
Spanning directed trees with many leaves?

Noga Alon1, Fedor V. Fomin2, Gregory Gutin3, Michael Krivelevich1, and
Saket Saurabh2

1 Department of Mathematics, Tel Aviv University
Tel Aviv 69978, Israel

{nogaa,krivelev}@post.tau.ac.il
2 Department of Informatics, University of Bergen

POB 7803, 5020 Bergen, Norway
{fedor.fomin,saket}@ii.uib.no

3 Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
gutin@cs.rhul.ac.uk

Abstract. The Directed Maximum Leaf Out-Branching problem
is to find an out-branching (i.e. a rooted oriented spanning tree) in a given
digraph with the maximum number of leaves. In this paper, we obtain
two combinatorial results on the number of leaves in out-branchings. We
show that

– every strongly connected n-vertex digraph D with minimum in-
degree at least 3 has an out-branching with at least (n/4)1/3 − 1
leaves;

– if a strongly connected digraph D does not contain an out-branching
with k leaves, then the pathwidth of its underlying graph UG(D) is
O(k log k). Moreover, if the digraph is acyclic with a single vertex of
in-degree zero, then the pathwidth is at most 4k.

The last result implies that it can be decided in time 2O(k log2 k) · nO(1)

whether a strongly connected digraph on n vertices has an out-branching
with at least k leaves. On acyclic digraphs the running time of our algo-
rithm is 2O(k log k) · nO(1).

1 Introduction

In this paper, we initiate the combinatorial and algorithmic study of a natural
generalization of the well studied Maximum Leaf Spanning Tree (MLST)
problem on connected undirected graphs [10, 15, 18–20, 23, 25, 32, 34]. Given a
digraph D, a subdigraph T of D is an out-tree if T is an oriented tree with
only one vertex s of in-degree zero (called the root). If T is a spanning out-
tree, i.e. V (T) = V (D), then T is called an out-branching of D. The vertices of

? Preliminary extended abstracts of this paper have been presented at FSTTCS 2007
[4] and ICALP 2007 [5].

2 N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh

T of out-degree zero are called leaves. The Directed Maximum Leaf Out-
Branching (DMLOB) problem is to find an out-branching in a given digraph
with the maximum number of leaves.

It is well-known that MLST is NP-hard for undirected graphs [24], which
means that DMLOB is NP-hard for symmetric digraphs (i.e., digraphs in which
the existence of an arc xy implies the existence of the arc yx) and, thus, for
strongly connected digraphs. We can show that DMLOB is NP-hard for acyclic
digraphs as follows: Consider a bipartite graph G with bipartition X,Y and a
vertex s 6∈ V (G). To obtain an acyclic digraph D from G and s, orient the edges
of G from X to Y and add all arcs sx, x ∈ X. Let B be an out-branching in D.
Then the set of leaves of B is Y ∪X ′, where X ′ ⊂ X, and for each y ∈ Y there
is a vertex z ∈ Z = X \X ′ such that zy ∈ A(D). Observe that B has maximum
number of leaves if and only if Z ⊆ X is of minimum size among all sets Z ′ ⊆ X
such that NG(Z ′) = X. However, the problem of finding Z ′ of minimum size
such that NG(Z ′) = X is equivalent to the Set Cover problem ({NG(y)| y ∈ Y }
is the family of sets to cover), which is NP-hard.

The combinatorial study of spanning trees with maximum number of leaves
in undirected graphs has an extensive history. Linial conjectured around 1987
that every connected graph on n vertices with minimum vertex degree δ has a
spanning tree with at least n(δ − 2)/(δ + 1) + cδ leaves, where cδ depends on
δ. This is indeed the case for all δ ≤ 5. Kleitman and West [29] and Linial and
Sturtevant [31] showed that every connected undirected graph G on n vertices
with minimum degree at least 3 has a spanning tree with at least n/4+2 leaves.
Griggs and Wu [25] proved that the maximum number of leaves in a spanning
tree is at least n/2+2 when δ = 5 and at least 2n/5+8/5 when δ = 4. All these
results are tight. The situation is less clear for δ ≥ 6; the first author observed
that Linial’s conjecture is false for all large values of δ. Indeed, the results in [2]
imply that there are undirected graphs with n vertices and minimum degree δ in
which no tree has more than (1− (1+o(1)) ln (δ+1)

δ+1)n leaves, where the o(1)-term
tends to zero and δ tends to infinity, and this is essentially tight. See also [3],
pp. 4-5 and [12] for more information.

In this paper we prove an analogue of the Kleitman-West result for directed
graphs: every strongly connected digraph D of order n with minimum in-degree
at least 3 has an out-branching with at least (n/4)1/3 − 1 leaves. Unlike in the
case of symmetric digraphs, in the case of all strongly connected digraphs, there
is no linear lower bound: we show that there are strongly connected digraphs
with minimum in-degree 3 in which every out-branching has at most O(

√
n)

leaves.

Unlike its undirected counterpart which has attracted a lot of attention in all
algorithmic paradigms like approximation algorithms [23, 32, 34], parameterized
algorithms [10, 18, 20], exact exponential time algorithms [19] and also combina-
torial studies [15, 25, 29, 31], the Directed Maximum Leaf Out-Branching
problem has been neglected until the appearance of our conference papers [4]
and [5].

Spanning directed trees with many leaves 3

Our second combinatorial result relates the number of leaves in a DMLOB
of a directed graph D with the pathwidth of its underlying graph UG(D). (We
postpone the definition of pathwidth till the next section.) If an undirected graph
G contains a star K1,k as a minor, then it is possible to construct a spanning
tree with at least k leaves from this minor. Otherwise, there is no K1,k minor
in G, and it is possible to prove that the pathwidth of G is O(k). (See, e.g.
[8].) Actually, a much more general result due to Bienstock et al. [9] is that any
undirected graph of pathwidth at least k, contains all trees on k vertices as a
minor. We prove a result that can be viewed as a generalization of known bounds
on the number of leaves in a spanning tree of an undirected graph in terms of
its pathwidth, to strongly connected digraphs. We show that either a strongly
connected digraph D has a DMLOB with at least k leaves or the pathwidth of
UG(D) is O(k log k). For an acyclic digraph with a DMLOB having k leaves,
we prove that the pathwidth is at most 4k. This almost matches the bound
for undirected graphs. These combinatorial results are useful in the design of
parameterized algorithms.

In parameterized algorithms, for decision problems with input size n, and a
parameter k, the goal is to design an algorithm with runtime f(k)nO(1), where
f is a function of k alone. (For DMLOB such a parameter is the number of
leaves in the out-tree.) Problems having such an algorithm are said to be fixed
parameter tractable (FPT). The book by Downey and Fellows [16] provides an
introduction to the topic of parameterized complexity. For recent developments
see the books by Flum and Grohe [22] and by Niedermeier [33].

The parameterized version of DMLOB is defined as follows: Given a digraph
D and a positive integral parameter k, does D contain an out-branching with at
least k leaves? We denote the parameterized versions of DMLOB by k-DMLOB.
If in the above definition we do not insist on an out-branching and ask whether
there exists an out-tree with at least k leaves, we get the parameterized Di-
rected Maximum Leaf Out-Tree problem (denoted k-DMLOT).

Our combinatorial bounds, combined with dynamic programming on graphs
of bounded pathwidth imply the first parameterized algorithms for k-DMLOB on
strongly connected digraphs and acyclic digraphs. We remark that the algorith-
mic results presented here also hold for all digraphs if we consider k-DMLOT
rather than k-DMLOB. This answers an open question of Mike Fellows [13,
21, 26]. However, we mainly restrict ourselves to k-DMLOB for clarity and the
harder challenges it poses, and we briefly consider k-DMLOT only in the last
section.

This paper is organized as follows. In Section 2 we provide additional ter-
minology and notation as well as some well-known results. We introduce locally
optimal out-branchings in Section 3. Bounds on the number of leaves in maxi-
mum leaf out-branchings of strongly connected and acyclic digraphs are obtained
in Section 4. In Section 5 we prove upper bounds on the pathwidth of the un-
derlying graph of strongly connected and acyclic digraphs that do not contain
out-branchings with at least k leaves. In Section 6 we show that k-DMLOT is

4 N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh

FPT. We give a brief overview of further research triggered by our papers [4]
and [5] in Section 7.

2 Preliminaries

Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc
set of D, respectively. An oriented graph is a digraph with no directed 2-cycle.
Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the digraph induced
by V ′. The underlying graph UG(D) of D is obtained from D by omitting all
orientations of arcs and by deleting one edge from each resulting pair of parallel
edges. The connectivity components of D are the subdigraphs of D induced by
the vertices of components of UG(D). A digraph D is strongly connected if, for
every pair x, y of vertices there are directed paths from x to y and from y to
x. A maximal strongly connected subdigraph of D is called a strong component.
A vertex u of D is an in-neighbor (out-neighbor) of a vertex v if uv ∈ A(D)
(vu ∈ A(D), respectively). The in-degree d−(v) (out-degree d+(v)) of a vertex v
is the number of its in-neighbors (out-neighbors).

We denote by `(D) the maximum number of leaves in an out-tree of a digraph
D and by `s(D) we denote the maximum possible number of leaves in an out-
branching of a digraph D. When D has no out-branching, we write `s(D) = 0.
The following simple result gives necessary and sufficient conditions for a digraph
to have an out-branching. This assertion allows us to check whether `s(D) > 0
in time O(|V (D)|+ |A(D)|).

Proposition 1 ([7]). A digraph D has an out-branching if and only if D has a
unique strong component with no incoming arcs.

Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is a
forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every backward
arc of the type vi+1vi is called double.

For a natural number n, [n] denotes the set {1, 2, . . . , n}.
A tree decomposition of an (undirected) graph G is a pair (X, U) where U is

a tree whose vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection
of subsets of V (G) such that

1.
⋃

i∈V (U) Xi = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−
1}. The treewidth of a graph G is the minimum width over all tree decompositions
of G.

If in the definitions of a tree decomposition and treewidth we restrict U to be
a path, then we have the definitions of path decomposition and pathwidth. We
use the notation tw(G) and pw(G) to denote the treewidth and the pathwidth
of a graph G.

Spanning directed trees with many leaves 5

We also need an equivalent definition of pathwidth in terms of vertex sepa-
rators with respect to a linear ordering of the vertices. Let G be a graph and let
σ = (v1, v2, . . . , vn) be an ordering of V (G). For j ∈ [n] put Vj = {vi : i ∈ [j]}
and denote by ∂Vj all vertices of Vj that have neighbors in V \ Vj . Setting
vs(G, σ) = maxi∈[n] |∂Vi|, we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

The following assertion is well-known. It follows directly from the results of
Kirousis and Papadimitriou [28] on interval width of a graph, see also [27].

Proposition 2 ([27, 28]). For any graph G, vs(G) = pw(G).

3 Locally Optimal Out-Branchings

Our bounds are based on finding locally optimal out-branchings. Given a di-
graph, D and an out-branching T , we call a vertex leaf, link and branch if its
out-degree in T is 0, 1 and ≥ 2 respectively. Let S+

≥2(T) be the set of branch
vertices, S+

1 (T) the set of link vertices and L(T) the set of leaves in the tree T .
Let P2(T) be the set of maximal paths consisting of link vertices. By p(v) we
denote the parent of a vertex v in T ; p(v) is the unique in-neighbor of v. We call
a pair of vertices u and v siblings if they do not belong to the same path from
the root r in T . We start with the following well known and easy to observe
facts.

Fact 1 |S+
≥2(T)| ≤ |L(T)| − 1.

Fact 2 |P2(T)| ≤ 2|L(T)| − 1.

Now we define the notion of local exchange which is intensively used in our
proofs.

Definition 3 `-Arc Exchange (`-AE) optimal out-branching: An out-
branching T of a directed graph D with k leaves is `-AE optimal if for all arc
subsets F ⊆ A(T) and X ⊆ A(D)−A(T) of size `, (A(T) \F)∪X is either not
an out-branching, or an out-branching with at most k leaves. In other words, T
is `-AE optimal if it can’t be turned into an out-branching with more leaves by
exchanging ` arcs.

Let us remark, that for every fixed `, an `-AE optimal out-branching can be
obtained in polynomial time. In our proofs we use only 1-AE optimal out-
branchings. We need the following simple properties of 1-AE optimal out-branchings.

Lemma 1. Let T be an 1-AE optimal out-branching rooted at r in a digraph D.
Then the following holds:

(a) For every pair of siblings u, v ∈ V (T) \ L with d+
T (p(v)) = 1, there is no arc

e = (u, v) ∈ A(D) \A(T);

6 N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh

(b) For every pair of vertices u, v /∈ L, d+
T (p(v)) = 1, which are on the same

path from the root with dist(r, u) < dist(r, v) there is no arc e = (u, v) ∈
A(D) \A(T) (here dist(r, u) is the distance to u in T from the root r);

(c) There is no arc (v, r), v /∈ L such that the directed cycle formed by the
(r, v)-path and the arc (v, r) contains a vertex x such that d+

T (p(x)) = 1.

Proof. The proof easily follows from the fact that the existence of any of these
arcs contradicts the local optimality of T with respect to 1-AE. ut

4 Combinatorial Bounds

We start with a lemma that allows us to obtain lower bounds on `s(D).

Lemma 2. Let D be an oriented graph of order n in which every vertex is of
in-degree 2 and let D have an out-branching. If D has no out-tree with k leaves,
then n ≤ 4k3.

Proof. Let us assume that D has no out-tree with k leaves. Consider an out-
branching T of D with p < k leaves which is 1-AE optimal. Let r be the root of
T .

We will bound the number n of vertices in T as follows. Every vertex of T is
either a leaf, or a branch vertex, or a link vertex. By Facts 1 and 2 we already
have bounds on the number of leaf and branch vertices as well as the number
of maximal paths consisting of link vertices. So to get an upper bound on n in
terms of k, it suffices to bound the length of each maximal path consisting of
link vertices. Let us consider such a path P and let x, y be the first and last
vertices of P , respectively.

The vertices of V (T) \ V (P) can be partitioned into four classes as follows:

(a) ancestor vertices: the vertices which appear before x on the (r, x)-path of T ;
(b) descendant vertices : the vertices appearing after the vertices of P on paths

of T starting at r and passing through y;
(c) sink vertices: the vertices which are leaves but not descendant vertices;
(d) special vertices: none-of-the-above vertices.

Let P ′ = P −x, let z be the out-neighbor of y on T and let Tz be the subtree
of T rooted at z. By Lemma 1, there are no arcs from special or ancestor vertices
to the path P ′. Let uv be an arc of A(D) \ A(P ′) such that v ∈ V (P ′). There
are two possibilities for u: (i) u 6∈ V (P ′), (ii) u ∈ V (P ′) and uv is backward for
P ′ (there are no forward arcs for P ′ since T is 1-AE optimal). Note that every
vertex of type (i) is either a descendant vertex or a sink. Since every vertex of
D is of in-degree 2, the backward arcs for P ′ form a vertex-disjoint collection
of out-trees with roots at vertices that are not terminal vertices of backward
arcs for P ′. These roots are terminal vertices of arcs in which first vertices are
descendant vertices or sinks.

We denote by {u1, u2, . . . , us} and {v1, v2, . . . , vt} the sets of vertices on P ′

which have in-neighbors that are descendant vertices and sinks, respectively. Let

Spanning directed trees with many leaves 7

the out-tree formed by backward arcs for P ′ rooted at w ∈ {u1, . . . , us, v1, . . . , vt}
be denoted by T (w) and let l(w) denote the number of leaves in T (w). Observe
that the following is an out-tree rooted at z:

Tz ∪ {(in(u1), u1), . . . , (in(us), us)} ∪
s⋃

i=1

T (ui),

where {in(u1), . . . , in(us)} are the in-neighbors of {u1, . . . , us} on Tz. This out-
tree has at least

∑s
i=1 l(ui) leaves and, thus,

∑s
i=1 l(ui) ≤ k − 1. Let us denote

the subtree of T rooted at x by Tx and let {in(v1), . . . , in(vt)} be the in-neighbors
of {v1, . . . , vt} on T − V (Tx). Then we have the following out-tree:

(T − V (Tx)) ∪ {(in(v1), v1), . . . , (in(vt), vt)} ∪
t⋃

i=1

T (vi)

with at least
∑t

i=1 l(vi) leaves. Thus,
∑t

i=1 l(vi) ≤ k − 1.

Consider a path R = p0p1 . . . pr formed by backward arcs. Observe that the
arcs {pipi+1 : 0 ≤ i ≤ r − 1} ∪ {pjp

+
j : 1 ≤ j ≤ r} form an out-tree with

r leaves, where p+
j is the out-neighbor of pj on P. Thus, there is no path of

backward arcs of length more than k− 1. Every out-tree T (w), w ∈ {u1, . . . , us}
has l(w) leaves and, thus, its arcs can be decomposed into l(w) paths, each
of length at most k − 1. Now we can bound the number of arcs in all the trees
T (w), w ∈ {u1, . . . , us}, as follows:

∑s
i=1 l(ui)(k−1) ≤ (k−1)2. We can similarly

bound the number of arcs in all the trees T (w), w ∈ {v1, . . . , vs} by (k − 1)2.
Recall that the vertices of P ′ can be either terminal vertices of backward arcs
for P ′ or vertices in {u1, . . . , us, v1, . . . , vt}. Observe that s + t ≤ 2(k − 1) since∑s

i=1 l(ui) ≤ k − 1 and
∑t

i=1 l(vi) ≤ k − 1.

Thus, the number of vertices in P is bounded from above by 1 + 2(k − 1) +
2(k − 1)2. Therefore,

n = |L(T)|+ |S+
≥2(T)|+ |S+

1 (T)|
= |L(T)|+ |S+

≥2(T)|+
∑

P∈P2(T)

|V (P)|

≤ (k − 1) + (k − 2) + (2k − 3)(2k2 − 2k + 1)
< 4k3.

Thus, we conclude that n ≤ 4k3. ut

Theorem 4. Let D be a strongly connected digraph with n vertices.

(a) If D is an oriented graph with minimum in-degree at least 2, then `s(D) ≥
(n/4)1/3 − 1.

(b) If D is a digraph with minimum in-degree at least 3, then `s(D) ≥ (n/4)1/3−
1.

8 N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh

Proof. Since D is strongly connected, we have `(D) = `s(D) > 0. Let T be an
1-AE optimal out-branching of D with maximum number of leaves. (a) Delete
some arcs from A(D) \ A(T), if needed, such that the in-degree of each vertex
of D becomes 2. Now the inequality `s(D) ≥ (n/4)1/3 − 1 follows from Lemma
2 and the fact that `(D) = `s(D).

(b) Let P be the path formed in the proof of Lemma 2. (Note that A(P) ⊆
A(T).) Delete every double arc of P , in case there are any, and delete some more
arcs from A(D) \A(T), if needed, to ensure that the in-degree of each vertex of
D becomes 2. It is not difficult to see that the proof of Lemma 2 remains valid
for the new digraph D. Now the inequality `s(D) ≥ (n/4)1/3 − 1 follows from
Lemma 2 and the fact that `(D) = `s(D). ut
Remark 5 It is easy to see that Theorem 4 holds also for acyclic digraphs D
with `s(D) > 0.

While we do not know whether the bounds of Theorem 4 are tight, we can
show that no linear bounds are possible. The following result is formulated for
Part (b) of Theorem 4, but a similar result holds for Part (a) as well.

Theorem 6. For each t ≥ 6 there is a strongly connected digraph Ht of order
n = t2 + 1 with minimum in-degree 3 such that 0 < `s(Ht) = O(t).

Proof. Let V (Ht) = {r} ∪ {ui
1, u

i
2, . . . , u

i
t | i ∈ [t]} and

A(Ht) =
{
ui

ju
i
j+1, u

i
j+1u

i
j | i ∈ [t], j ∈ {0, 1, . . . , t− 4}}

⋃ {
ui

ju
i
j−2 | i ∈ [t], j ∈ {3, 4, . . . , t− 2}}

⋃ {
ui

ju
i
q | i ∈ [t], t− 3 ≤ j 6= q ≤ t

}
,

where ui
0 = r for every i ∈ [t]. It is easy to check that 0 < `s(Ht) = O(t). ut

5 Pathwidth of underlying graphs and parameterized
algorithms

By Proposition 1, an acyclic digraph D has an out-branching if and only if D
possesses a single vertex of in-degree zero.

Theorem 7. Let D be an acyclic digraph with a single vertex of in-degree zero.
Then either `s(D) ≥ k or the underlying undirected graph of D is of pathwidth
at most 4k and we can obtain this path decomposition in polynomial time.

Proof. Assume that `s(D) ≤ k − 1. Consider a 1-AE optimal out-branching T
of D. Notice that |L(T)| ≤ k− 1. Now remove all the leaves and branch vertices
from the tree T . The remaining vertices form maximal directed paths consisting
of link vertices. Delete the first vertices of all paths. As a result we obtain a
collection Q of directed paths. Let H = ∪P∈QP . We will show that every arc uv
with u, v ∈ V (H) is in H. Let P ′ ∈ Q. As in the proof of Lemma 2, we see that

Spanning directed trees with many leaves 9

there are no forward arcs for P ′. Since D is acyclic, there are no backward arcs
for P ′.

Suppose uv is an arc of D such that u ∈ R′ and v ∈ P ′, where R′ and P ′

are distinct paths from Q. As in the proof of Lemma 2, we see that u is either
a sink or a descendent vertex for P ′ in T . Since R′ contains no sinks of T , u is
a descendent vertex, which is impossible as D is acyclic. Thus, we have proved
that pw(UG(H)) = 1.

Consider a path decomposition of H of width 1. We can obtain a path de-
composition of UG(D) by adding all the vertices of L(T)∪S+

≥2(T)∪F (T), where
F (T) is the set of first vertices of maximal directed paths consisting of link ver-
tices of T , to each of the bags of a path decomposition of H of width 1. Observe
that the pathwidth of this decomposition is bounded from above by

|L(T)|+ |S+
≥2(T)|+ |F (T)|+ 1 ≤ (k − 1) + (k − 2) + (2k − 3) + 1 ≤ 4k − 5.

The bounds on the various sets in the inequality above follows from Facts 1 and
2. This proves the theorem. ut
Corollary 1. For acyclic digraphs, the problem k-DMLOB can be solved in time
2O(k log k) · nO(1).

Proof. The proof of Theorem 7 can be easily turned into a polynomial time
algorithm to either build an out-branching of D with at least k leaves or to show
that pw(UG(D)) ≤ 4k and provide the corresponding path decomposition. A
standard dynamic programming over the path (tree) decomposition (see e.g. [6])
gives us an algorithm of running time 2O(k log k) · nO(1). ut

The following simple lemma is well-known, see, e.g., [14].

Lemma 3. Let T = (V,E) be an undirected tree and let w : V → R+∪{0} be a
weight function on its vertices. There exists a vertex v ∈ T such that the weight
of every subtree T ′ of T − v is at most w(T)/2, where w(T) =

∑
v∈V w(v).

Let D be a strongly connected digraph and let T be an out-branching of D
with λ leaves. Consider the following decomposition of T (called a β-decomposition)
which will be useful in the proof of Theorem 8.

Assign weight 1 to all leaves of T and weight 0 to all non-leaves of T . By
Lemma 3, T has a vertex v such that each component of T − v has at most
λ/2 + 1 leaves (if v is not the root and its in-neighbor v− in T is a link vertex,
then v− becomes a new leaf). Let T1, T2, . . . , Ts be the components of T − v
and let l1, l2, . . . , ls be the numbers of leaves in the components. Notice that
λ ≤ ∑s

i=1 li ≤ λ + 1 (we may get a new leaf). We may assume that ls ≤ ls−1 ≤
· · · ≤ l1 ≤ λ/2 + 1. Let j be the smallest index such that

∑j
i=1 li ≥ λ

2 + 1.
Consider two cases: (a) lj ≤ (λ + 2)/4 and (b) lj > (λ + 2)/4. In Case (a), we
have

λ + 2
2

≤
j∑

i=1

li ≤ 3(λ + 2)
4

and
λ− 6

4
≤

s∑

i=j+1

li ≤ λ

2
.

10 N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh

In Case (b), we have j = 2 and

λ + 2
4

≤ l1 ≤ λ + 2
2

and
λ− 2

2
≤

s∑

i=2

li ≤ 3λ + 2
4

.

Let p = j in Case (a) and p = 1 in Case (b). Add to D and T a copy v′ of
v (with the same in- and out-neighbors). Then the number of leaves in each of
the out-trees

T ′ = T [{v} ∪ (∪p
i=1V (Ti))] and T ′′ = T [{v′} ∪ (∪s

i=p+1V (Ti))]

is between λ(1+o(1))/4 and 3λ(1+o(1))/4. Observe that the vertices of T ′ have
at most λ + 1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ + 1
out-neighbors in T ′ (we add 1 to λ due to the fact that v ‘belongs’ to both T ′

and T ′′).
Similarly to deriving T ′ and T ′′ from T , we can obtain two out-trees from

T ′ and two out-trees from T ′′ in which the numbers of leaves are approximately
between a quarter and three quarters of the number of leaves in T ′ and T ′′,
respectively. Observe that after O(log λ) ‘dividing’ steps, we will end up with
O(λ) out-trees with just one leaf, i.e., directed paths. These paths contain O(λ)
copies of vertices of D (such as v′ above). After deleting the copies, we obtain a
collection of O(λ) disjoint directed paths covering V (D).

Theorem 8. Let D be a strongly connected digraph. Then either `s(D) ≥ k or
the underlying undirected graph of D is of pathwidth O(k log k).

Proof. We may assume that `s(D) < k. Let T be a 1-AE optimal out-branching
and let λ be the number of leaves in T . Consider a β-decomposition of T . The
decomposition process can be viewed as a tree T rooted in a node (associated
with) T . The children of T in T are nodes (associated with) T ′ and T ′′; the
leaves of T are the directed paths of the decomposition. The first layer of T is
the node T , the second layer are T ′ and T ′′, the third layer are the children of
T ′ and T ′′, etc. In what follows, we do not distinguish between a node Q of T
and the tree associated with the node. Assume that T has t layers. Notice that
the last layer consists of (some) leaves of T and that t = O(log k), which was
proved above (note that λ ≤ k − 1).

Let Q be a node of T at layer j. We will prove that

pw(UG(D[V (Q)])) < 2(t− j + 2.5)k. (1)

Since t = O(log k), (1) for j = 1 implies that the underlying undirected graph
of D is of pathwidth O(k log k).

We first prove (1) for j = t when Q is a path from the decomposition. Let
W = (L(T) ∪ S+

≥2(T) ∪ F (T)) ∩ V (Q), where F (T) is the set of first vertices of
maximal paths of T consisting of link vertices. As in the proof of Theorem 7, it
follows from Facts 1 and 2 that |W | < 4k. Obtain a digraph R by deleting from
D[V (Q)] all arcs in which at least one end-vertex is in W and which are not arcs

Spanning directed trees with many leaves 11

of Q. As in the proof of Theorem 7, it follows from Lemma 1 and 1-AE opti-
mality of T that there are no forward arcs for Q in R. Let Q = v1v2 . . . vq. For
every j ∈ [q], let Vj = {vi : i ∈ [j]}. If for some j the set Vj contained k vertices,
say {v′1, v′2, · · · , v′k}, having in-neighbors in the set {vj+1, vj+2, . . . , vq}, then D
would contain an out-tree with k leaves formed by the path vj+1vj+2 . . . vq to-
gether with a backward arc terminating at v′i from a vertex on the path for each
1 ≤ i ≤ k, a contradiction. Thus vs(UG(D2[P])) ≤ k. By Proposition 2, the
pathwidth of UG(R) is at most k. Let (X1, X2, . . . , Xs) be a path decomposition
of UG(R) of width at most k. Then (X1 ∪ W,X2 ∪ W, . . . , Xs ∪ W) is a path
decomposition of UG(D[V (Q)]) of width less than k + 4k. Thus,

pw(UG(D[V (Q)])) < 5k. (2)

Now assume that we have proved (1) for j = i and show it for j = i − 1.
Let Q be a node of layer i − 1. If Q is a leaf of T , we are done by (2). So, we
may assume that Q has children Q′ and Q′′ which are nodes of layer i. In the
β-decomposition of T given before this theorem, we saw that the vertices of T ′

have at most λ+1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ+1
out-neighbors in T ′. Similarly, we can see that (in the β-decomposition of this
proof) the vertices of Q′ have at most k out-neighbors in Q′′ and the vertices
of Q′′ have at most k out-neighbors in Q′ (since λ ≤ k − 1). Let Y denote the
set of the above-mentioned out-neighbors on Q′ and Q′′; |Y | ≤ 2k. Delete from
D[V (Q′)∪V (Q′′)] all arcs in which at least one end-vertex is in Y and which do
not belong to Q′ ∪Q′′.

Let G denote the obtained digraph. Observe that G is disconnected and
G[V (Q′)] and G[V (Q′′)] are components of G. Thus, pw(UG(G)) ≤ b, where

b = max{pw(UG(G[V (Q′)])), pw(UG(G[V (Q′′)]))} < 2(t− i + 2.5)k. (3)

Let (Z1, Z2, . . . , Zr) be a path decomposition of G of width at most b. Then
(Z1 ∪ Y,Z2 ∪ Y, . . . , Zr ∪ Y) is a path decomposition of UG(D[V (Q′) ∪ V (Q′′)])
of width at most b + 2k < 2(t− (i− 1) + 2.5)k. This completes the proof. ut
Similar to the proof of Corollary 1, we obtain the following:

Corollary 2. For a strongly connected digraph D, the problem k-DMLOB can
be solved in time 2O(k log2 k) · nO(1).

6 k-DMLOT is FPT

Observe that while our results are for strongly connected digraphs, they can be
extended to a larger class of digraphs. Notice that `(D) ≥ `s(D) for each digraph
D. Let L be the family of digraphs D for which either `s(D) = 0 or `s(D) = `(D).
The following assertion shows that L includes a large number digraphs including
all strongly connected digraphs and acyclic digraphs (and, also, the well-studied
classes of semicomplete multipartite digraphs and quasi-transitive digraphs, see
[7] for the definitions).

12 N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh

Proposition 3 ([4]). Suppose that a digraph D satisfies the following property:
for every pair R and Q of distinct strong components of D, if there is an arc
from R to Q then each vertex of Q has an in-neighbor in R. Then D ∈ L.

Let B be the family of digraphs that contain out-branchings. The results
of this paper proved for strongly connected digraphs can be extended to the
class L∩B of digraphs since in the proofs we use only the following property of
strongly connected digraphs D: `s(D) = `(D) > 0.

For a digraph D and a vertex v, let Dv denote the subdigraph of D induced
by all vertices reachable from v. Using the 2O(k log2 k) · nO(1) algorithm for k-
DMLOB on digraphs in L∩B and the facts that (i) Dv ∈ L∩B for each digraph
D and vertex v and (ii) `(D) = max{`s(Dv)|v ∈ V (D)} (for details, see [4]), we
can obtain an 2O(k log2 k) · nO(1) algorithm for k-DMLOT on all digraphs. For
acyclic digraphs, the running time can be reduced to 2O(k log k) · nO(1).

7 Consequent Research

Research initiated by [4] and [5] was continued by Bonsma and Dorn who proved
in [11] that every strongly connected digraph of order n with minimum in-degree
at least 3 has a out-branching with at least

√
n/4 leaves. Thus, the maximum

guaranteed number λ(n) of leaves in a strongly connected digraph of order n
with minimum in-degree at least 3 is Θ(

√
n). It would be interesting to obtain

the maximum constant c such that λ(n) ≥ c
√

n.
Using several ideas of this paper, some new ideas and treewidth rather than

pathwidth, Bonsma and Dorn [11] designed algorithms of complexity 2O(k log k)nO(1)

for both k-DMLOT and k-DMLOB. Using another approach, Kneis, Langer and
Rossmanith [30] obtained an 4knO(1) time algorithm for k-DMLOB. It is not dif-
ficult to see that this algorithm implies an 4knO(1) time algorithm for k-DMLOT.

We conclude by pointing out that in a recent paper [17], Drescher and Vetta
describe an O(

√
opt)-approximation algorithms for DMLOB, where opt is the

maximum number of leaves in an out-branching of the input digraph.

Acknowledgements. We’d like to thank the referees for a number of useful
suggestions. Research of N. Alon and M. Krivelevich was supported in part
by USA-Israeli BSF grants and by grants from the Israel Science Foundation.
Research of F. Fomin was supported in part by the Norwegian Research Council.
Research of G. Gutin was supported in part by EPSRC.

References

1. E. Aarts and J. K. Lenstra, editors. Local search in combinatorial optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley
& Sons Ltd., Chichester, 1997. A Wiley-Interscience Publication.

2. N. Alon, Transversal numbers of uniform hypergraphs. Graphs and Combinatorics
6 (1990), 1–4.

Spanning directed trees with many leaves 13

3. N. Alon and J. Spencer, The Probabilistic Method, Second Edition. Wiley, NY,
2000.

4. N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich and S. Saurabh, Parameterized
Algorithms for Directed Maximum Leaf Problems. Lect. Notes Comput. Sci. 4596
(2007), 352-362.

5. N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, Better Algorithms
and Bounds for Directed Maximum Leaf Problems. Lect. Notes Comput. Sci. 4855
(2007), 316-327.

6. S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems
restricted to partial k-trees, Discrete Appl. Math. 23 (1989), no. 1, 11–24.

7. J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications.
Springer-Verlag, 2000.

8. H.L. Bodlaender, On linear time minor tests and depth-first search. Journal of
Algorithms 14 (1993), 1–23.

9. D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a
forest. J. Comb. Theory Series B, 52:274–283, 1991.

10. P.S. Bonsma, T. Brueggermann and G.J. Woeginger, A faster FPT algorithm for
finding spanning trees with many leaves. Lect. Notes Computer Sci. 2747 (2003),
259–268.

11. P.S. Bonsma and F. Dorn, Tight bounds and faster algorithms for Directed Max-
Leaf. To appear in Proc. ESA 2009.

12. Y. Caro, D. B. West and R. Yuster, Connected domination and spanning trees
with many leaves. SIAM J. Discrete Math. 13 (2000), 202–211.

13. M. Cesati, Compendium of parameterized problems, Sept. 2006.
http://bravo.ce.uniroma2.it/home/cesati/research/compendium.pdf

14. F.R.K. Chung, Separator theorems and their applications, In Paths, flows, and
VLSI-layout (Bonn, 1988), Series Algorithms Combin., 9 (1990), 17–34, Springer,
Berlin.

15. G. Ding, Th. Johnson, and P. Seymour, Spanning trees with many leaves. Journal
of Graph Theory 37 (2001), 189–197.

16. R.G. Downey and M.R. Fellows, Parameterized Complexity , Springer-Verlag, 1999.
17. M. Drescher and A. Vetta, An approximation algorithm for the maximum leaf

spanning arborescence problem. Manuscript, 2007.
18. V. Estivill-Castro, M.R. Fellows, M.A. Langston, and F.A. Rosamond, FPT is

P-Time Extremal Structure I. Proc. ACiD (2005), 1–41.
19. F. V. Fomin, F. Grandoni, and D. Kratsch, Solving Connected Dominating Set

Faster than O(2n). Algorithmica 52 (2008), 153–166.
20. M.R. Fellows, C. McCartin, F.A. Rosamond, and U. Stege, Coordinated kernels

and catalytic reductions: An improved FPT algorithm for max leaf spanning tree
and other problems. Lect. Notes Comput. Sci. 1974 (2000), 240–251.

21. M. Fellows, Private communications, 2005-2006.
22. J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag, 2006.
23. G. Galbiati, A. Morzenti, and F. Maffioli, On the approximability of some maxi-

mum spanning tree problems. Theoretical Computer Science 181 (1997), 107–118.
24. M.R. Garey and D.S. Johnson, Computers and Intractability, W.H. Freeman and

Co., New York, 1979.
25. J.R. Griggs and M. Wu, Spanning trees in graphs of minimum degree four or five.

Discrete Mathematics 104 (1992), 167–183.
26. G. Gutin and A. Yeo, Some Parameterized Problems on Digraphs. The Computer

Journal 51 (2008), 363–371.

14 N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh

27. N. G. Kinnersley, The vertex separation number of a graph equals its path-width,
Information Processing Letters 42 (1992), 345–350.

28. L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Discrete
Mathematics 55 (1985), 181–184.

29. D.J. Kleitman and D.B. West, Spanning trees with many leaves. SIAM Journal on
Discrete Mathematics 4 (1991), 99–106.

30. J. Kneis, A. Langer and P. Rossmanith, A new algorithm for finding trees with
many leaves. To appear in Proc. ISAAC 2008.

31. N. Linial and D. Sturtevant (1987). Unpublished result.
32. H.-I. Lu and R. Ravi, Approximating maximum leaf spanning trees in almost linear

time. Journal of Algorithms 29 (1998), 132–141.
33. R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University

Press, 2006.
34. R. Solis-Oba, 2-approximation algorithm for finding a spanning tree with the max-

imum number of leaves. Lect. Notes Comput. Sci. 1461 (1998), 441–452.

