.2 Suppose n, d are fixed and suppose that for some α > 0

2ed3 < 2n(1−H(α))

and

e(d+ 1) < 2αn.

Then there is a randomized algorithm that finds a proper 2-coloring of any given n-uniform hyper-

graph H with N edges in which no edge intersects more than d others in expected running time

NO(1). This algorithm can be derandomized and parallelized, providing a deterministic algorithm

that finds a proper coloring in time O(logN) using NO(1) processors.

We note that for large n, any d ≤ 2n/8 satisfies the above (by taking an appropriate α > 1/8). We

also note that by assuming that d is smaller, say that d < 2n/20, the expecetd running time can be

reduced to almost linear in N .

Here is the randmoized algorithm. In the First Pass we color all the vertices of H, randomly and

independently by two colors, where each point is colored either red or blue with equal probability.

Call an edge bad if at most αn of its points are red or at most αn of its points are blue. The

probability of a fixed edge to be bad is clearly at most 2
∑
i≤αn

(n
i

)
/2n ≤ 2 · 2(H(α)−1)n. Put

p = 2 · 2(H(α)−1)n. Let B denote the set of all bad edges.

14



Let G be the dependency graph for the problem, i.e., the graph whose vertices are the edges

of H in which two are adjacent iff they intersect. Observe that if S is an independent set in G

then the probability that S ⊂ B is at most p|S|, since these |S| events are mutually independent.

Let us call a set of vertices C of G a 1, 2-tree if the Ai ∈ C are such that drawing an arc between

Ai, Aj ∈ C if their distance in G is either 1 or 2 the resulting graph is connected. (This is simply

the set of vertices of a connected subgraph in the square of G).

Lemma 6.3 There exists a positive constant c such that almost surely every 1, 2-tree in G all of

whose vertices belong to B has size at most c logN .

Proof Call T ⊆ G a 2, 3-tree if the Ai ∈ T are such that all their mutual distances in G are at

least two and so that, drawing an arc between Ai, Aj ∈ T if their distance is either 2 or 3 the

resulting graph is connected. We first bound the number of 2, 3-trees of size u in G. Consider the

graph on the set of vertices of G in which two vertices are adjacent if their distance in G is either

2 or 3. Every 2, 3-tree on a set T of vertices of G must contain a tree on T in this new graph.

The new graph has maximum degree smaller than D = d3. It is well known (see [25]) that an

infinite D-regular rooted tree contains precisely 1
(D−1)u+1

(Du
u

)
rooted subtrees of size u, and this

easily imlies that the number of trees of size u containing one specific given vertex in any graph

with maximum degree at most D does not exceed this number, which is smaller than (eD)u.

For any particular 2, 3-tree T we know that Pr[T ⊆ B] ≤ pu. Hence the expected number of

2, 3-trees of size u T ⊆ S is at most N(eDp)u. As eDp < 1 by assumption (recall d, n and hence

D, p are constants), for an appropriately chosen positive c1, if u = c1 logN this term is o(1). Thus

almost surely there is no 2, 3-tree of size bigger than c1 logN all of whose vertices are in B. We

actually want to bound the size of any 1, 2-tree C of G. A maximal 2, 3-tree T in such a C must

have the property that every Ai ∈ C is a neighbor (in G) of an Aj ∈ T . There are less than d (a

constant) Ai neighbors of any given Aj so that c1 logN ≥ |T | ≥ |C|/d and so

|C| ≤ c logN

completing the proof of the lemma. 2

Let us call the First Pass successful if, for the constant c appearing in Lemma 6.3, there is no

1, 2-tree of size greater than c log n all of whose vertices lie in B. By the last lemma the probability
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the First Pass is successful is close to 1. In case it is not, we simply repeat the entire procedure.

In expected linear time the First Pass is successful.

We can now fix the coloring by recoloring, in the Second Pass, the vertices of H that belong to

the bad edges. Let us call an edge dangerous if it contains at least αn vertices that belong to bad

edges. (Thus, in particular, bad edges are also dangerous). Observe that if an edge is not dangerous

then it will not become monochromatic after the recoloring. This is because less than αn of its

points will change color, and it has at least αn points of each color before the recoloring. Thus

we only have to worry about the dangerous edges. However, if we recolor all the vertices in bad

edges randomly and independently than we recolor at least αn vertices in each dangerous edge, and

hence the probability it becomes monochromatic does not exceed 2−αn. Since each dangerous edge

intersects at most d others it follows from the assumptions in Theorem 6.2 and from the Lovász

Local Lemma that there exists a recoloring in which no edge is monochromatic.

The crucial point is that the recoloring of the points in the edges of each maximal 1, 2-tree C

of bad edges can be done separately. This is becuase there is no dangerous edge that intersects

edges from two distinct such maximal 1, 2-trees, and hence it suffices to recolor the points in the

edges of each such C in a way that only makes sure that no dangerous edge intersecting an edge

in C becomes dangerous. Since each of the 1, 2-trees C as above has only O(logN) vertices that

have to be recolored, we can find the required recoloring by brute force! Examining all possible two

colorings in each such C only takes time O(2O(logN)) = NO(1) and hence doing it for all the above

C-s can be done in polynomial time.

This completes the description of the randomized algorithm with expected polynomial running

time. In case d < 2cn for a smaller c we can make another pass similar to the first one in each 1, 2-

tree seperately, get new 1, 2 trees of size O(log logN) and complete as before obtaining an expected

running time which is nearly linear- O(N(logN)O(1)). We omit the detailed computation.

The randomized algorithm above is trivially parallelizable and can be implemented on a stan-

dard EREW -PRAM in time O(logN) using NO(1) parallel processors. (See [24] for the basic

definitions of an EREW -PRAM and the complexity classes NC and NC1.) Moreover, the algo-

rithm can be derandomized maintaining the running time (with some increase in the number of

processors), showing that the problem can be solved in NC1. To see this observe that the recoloring

step is deterministic even in the version described above, so the only problem is the derandomiza-
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tion of the First Pass. This can be done by applying the techniques from [27] or [9]. The basic idea

is that for every constant c there is a constant b = b(c) such that for every m there are explicit

sample spaces of size at most mb in which one can embed m random variables taking the values

0, 1 in which every set of c logm of the variables are nearly independent. Instead of describing the

details let us simply mention that the First Pass here can be performed deterministically as follows.

Let q ≥ N b be a prime, where b is a constant dependending on the constant c in Lemma 6.3. Let

χ be the quadratic character defined on the elements of the finite field GF (q), i.e., χ(x) = 1 if x is

a quadratic residue modulo q and χ(x) = −1 otherwise. Define a family of q two-colorings of the

set of vertices of H as follows. For each i ∈ GF (q), the color of the j-th point in the i-th coloring

is blue if χ(i − j) = 1 and is red if χ(i − j) = −1. Using the results in [9] (based on the ideas in

[27] (see also [6])), it can be shown that at least one of the q colorings defined above will produce

a successful First Pass. All these (deterministically defined) colorings can be checked in parallel,

completing the proof of Theorem 6.2. The full details will appear somewhere else. 2
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