
Parameterized Algorithms for Directed
Maximum Leaf Problems

Noga Alon1, Fedor V. Fomin2, Gregory Gutin3, Michael Krivelevich1, and
Saket Saurabh2,4

1 Department of Mathematics, Tel Aviv University
Tel Aviv 69978, Israel

{nogaa,krivelev}@post.tau.ac.il
2 Department of Informatics, University of Bergen

POB 7803, 5020 Bergen, Norway
{fedor.fomin,saket}@ii.uib.no

3 Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
gutin@cs.rhul.ac.uk

4 The Institute of Mathematical Sciences
Chennai, 600 017, India
saket@imsc.res.in

Abstract. We prove that finding a rooted subtree with at least k leaves
in a digraph is a fixed parameter tractable problem. A similar result
holds for finding rooted spanning trees with many leaves in digraphs
from a wide family L that includes all strong and acyclic digraphs. This
settles completely an open question of Fellows and solves another one for
digraphs in L. Our algorithms are based on the following combinatorial
result which can be viewed as a generalization of many results for a
‘spanning tree with many leaves’ in the undirected case, and which is
interesting on its own: If a digraph D ∈ L of order n with minimum
in-degree at least 3 contains a rooted spanning tree, then D contains one
with at least (n/2)1/5 − 1 leaves.

1 Introduction

The Maximum Leaf Spanning Tree problem (finding a spanning tree with
the maximum number of leaves in a connected undirected graph) is an intensively
studied problem from an algorithmic as well as a combinatorial point of view
[5, 7, 10, 13, 17, 22, 30]. It fits into the broader class of spanning tree problems
on which hundreds of papers have been written; see e.g. the book by Wu and
Chao [34]. It is known to be NP-hard [18], and APX-hard [16], but can be
approximated efficiently with multiplicative factor 3 [26] and even 2 [30].

In this paper, we initiate the combinatorial and algorithmic study of two
natural generalizations of the problem to digraphs. We say that a subgraph T of
a digraph D is an out-tree if T is an oriented tree with only one vertex s of in-
degree zero (called the root). The vertices of T of out-degree zero are called leaves.

If T is a spanning out-tree, i.e. V (T) = V (D), then T is called an out-branching
of D. Given a digraph D, the Directed Maximum Leaf Out-Branching
problem is the problem of finding an out-branching in D with the maximum
possible number of leaves. Denote this maximum by `s(D). When D has no
out-branching, we write `s(D) = 0. Similarly, the Directed Maximum Leaf
Out-tree problem is the problem of finding an out-tree in D with the maximum
possible number of leaves, which we denote by `(D). Both these problems are
equivalent for connected undirected graphs, as any maximum leaf tree can be
extended to a maximum leaf spanning tree with the same number of leaves.

Notice that `(D) ≥ `s(D) for each digraph D. Let L be the family of digraphs
D for which either `s(D) = 0 or `s(D) = `(D). It is easy to see that L contains
all strong and acyclic digraphs.

We investigate the above two problems from the parameterized complexity
point of view. Parameterized Complexity is a recent approach to deal with in-
tractable computational problems having some parameters that can be relatively
small with respect to the input size. This area has been developed extensively
during the last decade. For decision problems with input size n, and a param-
eter k, the goal is to design an algorithm with runtime f(k)nO(1) where f is a
function of k alone. Problems having such an algorithm are said to be fixed pa-
rameter tractable (FPT). The book by Downey and Fellows [11] provides a good
introduction to the topic of parameterized complexity. For recent developments
see the books by Flum and Grohe [15] and by Niedermeier [28].

The parameterized version of the Directed Maximum Leaf Out-Branc-
hing (the Directed Maximum Leaf Out-tree) problem is defined as follows:
Given a digraph D and a positive integral parameter k, is `s(D) ≥ k (`(D) ≥ k)?
We denote the parameterized versions of the Directed Maximum Leaf Out-
Branching and the Directed Maximum Leaf Out-Tree problems by k-
DMLOB and k-DMLOT respectively.

While the parameterized complexity of almost all natural problems on undi-
rected graphs is well understood, the world of digraphs is still wide open. The
main reason for this anomaly is that most of the techniques developed for undi-
rected graphs cannot be used or extended to digraphs. One of the most prominent
examples is the Feedback Vertex Set problem, which is easily proved to be
FPT for undirected graphs, while its parameterized complexity on digraphs is a
long standing open problem in the area. In what follows we briefly explain why
the standard techniques for the Maximum Leaf Spanning Tree problem on
undirected graphs cannot be used for its generalizations to digraphs.

– The Graph Minors Theory of Robertson and Seymour [31] is a powerful
(yet non-constructive) technique for establishing membership in FPT. For
example, this machinery can be used to show that the Maximum Leaf
Spanning Tree problem is FPT for undirected graphs (see [12]). However,
Graph Minors Theory for digraphs is still in a preliminary stage and at the
moment cannot be used as a tool for tackling interesting directed graph
problems.

– Bodlaender [3] used the following arguments to prove that the Maximum
Leaf Spanning Tree problem is FPT: If an undirected graph G contains
a star K1,k as a minor, then it is possible to construct a spanning tree with
at least k leaves from this minor. Otherwise, there is no K1,k minor in G,
and it is possible to prove that the treewidth of G is at most f(k). Thus,
dynamic programming can be used to decide whether there is a tree with k
leaves. This approach does not work on directed graphs because containing
a big out-tree as a minor does not imply the existence of an out-branching
or out-tree with many leaves in the original graph. In short, the properties
of having no out-branching with at least k leaves or having no out-tree with
k leaves are not minor closed.

– The seemingly most efficient approach for designing FPT algorithms for
undirected graphs is based on a combination of combinatorial bounds and
preprocessing rules for handling vertices of small degrees. Kleitman and West
[22] and Linial and Sturtevant [25] showed that every connected undirected
graph G on n vertices with minimum degree at least 3 has a spanning tree
with at least n/4 + 2 leaves. Bonsma et al. [5] combined this combinatorial
result with clever preprocessing rules to obtain the fastest known algorithm
for the k-Maximum Leaf Spanning Tree problem, running in time O(n3+
9.4815kk3). It is not clear how to devise a similar approach for digraphs.

Our Contribution. We obtain a number of combinatorial and algorithmic re-
sults for the Directed Maximum Leaf Out-Branching and the Directed
Maximum Leaf Out-tree problems. Our main combinatorial result (Theo-
rem 1) is the proof that for every digraph D ∈ L of order n with minimum
in-degree at least 3, `s(D) ≥ (n/2)1/5 − 1 provided `s(D) > 0. This can be
viewed as a generalization of many combinatorial results for undirected graphs
related to the existence of spanning trees with many leaves [19, 22, 25].

Our main algorithmic contributions are fixed parameter tractable algorithms
for the k-DMLOB and the k-DMLOT problems for digraphs in L and for all
digraphs, respectively. The algorithms are based on a decomposition theorem
which uses ideas from the proof of the main combinatorial result. More precisely,
we show that either a digraph contains a structure that can be extended to an
out-branching with many leaves, or the pathwidth of the underlying undirected
graph is small. This settles completely an open question of Mike Fellows [6, 14,
21] and solves another one for digraphs in L.

2 Preliminaries

Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc set of
D, respectively. An oriented graph is a digraph with no directed 2-cycle. Given a
subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the subgraph induced on V ′.
The underlying undirected graph UN(D) of D is obtained from D by omitting all
orientations of arcs and by deleting one edge from each resulting pair of parallel
edges. The connectivity components of D are the subgraphs of D induced by the

vertices of connected components of UN(D). A vertex y of D is an in-neighbor
(out-neighbor) of a vertex x if yx ∈ A (xy ∈ A). The in-degree d−(x) (out-degree
d+(x)) of a vertex x is the number of its in-neighbors (out-neighbors). A vertex
s of a digraph D is a source if the in-degree of s is 0.

A digraph D is strong if there is a directed path from every vertex of D
to every other vertex of D. A strong component of a digraph D is a maximal
strong subgraph of D. A strong component S of a digraph D is a source strong
component if no vertex of S has an in-neighbor in V (D) \ V (S). The following
simple result gives necessary and sufficient conditions for a digraph to have an
out-branching.

Proposition 1 ([2]). A digraph D has an out-branching if and only if D has a
unique source strong component.

This assertion allows us to check whether `s(D) > 0 in time O(|V (D)| +
|A(D)|). Thus, we will often assume, in the rest of the paper, that the digraph
D under consideration has an out-branching.

Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is a
forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every backward
arc of the type vi+1vi is called double.

For a natural number n, [n] denotes the set {1, 2, . . . , n}.
The notions of treewidth and pathwidth were introduced by Robertson and

Seymour in [32] and [33] (see [3] and [27] for surveys).
A tree decomposition of an (undirected) graph G is a pair (X, U) where U is

a tree whose vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection
of subsets of V (G) such that

1.
⋃

i∈V (U) Xi = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−
1}. The treewidth of a graph G is the minimum width over all tree decompositions
of G.

If in the definitions of a tree decomposition and treewidth we restrict U to
be a tree with all vertices of degree at most 2 (i.e., a path) then we have the
definitions of path decomposition and pathwidth. We use the notation tw(G)
and pw(G) to denote the treewidth and the pathwidth of a graph G.

We also need an equivalent definition of pathwidth in terms of vertex sepa-
rators with respect to a linear ordering of the vertices. Let G be a graph and let
σ = (v1, v2, . . . , vn) be an ordering of V (G). For j ∈ [n] put Vj = {vi : i ∈ [j]}
and denote by ∂Vj all vertices of Vj that have neighbors in V \ Vj . Setting

vs(G, σ) = max
i∈[n]

|∂Vi|,

we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

The following assertion is well-known. It follows directly from the results of
Kirousis and Papadimitriou [24] on interval width of a graph, see also [23].

Proposition 2 ([23, 24]). For any graph G, vs(G) = pw(G).

3 Combinatorial Lower Bounds on `(D) and `s(D)

Let D be a family of digraphs. Notice that if we can show that `s(D) ≥ g(n) for
every digraph D ∈ D of order n, where g(n) is tending to infinity as n tends to
infinity, then k-DMLOB is FPT on D. Indeed, g(n) < k holds only for digraphs
with less than some G(k) vertices and we can generate all out-branchings in such
a digraph in time bounded by a function of k.

Unfortunately, bounds of the type `s(D) ≥ g(n) are not valid for all strong
digraphs. Nevertheless, such bounds hold for wide classes of digraphs as we show
in the rest of this section.

The following assertion shows that L includes a large number of digraphs
including all strong and acyclic digraphs (and, also, well-studied classes of semi-
complete multipartite digraphs and quasi-transitive digraphs, see [2] for the def-
initions).

Proposition 3. Suppose that a digraph D satisfies the following property: for
every pair R and Q of distinct strong components of D, if there is an arc from
R to Q then each vertex of Q has an in-neighbor in R. Then D ∈ L.

Proof. Let T be a maximal out-tree of D with `(D) leaves. We may assume that
`s(D) > 0 and V (T) 6= V (D). Let H be the unique source strong component of D
and let r be the root of T. Observe that r ∈ V (H) as otherwise we could extend
T by adding to it an arc ur, where u is some vertex outside the strong component
containing r. Let C be a strong component containing a vertex from T . Observe
that V (C) ∩ V (T) = V (C) as otherwise we could extend T by appending to
it some arc uv, where u ∈ V (C) ∩ V (T) and v ∈ V (C) \ V (T). Similarly, one
can see that T must contain vertices from all strong components of D. Thus,
V (T) = V (D), a contradiction. ut

3.1 Digraphs with Restricted In-Degree

Lemma 1. Let D be an oriented graph of order n with every vertex of in-degree
2 and let D have an out-branching. If D has no out-tree with k leaves, then
n ≤ 2k5.

Proof. Assume that D has no out-tree with k leaves. Consider an out-branching
T of D with p leaves (clearly p < k). Start from the empty collection P of
vertex-disjoint directed paths. Choose a directed path R from the root of T to a
leaf, add R to P and delete V (R) from T . Repeat this for each of the out-trees
comprising T−V (R). By induction on the number of leaves, it is easy to see that
this process provides a collection P of p vertex-disjoint directed paths covering
all vertices of D.

Let P ∈ P have q ≥ n/p vertices and let P ′ ∈ P \ {P}. There are at most
k − 1 vertices on P with in-neighbors on P ′ since otherwise we could choose a
set X of at least k vertices on P for which there were in-neighbors on P ′. The
vertices of X would be leaves of an out-tree formed by the vertices V (P ′) ∪X.
Thus, there are m ≤ (k−1)(p−1) ≤ (k−1)(k−2) vertices of P with in-neighbors
outside P and at least q − (k − 2)(k − 1) vertices of P have both in-neighbors
on P .

Let P = u1u2 . . . uq. Suppose that there are 2(k − 1) indices

i1 < j1 ≤ i2 < j2 ≤ · · · ≤ ik−1 < jk−1

such that each uis
ujs

is a forward arc for P . Then the arcs

{uis
ujs

, ujs
ujs+1, . . . , uis+1−1uis+1 : 1 ≤ s ≤ k − 2} ∪
{uik−1ujk−1} ∪ {uis

uis+1 : 1 ≤ s ≤ k − 1}

form an out-tree with k leaves, a contradiction.
Let f be the number of forward arcs for P . Consider the graph G whose

vertices are all the forward arcs and a pair uiuj , usur of forward arcs are adjacent
in G if the intervals [i, j− 1] and [s, r− 1] of the real line intersect. Observe that
G is an interval graph and, thus, a perfect graph. By the result of the previous
paragraph, the independence number of G is less than k−1. Thus, the chromatic
number of G and the order g of its largest clique Q is at least f/(k − 2). Let
V (Q) = {uis

ujs
: 1 ≤ s ≤ g} and let h = min{js − 1 : 1 ≤ s ≤ g}. Observe

that each interval [is, js−1] contains h. Therefore, we can form an out-tree with
vertices

{u1, u2, . . . , uh} ∪ {ujs
: 1 ≤ s ≤ g}

in which {ujs
: 1 ≤ s ≤ g} are leaves. Hence we have f

k−2 ≤ k − 1 and, thus,
f ≤ (k − 2)(k − 1).

Let uv be an arc of A(D) \ A(P) such that v ∈ V (P). There are three
possibilities: (i) u 6∈ V (P), (ii) u ∈ V (P) and uv is forward for P , (iii) u ∈ V (P)
and uv is backward for P . By the inequalities above for m and f , we conclude that
there are at most 2(k−2)(k−1) vertices on P which are not terminal vertices (i.e.,
heads) of backward arcs. Consider a path R = v0v1 . . . vr formed by backward
arcs. Observe that the arcs {vivi+1 : 0 ≤ i ≤ r − 1} ∪ {vjv

+
j : 1 ≤ j ≤ r} form

an out-tree with r leaves, where v+
j is the out-neighbor of vj on P. Thus, there

is no path of backward arcs of length more than k − 1.
If the in-degree of u1 in D[V (P)] is 2, remove one of the backward arcs

terminating at u1. Observe that now the backward arcs for P form a vertex-
disjoint collection of out-trees with roots at vertices that are not terminal vertices
of backward arcs. Therefore, the number of the out-trees in the collection is at
most 2(k − 2)(k − 1). Observe that each out-tree in the collection has at most
k−1 leaves and thus its arcs can be decomposed into at most k−1 paths, each of
length at most k. Hence, the original total number of backward arcs for P is at
most 2k(k−2)(k−1)2+1. On the other hand, it is at least (q−1)−2(k−2)(k−1).
Thus, (q−1)−2(k−2)(k−1) ≤ 2k(k−2)(k−1)2 +1. Combining this inequality
with q ≥ n/(k − 1), we conclude that n ≤ 2k5. ut

Theorem 1. Let D be a digraph in L with `s(D) > 0.

(a) If D is an oriented graph with minimum in-degree at least 2, then `s(D) ≥
(n/2)1/5 − 1.

(b) If D is a digraph with minimum in-degree at least 3, then `s(D) ≥ (n/2)1/5−
1.

Proof. (a) Let T be an out-branching of D. Delete some arcs from A(D) \A(T),
if needed, such that the in-degree of each vertex of D becomes 2. Now the
inequality `s(D) ≥ (n/2)1/5 − 1 follows from Lemma 1 and the definition of L.

(b) Let T be an out-branching of D. Let P be the path formed in the proof
of Lemma 1. (Note that A(P) ⊆ A(T).) Delete every double arc of P , in case
there are any, and delete some more arcs from A(D) \A(T), if needed, to ensure
that the in-degree of each vertex of D becomes 2. It is not difficult to see that
the proof of Lemma 1 remains valid for the new digraph D. Now the inequality
`s(D) ≥ (n/2)1/5 − 1 follows from Lemma 1 and the definition of L. ut

It is not difficult to give examples showing that the restrictions on the min-
imum in-degrees in Theorem 1 are optimal. Indeed, any directed cycle C is a
strong oriented graph with all in-degrees 1 for which `s(C) = 1 and any directed
double cycle D is a strong digraph with in-degrees 2 for which `s(D) = 2 (a
directed double cycle is a digraph obtained from an undirected cycle by replacing
every edge xy with two arcs xy and yx).

4 Parameterized Algorithms for k-DMLOB and
k-DMLOT

In the previous section, we gave lower bounds on `(D) and `s(D) for digraphs
D ∈ L with minimum in-degree at least 3. These bounds trivially imply the
fixed parameter tractability of the k-DMLOB and the k-DMLOT problems for
this class of digraphs. Here we extend these FPT results to digraphs in L for k-
DMLOB and to all digraphs for k-DMLOT. We prove a decomposition theorem
which either outputs an out-tree with k leaves or provides a path decomposition
of the underlying undirected graph of width O(k2) in polynomial time.

Theorem 2. Let D be a digraph in L with `s(D) > 0. Then either `s(D) ≥ k
or the underlying undirected graph of D is of pathwidth at most 2k2.

Proof. Let D be a digraph in L with 0 < `s(D) < k. Let us choose an out-
branching T of D with p leaves. As in the proof of Lemma 1, we obtain a
collection P of p (< k) vertex-disjoint directed paths covering all vertices of D.

For a path P ∈ P, let W (P) be the set of vertices not on P which are out-
neighbors of vertices on P . If |W (P)| ≥ k, then the vertices P and W (P) would
form an out-tree with at least k leaves, which by the definition of L, contradicts
the assumption `s(D) < k. Therefore, |W (P)| < k. We define

U1 = {v ∈ W (P) : P ∈ P}.

Note that
|U1| ≤ p(k − 1) ≤ (k − 1)2.

Let D1 be the graph obtained from D after applying the following trimming
procedure around all vertices of U1: for every path P ∈ P and every vertex
v ∈ U1 ∩ V (P) we delete all arcs emanating out of v and directed into v except
those of the path P itself. Thus for every two paths P,Q ∈ P there is no arc in
D1 that goes from P to Q.

For P ∈ P let D1[P] be the subgraph of D1 induced by the vertices of P .
Observe that P is a Hamiltonian directed path in D1[P] and the connectivity
components of D1 are the induced subgraphs of D1 on the paths P for P ∈ P.

Let P ∈ P, we will show that the pw(UN(D1[P])) is bounded by k2−2k+2.
We denote by S[P] the set of vertices which are heads of forward arcs in D1[P].

We claim that |S[P]| ≤ (k − 2)(k − 1). Indeed, for each vertex v ∈ S[P],
delete all forward arcs terminating at v but one. Observe that the procedure
has not changed the number of vertices which are heads of forward arcs. Also
the number of forward arcs in the new digraph is |S[P]|. As in the proof of
Lemma 1, we can show that the number of forward arcs in the new digraph is
at most (k − 2)(k − 1).

Let D2[P] be the graph obtained from D1[P] after applying the trimming
procedure as before around all vertices of S[P], that is, for every vertex v ∈ S[P]
we delete all arcs emanating out of v or directed into v except those of the path
P .

Observe that D2[P] consists of the directed path P = v1v2 . . . vq passing
through all its vertices, together with its backward arcs. For every j ∈ [q] let Vj =
{vi : i ∈ [j]}. If for some j the set Vj contained k vertices, say {v′1, v′2, · · · , v′k},
having in-neighbors in the set {vj+1, vj+2, . . . , vq}, then D would contain an out-
tree with k leaves formed by the path vj+1vj+2 . . . vq together with a backward
arc terminating at v′i from a vertex on the path for each 1 ≤ i ≤ k, a contradic-
tion. Thus vs(UN(D2[P])) ≤ k. By Proposition 2, the pathwidth of UN(D2[P])
is at most k. Let (X1, X2, . . . , Xp) be a path decomposition of UN(D2[P]) of
width at most k. Then (X1 ∪ S[P], X2 ∪ S[P], . . . , Xp ∪ S[P]) is a path decom-
position of UN(D1[P]) of width at most k + |S[P]| ≤ k2 − 2k + 2.

The pathwidth of a graph is equal to the maximum pathwidth of its con-
nected components. Hence, there exists a path decomposition (X1, X2, . . . , Xq)
of UN(D1) of width at most k2−2k+2. Then (X1∪U1, X2∪U1, . . . , Xq ∪U1) is
a path decomposition of UN(D). Thus, the pathwidth of the underlying graph
of D is at most k2 − 2k + 2 + |U1| ≤ k2 − 2k + 2 + (k − 1)2 ≤ 2k2.

ut

Theorem 3. k-DMLOB is FPT for digraphs in L.

Proof. Let D be a digraph in L with `s(D) > 0 and n vertices. The proof of The-
orem 2 can be easily turned into a polynomial time algorithm to either build an
out-branching of D with at least k leaves or to show that pw(UN(D)) ≤ 2k2 and
provide the corresponding path decomposition. A simple dynamic programming

over the decomposition gives us an algorithm of running time O(kO(k2) · nO(1)).
Alternatively, the property of containing a directed out-branching with at least
k leaves can be formulated as a monadic second order formula. Thus, by the fun-
damental theorem of Courcelle [8, 9], the k-DMLOB problem for all digraphs D
with pw(UN(D)) ≤ 2k2 can be solved in O(f(k) ·n) time, where f is a function
depending only on k. ut

Let D be a digraph and let Rv be the set of vertices reachable from a vertex
v ∈ V (D) in D. Observe that D has an out-tree with k leaves if and only if there
exists a v ∈ V (D) such that D[Rv] has an out-tree with k leaves. Notice that
each D[Rv] has an out-branching rooted at v. Thus, we can prove the following
theorem, using the arguments in the previous proofs.

Theorem 4. For a digraph D and v ∈ V (D), let Rv be the set of vertices
reachable from a vertex v ∈ V (D) in D. Then either we have `(D[Rv]) ≥ k or
the underlying undirected graph of D[Rv] is of pathwidth at most 2k2. Moreover,
one can find, in polynomial time, either an out-tree with at least k leaves in
D[Rv], or a path decomposition of it of width at most 2k2.

To solve k-DMLOT, we apply Theorem 4 to all the vertices of D and then
either apply dynamic programming over the decomposition or apply Courcelle’s
Theorem as in the proof of Theorem 3. This gives the following:

Theorem 5. k-DMLOT is FPT for digraphs.

We can, in fact, show that the k-DMLOB problem for digraphs in L is linear
time solvable for a fixed k. To do so, given a digraph D ∈ L with `s(D) > 0 we
first apply Bodlaender’s linear time algorithm [4] to check whether the treewidth
of UN(D) is at most 2k2. If tw(UN(D)) > 2k2 then by Theorem 2 D has an
out-branching with at least k leaves. Else tw(UN(D)) ≤ 2k2 and we can use
Courcelle’s Theorem to check in linear time whether D has an out-branching
with at least k leaves. This gives the following:

Theorem 6. The k-DMLOB problem for digraphs in L is linear time solvable
for every fixed k.

5 Concluding Remarks and Open Problems

We have shown that every digraph D ∈ L with `s(D) > 0 of order n and with
minimum in-degree at least 3 contains an out-branching with at least (n/2)1/5−1
leaves. Combining the ideas in the proof of this combinatorial result with the fact
that the problem of deciding whether a given digraph in L has an out-branching
with at least k leaves can be solved efficiently for digraphs of pathwidth at most
2k2 we have shown that the k-DMLOB problem for digraphs in L as well as
the k-DMLOT problem for general digraphs are fixed parameter tractable. The
parameterized complexity of the k-DMLOB problem for all digraphs remains
open.

For some subfamilies of L, one can obtain better bounds on `s(D). An ex-
ample is the class of multipartite tournaments. A multipartite tournament is an
orientation of a complete multipartite graph. It is proved in [20, 29] that every
multipartite tournament D with at most one source has an out-branching T such
that the distance from the root of T to any vertex is at most 4. This implies
that `s(D) ≥ n−1

4 . Also for a tournament D of order n, it is easy to prove that
`s(D) ≥ n − log2 n. (This bound is essentially tight, i.e., we cannot replace the
right hand side by n− log2 n+Ω(log2 log2 n) as shown by random tournaments;
see [1], pages 3-4, for more details.)

It seems that the bound `s(D) ≥ (n/2)1/5 − 1 is far from tight. It would
be interesting to obtain better bounds for digraphs D ∈ L (with `s(D) > 0) of
minimum in-degree at least 3.

Acknowledgements. We thank Bruno Courcelle, Martin Grohe, Eun Jung Kim
and Stephan Kreutzer for useful discussions of the paper. Research of Noga Alon
and Michael Krivelevich was supported in part by a USA-Israeli BSF grant and
by a grant from the Israel Science Foundation. Research of Fedor Fomin was
supported in part by the Norwegian Research Council. Research of Gregory
Gutin was supported in part by an EPSRC grant.

References

1. N. Alon and J. Spencer, The Probabilistic Method. Wiley, NY, 2nd Ed., 2000.
2. J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications.

Springer-Verlag, 2000.
3. H.L. Bodlaender, On linear time minor tests and depth-first search. Journal of

Algorithms 14 (1993), 1–23.
4. H.L. Bodlaender, A Linear-Time Algorithm for Finding Tree-Decompositions of

Small Treewidth. SIAM Journal on Computing 25 (1996), 1305–1317.
5. P.S. Bonsma, T. Brueggermann and G.J. Woeginger, A faster FPT algorithm for

finding spanning trees with many leaves. Lect. Notes Computer Sci. 2747 (2003),
259–268.

6. M. Cesati, Compendium of parameterized problems, Sept. 2006.
http://bravo.ce.uniroma2.it/home/cesati/research/compendium.pdf

7. V. Estivill-Castro, M.R. Fellows, M.A. Langston, and F.A. Rosamond, FPT is
P-Time Extremal Structure I. Proc. ACiD (2005), 1–41.

8. B. Courcelle, The Monadic second-order logic of graphs I: recognizable sets of finite
graphs. Information and Computation 85 (1990), 12–75.

9. B. Courcelle, The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. Informatique Théorique et Applications (ITA) 26
(1992), 257–286.

10. G. Ding, Th. Johnson, and P. Seymour. Spanning trees with many leaves. Journal
of Graph Theory 37 (2001), 189–197.

11. R.G. Downey and M.R. Fellows, Parameterized Complexity , Springer-Verlag, 1999.
12. M.R. Fellows and M.A. Langston, On well-partial-order theory and its applications

to combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics
5 (1992), 117–126.

13. M.R. Fellows, C. McCartin, F.A. Rosamond, and U. Stege, Coordinated kernels
and catalytic reductions: An improved FPT algorithm for max leaf spanning tree
and other problems. Lect. Notes Comput. Sci. 1974 (2000), 240–251.

14. M. Fellows, Private communications, 2005-2006.
15. J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag, 2006.
16. G. Galbiati, F. Maffioli, and A. Morzenti, A short note on the approximability

of the maximum leaves spanning tree problem. Information Processing Letters 52
(1994), 45–49.

17. G. Galbiati, A. Morzenti, and F. Maffioli, On the approximability of some maxi-
mum spanning tree problems. Theoretical Computer Science 181 (1997), 107–118.

18. M.R. Garey and D.S. Johnson, Computers and Intractability, W.H. Freeman and
Co., New York, 1979.

19. J.R. Griggs and M. Wu, Spanning trees in graphs of minimum degree four or five.
Discrete Mathematics 104 (1992), 167–183.

20. G. Gutin, The radii of n-partite tournaments. Math. Notes 40 (1986), 743–744.
21. G. Gutin and A. Yeo, Some Parameterized Problems on Digraphs. To appear in

The Computer Journal.
22. D.J. Kleitman and D.B. West, Spanning trees with many leaves. SIAM Journal on

Discrete Mathematics 4 (1991), 99–106.
23. N. G. Kinnersley, The vertex separation number of a graph equals its path-width,

Information Processing Letters 42 (1992), 345–350.
24. L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Discrete

Mathematics 55 (1985), 181–184.
25. N. Linial and D. Sturtevant (1987). Unpublished result.
26. H.-I. Lu and R. Ravi, Approximating maximum leaf spanning trees in almost linear

time. Journal of Algorithms 29 (1998), 132–141.
27. R. H. Möhring, Graph problems related to gate matrix layout and PLA folding. In

Computational Graph Theory, vol. 7 of Comput. Suppl., Springer, Vienna, (1990),
17–51.

28. R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University
Press, 2006.

29. V. Petrovic and C. Thomassen, Kings in k-partite tournaments. Discrete Mathe-
matics 98 (1991), 237–238.

30. R. Solis-Oba, 2-approximation algorithm for finding a spanning tree with the max-
imum number of leaves. Lect. Notes Comput. Sci. 1461 (1998), 441–452.

31. N. Robertson and P. D. Seymour, Graph minors-a survey. In I. Anderson (Ed.)
Surveys in Combinatorics, Cambridge Univ. Press, (1985), 153–171.

32. N. Robertson and P. D. Seymour, Graph minors I: Excluding a forest. Journal of
Combinatorial Theory Series B 35 (1983), 39–61.

33. N. Robertson and P. D. Seymour, Graph minors II: Algorithmic aspects of tree-
width. Journal of Algorithms 7 (1986), 309–322.

34. B. Y. Wu and K. Chao, Spanning Trees and Optimization Problems, CRC Press,
2003.

