
A General Approach to Online Network Optimization Problems

Noga Alon∗ Baruch Awerbuch† Yossi Azar‡ Niv Buchbinder §

Joseph (Seffi) Naor ¶

Abstract
We study a wide range of online graph and network opti-

mization problems, focusing on problems that arise in the

study of connectivity and cuts in graphs. In a general online

network design problem, we have a communication network

known to the algorithm in advance. What is not known in

advance are the bandwidth or cut demands between nodes in

the network. Our results include an O(log m log n) competi-

tive randomized algorithm for the online non-metric facility

location and for a generalization of the problem called the

multicast problem. In the non-metric facility location m

is the number of facilities and n is the number of clients.

The competitive ratio is nearly tight. We also present an

O(log2 n log k) competitive randomized algorithm for the on-

line group Steiner problem in trees and an O(log3 n log k)

competitive randomized algorithm for the problem in gen-

eral graphs, where n is the number of vertices in the graph

and k is the number of groups. Finally, we design a de-

terministic O(log3 n log log n) competitive algorithm for the

online multi-cut problem. Our algorithms are based on a

unified framework for designing online algorithms for prob-

lems involving connectivity and cuts. We first present a gen-

eral O(log m)-deterministic algorithm for generating frac-

tional solution that satisfies the online connectivity or cut

demands, where m is the number of edges in the graph.

∗Schools of Mathematics and Computer Science, Raymond and
Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel
Aviv, Israel. Email: nogaa@post.tau.ac.il. Research supported in
part by a US-Israel BSF grant, by the Israel Science Foundation
and by the Hermann Minkowski Minerva Center for Geometry at
Tel Aviv University.

†Johns Hopkins University, Baltimore, MD 21218. E-mail:
baruch@blaze.cs.jhu.edu. Supported by Air Force Contract
TNDGAFOSR-86-0078, ARPA/Army contract DABT63-93-C-
0038, ARO contract DAAL03-86-K-0171, NSF contract 9114440-
CCR, DARPA contract N00014-J-92-1799, and a special grant
from IBM.

‡School of Computer Science, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
Email: azar@post.tau.ac.il. Research supported in part by the
Israel Science Foundation and by the IST Program of the EU.

§Computer Science Dept., Technion, Haifa 32000, Israel. E-
mail: nivb@cs.technion.ac.il.

¶Computer Science Dept., Technion, Haifa 32000, Israel. E-
mail: naor@cs.technion.ac.il. Research supported in part by a US-
Israel BSF grant, and by EU contract IST-1999-14084 (APPOL
II).

This may be of independent interest for solving fractional

online bandwidth allocation problems, and is applicable to

the node version as well. The integral solutions are obtained

by an online rounding of the fractional solution. This part

of the framework is problem dependent, and applies various

tools including results on the approximate max-flow min-cut

for multicommodity flow, the HST method and its exten-

sions, certain rounding techniques for dependent variables,

and Räcke’s new hierarchical decomposition of graphs.

1 Introduction
We study a wide range of graph and network optimiza-
tion problems, focusing on problems that arise in the
study of connectivity and cuts in graphs. Such problems
are associated with an input graph G = (V,E) (directed
or undirected), a cost function c : E → R+, and a re-
quirement function f (to be defined for each problem
separately). The goal is to find a minimum cost sub-
graph that satisfies f . Our model is online; that is, the
requirement function is not known in advance and it is
given “step by step” to the algorithm, while the input
graph is known in advance.

Network design problems are typically defined by a
requirement function f that specifies for each cut in the
graph the minimum coverage required for it. Since we
are considering an online version of network design prob-
lems we concentrate on the following subclass which we
call generalized connectivity. The requirement function
f is a set of demands of the form D = (S, T), where
S and T are subsets of vertices in the graph such that
S∩T = ∅. A feasible solution is a set of edges, such that
for each demand D = (S, T) there is a path from a ver-
tex in S to a vertex in T . Examples of problems belong-
ing to this class are Steiner trees, generalized Steiner
trees, and the group Steiner problem. Less obvious ex-
amples are the set cover problem and the non-metric
facility location problem, described below.

Cut problems in graphs involve separating sets of
vertices from each other. We concentrate on a family
of cut problems which we call generalized cuts. The
requirement function f is a set of demands of the form
D = (S, T), where S and T are subsets of vertices in the
graph such that S∩T = ∅. A feasible solution is a set of
edges that separates for each demand D = (S, T), any

two vertices s ∈ S and t ∈ T . Examples of problems
belonging to this class are multiway cuts and multi-cut.

There is a natural linear relaxation for the problems
that we are considering. For generalized connectivity
problems, a feasible fractional solution associates a frac-
tional weight (capacity) with each edge, such that for
each demand D = (S, T) a unit of flow can be sent from
S to T , where the flow on each edge does not exceed
its weight. For generalized cuts, a feasible fractional so-
lution associates a fractional weight (length) with each
edge, which we interpret as inducing a distance function.
The constraint is that for each demand D = (S, T), the
distance between any two vertices s ∈ S and t ∈ T is at
least 1. Since many of the problems that we are consid-
ering are NP-hard, this linear relaxation is very useful
for computing an approximate solution. Please refer to
[17] for more details. In addition, fractional solutions
have a motivation of their own in certain network de-
sign problems and bandwidth allocation problems.
Previous work: Network optimization problems in an
online setting have been studied extensively. The on-
line Steiner problem was considered in [14] who gave
an O(log n)-competitive algorithm and showed that in
a general metric space this is indeed best possible. The
generalized Steiner problem was considered in [3], where
an O(log2 n)-competitive algorithm is given. This was
improved to an O(log n)-competitive ratio algorithm by
[5]. The online version of the metric facility loca-
tion problem was also considered recently. Meyerson
[15] gave a randomized O(log n)-competitive algorithm
which was improved to a deterministic Θ(log n

log log n)-
competitive algorithm by Fotakis [7]. Recently, a de-
terministic online O(log n log m)-competitive algorithm
for the set cover problem was given by [1] where n is
the number of elements and m is the number of sets.
A lower bound of Ω(log n log m

log log m+log log n) was also shown
for any deterministic online algorithm for the online set
cover problem.

There is a vast literature on efficient approximation
algorithms for problems involving connectivity and cuts.
The reader is referred to [13, 17] for more details.

1.1 Results. We study generalized connectivity and
cuts problems in a unified framework. The idea is to
first compute a fractional solution online and then round
this solution to an integral one. We provide a general
deterministic procedure that computes a near-optimal
fractional solution to any problem belonging to our class
of problems. Specifically, the competitive ratio that we
achieve is O(log m), where m is the number of edges in
the graph. This algorithm can easily be extended to
the vertex counterparts of the problems. We also show
a matching lower bound of Ω(log m) on the competitive
ratio of any deterministic or randomized algorithm for

this problem. Our algorithm draws on ideas taken from
the algorithm of [1] for the online set cover problem.

We next describe our results on converting online
a fractional solution into an integral solution. This
rounding is problem dependent and we describe the
rounding for each of the special cases considered.

The first problem we consider is non-metric facility
location. In this problem we are given a set of possible
facilities, each with a setup cost, and a set of clients,
each with a connection cost to the facilities. The goal is
to find a solution that minimizes the sum of the setup
costs and the service costs. In the online case of the
non-metric facility location, clients arrive online. The
set cover problem is a special case of this problem in
which the facilities are sets and the connection cost is
either zero or infinite, depending on whether or not an
element belongs to a set.

Next, we consider the multicast problem that gen-
eralizes the non-metric facility location problem. In the
multicast problem we are given a set of weighted rooted
trees containing a set of terminals. Each terminal is as-
sociated with at most one node in each tree. The goal
is to find a minimum weight set of subtrees that contain
all the terminals, where a subtree must contain the root
of the tree it belongs to. In the online case, the termi-
nals arrive online, and upon arrival of a terminal it is
necessary to connect it to the root of a tree containing
it. The non-metric facility location is a special case of
the multicast problem. Each facility corresponds to a
tree of depth two. A tree has one edge emanating from
the root with weight equal to the setup cost of the facil-
ity, and then there are edges to the leaves, where each
leaf corresponds to a client, and the weight of an edge is
equal to the connection cost of the client to the facility.

Finally, in the realm of generalized connectivity,
we consider the group Steiner problem on trees and
general graphs [9]. In the group Steiner tree problem
on a rooted tree we are given a weighted rooted tree
T = (V,E, r), and groups g1, g2, . . . gk ⊂ V . The goal is
to find a minimum rooted subtree T ′ = (V ′, E′, r) that
contains at least one vertex from each group. In the
online version of the problem, the groups arrive online.
The multicast problem is a special case of the group
Steiner problem on rooted trees. Given an instance of
the multicast problem, the roots of the trees can be
connected to a joint root using edges of zero weight. A
group contains all the nodes associated with a particular
terminal. Notice that this reduction creates a special
instance of the group Steiner tree problem in which any
two paths from the root to vertices belonging to the
same group are disjoint.

In the multi-cut problem we are given an undirected
graph with costs (capacities) and a set of source-sink
pairs. The goal is to find a minimum cost set of

edges that disconnects each source-sink pair. In the
online version of the problem, the source-sink pairs
arrive online, and upon arrival of a pair it is necessary
to disconnect it. We show an online algorithm for
the multi-cut problem using the constructive version of
a remarkable result of Räcke [16] for the hierarchical
decomposition of graphs ([6] and [12]) together with an
approximate max-flow min-cut theorem on trees [11].
This decomposition is used along with an online primal-
dual algorithm for the problem on trees.
Specifically, we obtain the following results.

• A randomized O(log m log n) competitive algo-
rithm for the online multicast problem on trees,
where m is the number of edges, and n is the num-
ber of requested terminals.

• A randomized O(log m log n) competitive algo-
rithm for the online non-metric (and metric) fa-
cility location problem, where m is the number of
possible facilities and n is the number of clients.

• A randomized O(log2 n log k)-competitive algo-
rithm for the online group Steiner problem on trees,
where k is the number of groups, and n is the num-
ber of leaves in the tree. This implies a random-
ized O(log3 n log k)-competitive algorithm for gen-
eral graphs using hierarchically well-separated trees
[4, 8]

• A deterministic O(log3 n log log n) competitive al-
gorithm for the online multi-cut problem in general
graphs. Improved bounds are obtained for planar
graphs and for trees.

2 Preliminaries
In this section we formally define our problems. Let
G = (V,E) be a graph (directed or undirected) with
cost function c : E → R+ associated with the edge set
E. Suppose further that there is a weight function (or
capacity function) w : E → R+ associated with the edge
set E. The cost of w is defined to be

∑
e∈E wece.

Let A ⊂ V and B ⊂ V be subsets of V such that
A ∩ B = ∅. Let G′ be the graph obtained from G by
adding a super-source s connected to all vertices in A
and a super-sink t connected to all vertices in B. The
edges from s to A are directed into A and have infinite
weight, and the edges from B to t are directed into T
and have infinite weight. There is flow from A to B
of value α if there exists a exists a legal flow function
f that sends α units of flow from s to t satisfying the
capacity function w. The shortest path from A to B is
defined to be the shortest path with respect to w from
any vertex u ∈ A to any vertex v ∈ B (i.e. the minimal
distance between any pair of vertices in A and B)

A requirement function is a set of demands of the
form Di = (Si, Ti), 1 ≤ i ≤ k, where Si ⊂ V and Ti ⊂ V
and Si ∩ Ti = ∅.

We first define the generalized connectivity problem.
The input is a requirement function f . A feasible
integral solution is an assignment of weights (capacities)
w from {0, 1} to E, such that for each demand Di =
(Si, Ti), 1 ≤ i ≤ k, there is a flow function from Si to
Ti of value at least 1. A feasible fractional solution is
an assignment of weights (capacities) w from [0, 1] to
E, such that for each demand Di = (Si, Ti), 1 ≤ i ≤ k,
there is a flow function from Si to Ti of value at least 1.
We note that the flow constraint has to be satisfied for
each demand (Si, Ti) separately. The cost of a solution
is defined to be the cost of w.

We now define the generalized cuts problem. The
input is a requirement function f . A feasible integral
solution is a set of edges E′ ⊆ E that separates for
each demand Di = (Si, Ti) any two vertices a ∈ Si and
b ∈ Ti. Alternatively, we can think of each edge e ∈ E′

as having weight w(e) = 1. Thus, the weight function w
induces a distance function on the graph such that the
distance between vertices separated by E′ is at least
1. A feasible fractional solution is an assignment of
weights w from [0, 1] to E, such that for each demand
Di = (Si, Ti), 1 ≤ i ≤ k, the distance induced by w
between each a ∈ Si and b ∈ Ti is at least 1. The cost
of a solution is defined to be the cost of w.

In an online setting, the graph G = (V,E) along
with the cost function c is known to the algorithm (as
well as to the adversary) in advance. The set of requests
of the form Di = (Si, Ti) is then given one-by-one to
the algorithm in an online fashion. Upon arrival of a
new demand, the algorithm must satisfy it by increasing
the weights of edges in the graph. (The algorithm is
not allowed to decrease the weight of an edge.) Thus,
previous demands remain satisfied. The performance
of the algorithm, the competitive ratio, is defined to be
the ratio between the cost of the solution produced by
the algorithm and the cost of an optimal solution that
satisfies the given demands with minimum cost.

We now define the special cases that we consider in
the context of generalized connectivity.

The multicast problem in trees is defined as follows:
Let X = {1, 2, . . . , n} be a ground set of terminals, and
let T = {T1, T2, . . . , Tm} be a family of rooted trees
with a cost function c : E → R+ associated with the
edges. Each tree leaf is associated with a subgroup
of the terminals, where any terminal i belongs to at
most one leaf subgroup in each of the trees. A cover
is a collection of rooted subtrees T ′ = {T ′

1, T
′
2, . . . , T

′
m},

where T ′
i ⊆ Ti (1 ≤ i ≤ m), such that the union of the

subgroups of the leaves in T ′ is the set X. The cost of a
cover is the sum of the costs of the edges in the subtrees

in T ′. The goal is to find a cover of minimum cost.
This problem is a natural generalization of the set

cover problem. Think of each set as being represented
by a tree containing only one edge, where one vertex
is a root and the other vertex a leaf. The cost of
the edge is equal to the cost of the set and the leaf is
associated with the elements belonging to the set. We
note that the multicast problem in trees has an O(log n)-
approximation algorithm.

The non-metric facility location problem is a special
case of the multicast problem. In the non-metric facility
location problem there are m possible locations for
opening facilities denoted by F = {f1, f2, . . . , fm}.
There is a setup cost for opening each of the facilities.
There are also n clients R = {r1, r2, . . . , rn} and a
connection cost function c : F × R → R+ denoting the
cost of connecting each client to each facility. A solution
is a subset F ′ ⊆ F and a mapping of the clients to the
facilities in F ′. The goal is to minimize the cost of the
solution which is defined to be the setup cost of the
facilities in F ′ plus the connection cost of the clients as
defined by the mapping of clients to facilities in F ′. The
problem is clearly an instance of the multicast problem,
where there is a tree corresponding to each facility and
all trees have depth two. The cost of the “root” edge
is equal to the setup cost of the facility and the cost of
each “leaf” edge (that corresponds to a client) is equal
to the cost of connecting the client to the facility.

The group Steiner tree problem in a rooted tree is
defined as follows. We are given a rooted tree T =
(V,E, r) with non-negative cost function c : E → R+,
and groups g1, g2, . . . gk ⊂ V . The objective is to find a
minimum cost rooted subtree T ′ that contains at least
one vertex from each of the groups gi, 1 ≤ i ≤ k.
The multicast problem is a special case of this problem.
Given an instance of the multicast problem, we can
connect the roots of all the multicast trees using edges
of cost 0 to a joint root r. Group gi, 1 ≤ i ≤ n, is
defined to be the set of leaves containing terminal ti.
Notice that this reduction creates a special instance of
the group Steiner tree problem in which any two paths
from the root to vertices belonging to the same group
are disjoint.

The group Steiner tree problem has an
O(log n log k) approximation algorithm, where k is
the number of groups, and n is the number of leaves
in the tree [9]. In general (undirected graphs, the
best approximation factor known for the group Steiner
problem is O(log2 n log k) by combining [9] with [8].

The multi-cut problem in undirected graphs is a
special case of the previously defined generalized cuts
problem, where the requirement function f is a set
of source-sink pairs {si, ti}, 1 ≤ i ≤ k. The best
approximation factor for this problem is O(log k) [10].

3 Computing a fractional solution online
In this section we describe our online algorithm for
computing a near-optimal fractional solution for both
the generalized connectivity and the generalized cuts
problems. We first describe the algorithm for the
generalized connectivity problem (Section 3.1) and then
explain the changes needed for the generalized cuts
problem (Section 3.2). Let |V | = n and |E| = m. The
competitive ratio of our algorithm is O(log m) and it
is defined with respect to an optimal offline fractional
solution. We note that our method is applicable to both
vertex and edge versions of our problems, as well as for
directed and undirected graphs.

Let us denote the cost of an optimal fractional
solution, OPT, by α. We first claim that by using the
doubling technique, we can assume that the value of α is
known up to a factor of 2. Initially, we can start guessing
α = mine∈E ce, and then run the algorithm with this
bound on the optimal solution. If it turns out that the
value of the optimal solution is larger than our current
guess for it, (that is, the cost of the fractional solution
exceeds Θ(α log m)), then we can “forget” about all
weights given so far to the edges, update the value of
α by doubling it, and continue on. We note that the
fractional cost of the edges that we have “forgotten”
about can increase the cost of our solution by at most a
factor of 2, since the value of α is doubled in each step.

We thus assume that α is known. We next claim
that we can assume that for all edges having weight
strictly less than 1 in the online solution, their cost is
between 1 and 2m2. This is justified as follows. First,
we double the weights of all the edges in OPT and round
down to zero all edges that have weight less than 1/m.
This results in a feasible solution of cost 2α which we
denote by OPT′. Since the weights of the edges in OPT′

are at least 1/m, the cost of the edges in OPT′ cannot
exceed 2mα. Hence, all edges in the graph having cost
more than 2mα can be ignored. We now set to 1 in our
solution the weight of all edges having cost less than
α/m. This can increase the competitive factor of our
algorithm by at most a factor of 2. Thus, the costs of
all the edges in the graph are between α/m and 2mα,
and the costs can further be normalized so that the
minimum cost is 1 and the maximum cost is at most
2m2.

We note that by ignoring edges in the graph we
mean that they are not considered by our online al-
gorithm. For the generalized connectivity problem it
means that we do not use these edges to connect ver-
tices, and hence they can be removed from the graph.
For the generalized cut problem it means that such
edges do not participate in a cut, and hence we can
identify the two endpoints of such edges.

3.1 Generalized Connectivity. We describe an on-
line algorithm with competitive factor O(log m). All
logarithms are to the base 2. Initially, the algorithm
gives each edge a fractional weight of 1/2m3. Assume
now that the algorithm receives a new demand (S, T).
The following is performed in this case.

1. If the maximum flow from S to T is at least
1, then do nothing.

2. Else: While the flow between S and T is less
than 1, perform a weight augmentation:

• Compute a minimum cut C between S
and T .

• For each edge e ∈ C, we ← we(1 + 1
ce

).

We now analyze the performance of the algorithm
upon termination, i.e., when the algorithm gets the full
requirement function.

Lemma 3.1. When the algorithm terminates, all con-
nectivity demands are satisfied.

Proof. Follows immediately from the algorithm.

Lemma 3.2. The number of weight augmentation steps
performed during the run of the algorithm is at most

6α log2 m + 4α = O(α log m).

Proof. Obviously, for each edge e ∈ E, we ≤ 1 + 1
ce

always holds, since an edge which has weight exceeding
1 cannot be part of a minimum cut with total weight
less than 1. Consider the following potential function:

Φ =
∑
e∈E

cew
∗
e log2(we)

where w∗
e is the weight of edge e in OPT′. We now show

three properties of Φ:

• The initial value of the potential function is:
−6α log2 m− 2α.

• The potential function never exceeds 2α.

• In each weight augmentation step, the potential
function increases by at least 1.

The first two properties follow directly from the initial
value and from the fact that no edge gets a weight
of more than 2. Consider an iteration in which the
adversary gives a connectivity demand (S, T). A weight
augmentation of a cut C is performed as long as the
connectivity between S and T is less than 1. The total
weight assigned by OPT′ to edges in C is at least 1.

Thus, the increase of the potential function is at least:

∆Φ =
∑
e∈C

cew
∗
e log2

(
we

(
1 +

1
ce

))
−

∑
e∈C

cew
∗
e log2 we

=
∑
e∈C

cew
∗
e log2

(
1 +

1
ce

)
≥

∑
e∈C

w∗
e ≥ 1

Theorem 3.1. The above algorithm is O(log m)-
competitive for the fractional generalized connectivity
problem.

Proof. It suffices to show that the following is main-
tained throughout the algorithm:∑

e∈E

wece ≤ 6α log2 m + 4α + 1 = O(α log m).

Consider an iteration in which a connectivity demand
(S, T) is given. Let C be a cut that has weight less than
1, i.e.,

∑
e∈C we < 1. The weight of each edge e ∈ C

increases by we/ce in each weight augmentation step.
Thus, the total increase of the quantity

∑
e∈E wece in a

weight augmentation step does not exceed∑
e∈C

we

ce
ce =

∑
e∈C

we < 1.

Initially,
∑

e∈E wece ≤ m · 1
2m3 · 2m2 = 1, and the claim

thus follows from Lemma 3.2 that bounds the number
of weight augmentation steps.

3.2 Generalized Cuts. We now present an
O(log m)-competitive algorithm for the generalized
cuts problem. It is essentially the same as the algorithm
for the generalized connectivity problem presented in
the previous section. We highlight the changes needed.

Initially, the algorithm assigns each edge a length
of 1/2m3. Assume now that the adversary gives the
algorithm a new request (S, T). The algorithm is as
follows.

1. If the length of the shortest path from S to T
is already at least 1, then do nothing.

2. Else: While the length of the shortest path
from S to T is less than 1 perform a length
augmentation:

• Compute the shortest path P between S
and T .

• For each edge e ∈ P, we ← we(1 + 1
ce

).

Clearly, the above algorithm produces a feasible
fractional solution to the problem. Proving the com-
petitive factor in this case follows closely the proof in
the case of generalized connectivity. Hence we conclude:

Theorem 3.2. The above algorithm is O(logm)-
competitive for the fractional generalized cut problem.

3.3 Lower Bounds. We now show that our algo-
rithm is optimal for the fractional generalized connectiv-
ity and generalized cuts problems. In order to show that
we prove two lemmas. The first one provides a lower
bound on the competitive ratio of either a deterministic
or a randomized algorithm for the generalized connec-
tivity problem. The lemma also holds with respect to an
integral optimal solution. The second lemma provides
the same lower bound with respect to the generalized
cuts problem.

Lemma 3.3. Any deterministic or randomized algo-
rithm for the online fractional connectivity problem has
a competitive ratio of at least Ω (log m) with respect to
both an integral optimal solution and a fractional op-
timal solution. This holds even when the graph is an
undirected star.

Proof. Let A be any deterministic or randomized online
algorithm. Let T be a star with n leaves (and edges)
v1, v2, . . . , vn, a root r, n = 2k . We describe the strat-
egy of the adversary. The adversary starts by asking
the demand (S, T), S = {r}, T = (v1, v2, . . . , vn). This
is defined to be iteration zero. Algorithm A must in-
crease the flow from the root to all the leaves to be
equal to 1. This means that the expected flow to ei-
ther the n/2 first terminals or to the n/2 last termi-
nals is at least half. Thus, in the next iteration the
adversary changes T to be either (v1, v2, . . . , vn/2) or
(v(n/2)+1, . . . , vn), choosing the set with the smaller
expected flow value. In the kth iteration, if the
previous demand was ({r}, {vi, vi+1, . . . , vj}), j > i,
then the next demand is either ({r}, {vi, . . . , v i+j

2
}) or

({r}, {v i+j
2 +1, . . . , vj}) choosing the set with the less ex-

pected flow. It is not hard to see that the expected cost
of Algorithm A in the fractional case is at least,

log n∑
i=1

1
2

= Ω(log n) = Ω(log m).

The optimal integral solution can assign a weight of
1 only to the edge adjacent to the last vertex asked,
completing the proof of the lower bound.

Lemma 3.4. Any deterministic or randomized algo-
rithm for the online fractional cuts problem has a com-
petitive ratio of at least Ω (log m) with respect to both an

integral optimal solution and a fractional optimal solu-
tion. This is true even when the graph is a line and the
cuts demands groups are of size 1.

Proof. Let A be any deterministic or randomized online
algorithm. Let G be a line with vertices v1, v2, . . . , vn

(n = 2k +1). We describe the strategy of the adversary.
The adversary starts with the demand ({v1}, {vn}).
This is defined to be iteration zero. Algorithm A
must increase the distance from v1 to vn to be 1.
This means that the expected distance from either v1

to v(n+1)/2 or from v(n+1)/2 to vn is at least half.
Thus, in the next iteration the adversary continues with
either ({v1}, {v(n+1)/2}) or ({v(n+1)/2}, {vn}), choosing
the path which has the shorter expected distance.
The adversary can continue doing so until it asks two
consecutive vertices. It is not hard to see that the
expected cost of Algorithm A in the fractional case is
at least,

log(n−1)∑
i=1

1
2

= Ω(log n) = Ω(log m)

The optimal integral solution can assign a length of 1
to the edge separating the last two vertices, completing
the proof of the lower bound.

We remark that the proofs of the lower bounds in
this section cannot be applied to the fractional online
Steiner tree problem, as well as for the fractional on-
line generalized Steiner tree. However, a lower bound
on the competitive ratio for any deterministic or ran-
domized online algorithm for these problems follows in
a straightforward manner from the lower bound shown
for the integral Steiner tree problem in [14].

4 Applications - Integral Connectivity and
Cuts Problems

We can use the algorithms described in the previous
section as a basis for an efficient randomized online
algorithm for special cases of the integral connectivity
and cuts problems as well. This can be done by
rounding online the fractional solution generated by the
algorithm in the previous section. This is the heart
of our general approach to online network optimization
problems. The rounding algorithms use the online
algorithms for generating a fractional solution as a
“black box”. We present here four problems in which
such a rounding is applicable.

In section 4.1 we consider the multicast problem
and the non-metric facility location problem. In section
4.2 we consider the group Steiner problem on a tree.
Then, in section 4.3 we consider the group Steiner tree
problem in general graphs. We conclude with the online
multi-cut problem in Section 4.4.

4.1 Multicast and Non-metric Facility Location
Problems. We describe a randomized algorithm for
the multicast problem. Following each request, we first
compute an O(log m)-competitive fractional solution.
We now explain how the rounding of the fractional
solution is performed.

Initially, the algorithm starts with an empty cover
C = ∅. The algorithm keeps for every tree Ti ∈ T ,
2dlog(n′ + 1)e random independent variables, X(Ti, j),
1 ≤ j ≤ 2dlog(n′ + 1)e, distributed uniformly in
the interval [0, 1]. The value of n′ is the number of
terminals asked so far by the adversary. As n′ changes
we gradually increase the number of random variables.
Define the threshold of tree Ti to be:

θ(Ti) =
2dlog(n′+1)e

min
j=1

X(Ti, j).

The rounding method is very simple. Take to the
solution C all edges e for which we > θ(Te), where Te is
the tree containing edge e. That is, the weight of edge
e has exceeded the threshold of the tree containing it.
We note that increasing n′ adds more random variables
which can only decrease the thresholds of the trees, and
hence increase the probability of taking edges to the
solution. Thus, when increasing n′, it is necessary to
reconsider previously considered edges.

Let α be the value of an optimal fractional solution
to the instance given so far. We now analyze the
performance of the algorithm.

Lemma 4.1. The following holds throughout the algo-
rithm:

1. The expected cost of the solution produced by the
algorithm is O(α log n′ log m).

2. For any terminal t, the probability that t is re-
quested, yet it is not covered, is at most 1/n′2.

Proof. We begin by proving (1). For each edge e and
j, 1 ≤ j ≤ 2 log n, let Y (e, j) be the indicator random
variable of the event that we > X(Te, j). Thus,

Exp

[∑
e∈C

ce

]
≤

∑
e∈E

2dlog(n′+1)e∑
j=1

ce ·Exp[(Y (e, j)]

=
∑
e∈E

2dlog(n′+1)e∑
j=1

cewe

≤ 2dlog(n′ + 1)e(2α log m + α + 1)
= O(α log n′ log m).

We now prove (2). Consider a terminal t. The
fractional solution guarantees that the total amount of

flow that can be sent from the roots of the trees in T
to the vertices that are associated with t is at least 1.
Let fT

t be the flow to terminal t in tree T . Thus, the
probability that terminal t is not covered is bounded
from above by the probability that the threshold of each
tree T containing t is larger than fT

t . Recall that the
weight of each edge on a path to t is at least the flow
going to the terminal on the path.

For any tree T and j, 1 ≤ j ≤ 2dlog(n′ + 1)e, the
probability that the flow to t in T is at most X(T, j)
is 1 − fT

t . Thus, the probability that none of the flow
paths to t exceeds X(T, j) is∏

T∈T
(1− fT

t) ≤ e−
∑

T∈T fT
t <

1
e
,

where the last inequality follows from the fact that∑
T fT

t = ft ≥ 1. Thus, the probability that the
terminal is not covered by any 1 ≤ j ≤ 2dlog(n′ + 1)e is
less than 1/n′2.

Lemma 4.1 suggests the following change to the
algorithm to guarantee that a feasible solution is always
computed. We run the algorithm. If at any time a
terminal t is requested, but is not covered, then we
choose the cheapest path from a root of a tree in T to
t to the cover. The cost of this path is certainly a lower
bound on the optimal solution. Since this event happens
with probability at most 1/n′2 for each terminal, its
effect on the expected cost of the algorithm is negligible.
Thus, we obtain the following theorems.

Theorem 4.1. There exists a randomized algorithm
for the online multi-cast problem in trees that is
O(log n′ log m) competitive.

Theorem 4.2. There exists an O(log n log m) compet-
itive randomized algorithm for the non-metric facility
location, where m is the number of facilities and n is
the number of clients.

We remark that both the online multi-cast prob-
lem in trees and the online non-metric facility loca-
tion are generalizations of the online set-cover prob-
lem introduced in [1]. Thus, the lower bound of
Ω(log n log m

log log m+log log n) proved in [1] for any deterministic
algorithm for the online set-cover problem applies to
these problems as well.

4.2 The Group Steiner Problem on Trees We
describe a randomized algorithm for the group Steiner
tree problem on trees. Following each request, we first
compute an O(log m)-competitive fractional solution.
We now explain how the rounding of the fractional
solution is performed. To this end, we use an online
variation on the method of [9].

Initially, the algorithm starts with an empty cover
C = ∅. Applying the technique of [9] requires that the
fractional weights on a path from the root to a terminal
are monotonically decreasing. However, the fractional
solution that we compute may not necessarily satisfy
this property. Therefore, we define the weight of each
edge to be the maximum flow through the edge going
to a terminal in the edge’s subtree. Thus, we abuse
notation and let we denote the flow on edge e instead
of the actual weight of e. Note that by doing so we can
only decrease the value of the fractional solution that
serves as our baseline for performing the competitive
analysis, since the flow value on an edge can only be
less than the actual weight of the edge.

Consider a weight augmentation iteration in the
fractional algorithm. For each edge e, let we and
w′

e = we + δe denote the weight of e before and after
the weight augmentation iteration, respectively. For an
edge e, let f be the edge adjacent to e and closer to the
root r. The rounding algorithm processes the edges in
topological order (from top to bottom). For each edge
e, the following is performed:
• If w′

e > 1, then add e to C.
• If e is incident on r, or w′

f > 1, then add e to C
with probability δe/(1− we).
• If f ∈ C, then add e to C with probability δe/(w′

f −
we).

Note that for each edge e, the probability δe/(w′
f −

we) ≤ δe/(w′
e − we) = 1, since w′

e < w′
f . The edges

are considered in topological order so that C induces
a (connected) subtree of T , since an edge is added to
C only if the path connecting it to the root r already
belongs to C. We prove the following lemma:

Lemma 4.2. At any point of time t in the algorithm, the
probability that an edge e belongs to C is we(t), where
we(t) is the weight of e at time t. If we > 1, then e ∈ C.

Proof. The rounding algorithm adds each edge e to C
for which we > 1.

Consider an edge e and let the path from the root
r to e be e0, e1, . . . ep = e. The proof is by induction on
the time t.
Induction Basis: At t = 0, the probability that e is
added to C is equal to we0 ·

∏p
i=1 wei

/wei−1 = wep
.

Inductive Step: Consider a time t > 0 where we is
raised to we + δe. By the inductive hypothesis, each
edge ei, 0 ≤ i ≤ p − 1, belongs to C with probability
min{w′

ei
, 1}, and e ∈ C with probability we.

We need another (internal) induction on p, the
length of the path from r to e. The base case is when
e is incident on r. Then, the probability that e belongs
to C is

we +
δe · (1− we)

(1− we)
= we + δe = w′

e.

If w′
e > 1 then edge e belongs to C with probability 1.
Let e be an edge of depth p. By the (internal)

inductive hypothesis, the probability that ep−1 is added
to C is w′

p−1. The probability that e is added to C is
equal to

we +
δe · (w′

p−1 − we)
(w′

p−1 − we)
= we + δe = w′

e.

The above LHS is the probability that e was previously
added to C plus the probability that e was not previously
added to C, but ep−1 was previously added to C and e
is added to C in the current step.

If w′
p−1 > 1, then the probability that e is added to

C in the current step is

we +
δe · (1− we)

(1− we)
= we + δe = w′

e.

If w′
e > 1, then edge e belongs to C. Thus, the claim

holds.

Lemma 4.3. At any point of time t in the algorithm,
the expected cost of the edges added to C is at most∑

e∈T cewe(t).

Proof. From Lemma 4.2 it follows that the probability
at any time t that edge e belongs to C is at most we.
By linearity of the expectation the claim follows.

We now analyze the probability that a group g is
covered when wg > 1.

Lemma 4.4. For any group g, consider the first time t
such that wg > 1. Then, the probability that a vertex
belonging to g is in at time t is Ω(1/ log N), where N is
the maximum size of a group.

Proof. Our proof uses [9, Thm. 3.4, p. 72]. This
requires proving that the probability of the “good”
events remains the same and that the dependency
between them remains the same. The first claim follows
from lemma 4.2. In order to prove the second claim
we need to show that the probability of two “good”
events is the same as in Theorem 3.4 of [9]. This follows
from the fact that the probability that e is chosen to
the solution given that h, an edge closer to the root,
is chosen is exactly we/wh. The events for e and f are
independent, given that h, their least common ancestor,
is chosen. Thus, the probability for e and f is wewf/wh,
and we are done.

Actually, in order to use the original proof of [9],
we are required to prove a stronger assertion about the
independence of the corresponding events. However,
this is not needed, since the proof of [9] can be modified
so that only the second moment of the variable which is

the number of paths from the root to a vertex in g needs
to be computed. This follows from the assertion of [2,
Sec. 4.8, Ex. 1]. Therefore, the above independence
result suffices.

Lemma 4.4 suggests the following randomized on-
line algorithm. Run O(log k log N) independent trials
in parallel using the randomized rounding described,
where k is the number of groups asked by the adversary.
This results in a randomized algorithm with competitive
ratio O(log k log N) that covers all the groups with prob-
ability at least 1− 1/k. In order to guarantee that the
algorithm always produces a feasible solution, we can
use the shortest path to a group in case the algorithm
fails to cover it. The cost of this path is a lower bound
on the optimal solution, and since this event happens
with probability at most 1/k, it changes the expected
competitive ratio of the algorithm by a negligible factor.
Since we do not know in advance the value of k we may
increase the number of trials gradually as more groups
are asked, similar to Section 4.1.

4.3 The Group Steiner Problem on General
Graphs. We now consider the Group Steiner tree algo-
rithm on general graphs. To this end, we use hierarchi-
cally well-separated trees (HST-s) [4, 8]. A set of metric
spaces S over V is said to α-probabilistically approxi-
mate a metric spaceM over V , if: (1) for every x, y ∈ V
and S ∈ S, dS(x, y) ≥ dM(x, y) and (2) there exists a
probability distribution D over the metric spaces in S
such that for all x, y ∈ V , E [dD(x, y)] ≤ αdM(x, y).
Recently, the following theorem was proved in [8], im-
proving upon the basic approach of [4].

Theorem 4.3. Every weighted connected graph G on n
vertices can be α-probabilistically approximated by a set
of weighted trees, where α = O(log n). The probability
distribution can be computed in polynomial time.

We use this theorem to obtain the following bounds.

Theorem 4.4. There is a randomized online algorithm
for the group Steiner problem in general graphs with a
competitive ratio of O(log3 n log k).

Proof. We first use Theorem 4.3 to randomly choose a
tree T from the distribution D. Then, we run the online
algorithm from Section 4.2 on the tree T . When a new
vertex v is being connected to the root r, we just connect
it in the graph via its closest neighbor in the tree that
is already connected to the root. Since the tree is an
HST, the cost of this path in the tree is only twice the
connection cost of v to the least common ancestor of
v and its closest previously connected neighbor. Thus,
on the average, we are paying at most twice the stretch
factor of the paths, and the theorem follows directly

from Theorem 4.3 and the guarantee on the performance
of the algorithm in Section 4.2

4.4 The multi-cut problem In this section we con-
sider the online multi-cut problem in undirected graphs.
The online algorithm we present here does not fit the
general framework developed in the paper, where a frac-
tional solution is computed online and then rounded on-
line into an integral solution.

In [16], Räcke describes a procedure for finding
a hierarchical decomposition of any undirected graph
G = (V,E) with capacities on the edges. An efficient
procedure for finding such a decomposition tree TG

appears in [6] and [12]. This remarkable decomposition
enables us to transform the problem from a general
graph to a tree. We later on present an online algorithm
for the multi-cut problem on trees with competitive
ratio α, where α may depend on the height of the tree.

The nodes of the decomposition tree TG correspond
to a laminar family of subsets of V . There is a 1-1 cor-
respondence between V and the leaves of the tree. The
edges of TG correspond to cuts in G and each tree edge is
associated with a capacity (or cost) which is equal to the
capacity (or cost) of the corresponding cut in G. The
tree TG has the property that for any choice of source-
sink pairs, any feasible multi-commodity flow function
in TG can be routed in G causing a congestion of at most
β. The best value of β is O(log2 n log log n) for general
graphs and O(log n log log n)) for planar graphs, and it
is given by [12] together with a polynomial-time con-
struction of TG.

Thus, the multi-cut problem in G translates into a
multi-cut problem in the decomposition tree TG, where
the goal is to separate between the leaves containing
the source-sink pairs. We run an α-competitive online
algorithm for the (online) multi-cut problem in TG. A
multi-cut in TG is a set of edges which translate back in
G into a set of cuts having at most the capacity of the
multi-cut in TG. Clearly, this translation can be done
online.

Theorem 4.5. There is a deterministic polynomial-
time algorithm for the online multi-cut problem that
achieves a competitive ratio of:

• O(log3 n log log n) for general graphs.

• O(log2 n log log n) for planar graphs.

• O(log2 n) for trees.

Proof. (Sketch) Let Conl(G) and Conl(TG) denote the
multi-cuts found by the online algorithm in G and in
TG, respectively. Let Copt(TG) denote the optimal multi-
cut in TG, and let MCFopt(TG) be the maximum multi-
commodity flow in TG between the source-sink pairs.
By [11], in a tree, Copt(TG) ≤ 2 ·MCFopt(TG). Hence,

Conl(G) ≤ Conl(TG) ≤ α · Copt(TG)
≤ 2α ·MCFopt(TG).

Let f∗ be a maximum multi-commodity flow between
the source-sink pairs in TG. Let MCFopt(G) denote
a maximum multi-commodity flow in G between the
source-sink pairs. Since f∗ can be routed in G with a
congestion of at most β, we get that,

MCFopt(G) ≥ 1
β

MCFopt(TG),

yielding that

Conl(G) ≤ 2αβ ·MCFopt(G).

Since MCFopt(G) lower bounds the optimal multi-cut
in G, we get that our algorithm is (2αβ)-competitive.
Substituting the appropriate values for β, and setting
α = O(log n), the claimed bounds follow.

We now proceed and show an online algorithm
for the multi-cut problem in trees. First, note that
there is a simple reduction from the online multi-
cut problem in trees to the online set cover problem.
Each pair of vertices in the tree corresponds to an
element; each edge of the tree corresponds to a set.
A set contains an element if the corresponding edge
separates the two vertices corresponding to the element.
Hence, by the main result of [1], (which follows the
basic general approach developed here), there is a
deterministic O(log2 n)-competitive algorithm for the
online minimum multi-cut tree problem.

The above reduction applies to any tree. However,
when considering the decomposition trees produced by
[12], we observe that their height is only O(log n). We
use this to improve on the competitive ratio by provid-
ing an O(h)-competitive online algorithm for any tree,
where h denotes the height. The online algorithm es-
sentially follows the primal-dual 2-approximation algo-
rithm of [11]. However, in an online setting, we cannot
choose the order of the source-sink pairs and we cannot
apply the “cleaning” stage at the end. Thus, apply-
ing the standard primal-dual scheme on the multi-cut
problem on a tree yields an O(h)-approximation factor
that translates to an O(h)-competitive online algorithm.
The O(h)-approximation factor follows since the primal
complementary slackness condition is preserved, and a
relaxed dual condition with a 2h factor is trivially pre-
served. An alternative description of the algorithm is
via the local ratio technique: reduce from the cost of all
the edges on the unique path between the new source-
sink pair the minimum cost of an edge on the path, and
then take into the cut all zero-cost edges.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and
J. Naor. The online set cover problem. In Proceedings
of the 35th annual ACM Symposium on the Theory of
Computation, pp. 100-105, 2003.

[2] N. Alon and J. H. Spencer, The probabilistic
method, Second Edition, Wiley, New York, 2000.

[3] B. Awerbuch, Y. Azar, and Y. Bartal. On-line gener-
alized Steiner problem. In Proc. of the 7th Ann. ACM-
SIAM Symp. on Discrete Algorithms,pp. 68-74, 1996.

[4] Y. Bartal Probabilistic approximation of metric spaces
and its algorithmic applications. In Proceedings of
the 37th annual IEEE Symposium on Foundations of
Computer Science, pp. 184-193, 1996.

[5] P. Berman and C. Coulston. On-line algorithms for
Steiner tree problems. In Proc. of the 29th annual
ACM Symp. on the Theory of Computation, 1997.

[6] M. Bienkowski, M. Korzeniowski and H. Räcke. A
practical algorithm for constructing oblivious routing
schemes. In Proceedings of the 15th SPAA, 2003.

[7] Dimitris Fotakis. On the competitive ratio for online
facility location. In ICALP 2003,pp. 637-652 2003.

[8] J. Fakcharoenphol, S. Rao, K. Talwar A tight bound
on approximating arbitrary metrics by tree metrics In
Proceedings of the 35th annual ACM Symposium on the
Theory of Computation, pp. 448-455, 2003.

[9] N. Garg, G. Konjevod, R. Ravi. A Polylogarithmic
approximation algorithm for the group Steiner tree
problem. In Journal of Algorithms, 37(1):66-84, 2000.

[10] N. Garg, V. V. Vazirani and M. Yannakakis Approxi-
mate max-flow min-(multi)cut theorems and their ap-
plications In SIAM J. on Computing, 25:235-251, 1996.

[11] N. Garg, V. V. Vazirani and M. Yannakakis. Primal-
dual approximation algorithms for integral flow and
multicut in trees. In Algorithmica, 18:3-20, 1997.

[12] C. Harrelson, K. Hidrum and S. Rao A polynomial
time tree decomposition to minimize congestion. In
Proceedings of the 15th SPAA, pp. 34-43, 2003.

[13] D. Hochbaum. Approximation algorithms for
NP-Hard problems. PWS Publishing Company,
Boston, MA, 1997.

[14] M. Imase and B.M. Waxman. Dynamic Steiner tree
problem. In SIAM Journal Discrete Math., 4:369-384,
1991.

[15] Adam Meyerson. Online facility location. In Proceed-
ings of the 42nd Annual Symposium on Foundations of
Computer Science, FOCS,pp. 426-431 2001.

[16] H. Räcke. Minimizing congestion in general networks.
In Proceedings of the 43rd Annual Symposium on Foun-
dations of Computer Science, FOCS, 2002.

[17] V. V. Vazirani. Approximation algorithms.
Springer Verlag, Berlin-New York, 2001.

