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Abstract

Let (Cd
m)∞ denote the graph whose set of vertices is Zd

m in which two distinct vertices are
adjacent iff in each coordinate they are either equal or differ, modulo m, by at most 1. Bollobás,
Kindler, Leader and O’Donnell proved that the minimum possible cardinality of a set of vertices
of (Cd

m)∞ whose deletion destroys all topologically nontrivial cycles is md− (m− 1)d. We present
a short proof of this result, using the Brunn-Minkowski Inequality, and also show that the bound
can only be achieved by selecting a value xi in each coordinate i, 1 ≤ i ≤ d, and by keeping only
the vertices whose i-th coordinate is not xi, for all i.
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1 Introduction

Let (Cd
m)∞ denote the graph whose set of vertices is Zd

m in which two distinct vertices are adjacent
iff in each coordinate they are either equal or differ, modulo m, by at most 1. This graph is the
product of d copies of the cycle of length m, and can be viewed as the graph of the discrete torus.
The problem of determining the minimum possible cardinality of a set of vertices of this graph that
intersects all noncontractible cycles in it, has been considered by Saks, Samorodnitsky, and Zosin
in [1], motivated by the problem of exhibiting directed multi-commodity problems that have a large
integrality gap. Their estimate has been improved to a tight one, which is md−(m−1)d, by Bollobás,
Kindler, Leader and O’Donnell in [2], where a connection to the parallel repetition of the odd cycle
game is mentioned. In this note we describe a short intuitive proof of the same result, based on
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the Brunn-Minkowski isoperimetric Inequality. The proof also implies that equality is achieved only
when the (m − 1)d vertices remaining form the graph of a d-dimensional hypercube of edge length
m− 1, that is, the product of d paths, each having m− 1 vertices.

It is worth noting that the problem of determining the minimum cardinality of a set of edges of
the graph (Cd

m)∞ that intersects all nontrivial cycles, discussed in [3], [4], seems more difficult and
only an asymptotic estimate of this minimum is known.

2 The proof

Let Zd
m be the set of vertices of (Cd

m)∞, and consider them as points in Zd. It is convenient to view
Zd as an infinite graph in which two distinct vectors are adjacent iff they differ in at most 1 in each
coordinate. For two vectors ā = (a1, a2, ..., ad) and b̄ = (b1, b2, ..., bd) in Zd

m or in Zd we write that
b̄ ↗ ā iff ai − bi ∈ {0, 1} for all i. Note that ↗ is a reflexive relation. Note also that the following
holds:

Observation 1. If b̄1, b̄2 ↗ ā, then b̄1 and b̄2, considered as vertices of (Cd
m)∞, are either equal or

connected.

Recall that the Brunn-Minkowski Inequality, generalized by Lusternik (see, e.g. [5]), is the
following.

Theorem (The Brunn-Minkowski Inequality). Let n ≥ 1 and let µ be the Lebesgue measure on Rn.
Define A + B := {a + b ∈ Rn|a ∈ A, b ∈ B}. Let A and B be two nonempty compact subsets of Rn.
The following inequality holds:

[µ(A+B)]1/n ≥ [µ(A)]1/n + [µ(B)]1/n.

Equality is achieved iff A and B are homothetic (that is, one is a rescaled version of the other)

Using Brunn-Minkowski we obtain the following useful lemma:

Lemma 2.1. Let S ⊆ Zd. Suppose S+ = {ā|∃b̄ ∈ S (b̄↗ ā)} , then d
√
|S+| ≥ d

√
|S|+1, and equality

holds iff S is a hypercube.

Proof. define Ŝ =
⋃

ā∈S{Πi∈{1,..,d} [ai − 1, ai)}, and note that |S| = µ(Ŝ). It is easy to check that
Ŝ+ = Ŝ+[0, 1)d. Plugging this and the fact that |S+| = µ(Ŝ+) into the Brunn-Minkowski Inequality,
the result follows.

We can now state and prove the main theorem:

Theorem 1. If S ⊂ Zd
m is a set of vertices of Zd

m that does not contain any non-contractible cycle
of the torus, then |S| ≤ (m − 1)d. Equality holds if and only if S is a hypercube with edges of size
m− 1.
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Proof. Striving for contradiction, suppose that either |S| > (m − 1)d, or |S| = (m − 1)d but S is
not a hypercube. Denote the connected components of S by C1, ..., Ck. Pick a vertex representative
for each component Ci, and denote it by c̄i. Let the natural projection from Zd into Zd

m be π(x̄).
Slightly abusing notation, denote by π−1(Ci) the connected component of c̄i in π−1(S), regarding
here c̄i as an element of Zd. (This is instead of taking the whole π pre-image of Ci). As S contains
no non-trivial cycle, π−1(Ci) must be finite for all i. We next show that there exist two distinct
preimages of some vertex ā in one of the connected components Ci of S, implying that it contains a
nontrivial cycle, and thus contradicting the assumption.

Define S̃ =
⋃k

i=1 π
−1(Ci). Since every vertex in S has a unique corresponding vertex in S̃ we

deduce that |S| = |S̃|. Looking at S̃+ = {ā|∃b̄ ∈ S̃(b̄↗ ā)} we can apply our assumption and lemma
2 to conclude that |S̃+| > md. By The Pigeonhole Principle we deduce the existence of ā1 6= ā2 in
S̃+ such that π(ā1) = π(ā2). By the definition of S̃+ there must be two elements b̄1, b̄2 ∈ S̃ such that
b̄1 ↗ ā1 and b̄2 ↗ ā2. By Observation 1 we know that π(b̄1) and π(b̄2) are connected in S and thus b̄1
and b̄2 belong to the same connected component π−1(Ci) of S̃, for some i. Denote b̄′1 = ā2− ā1 + b̄1.
Note that b̄′1 6= b̄1, π(b̄′1) = π(b̄1), and b̄′1 ↗ ā2, since ā2 − b̄′1 = ā2 − (ā2 − ā1 + b̄1) = ā1 − b̄1.

By Observation 1 we conclude that b̄′1 and b̄2 are either equal or connected. As b̄2 ∈ π−1(Ci) we
conclude that b̄′1 ∈ π−1(Ci), which leads to contradiction, since b̄1 also lies in Ci. Therefore, either
|S| = (m− 1)d and S is a hypercube, or |S| < (m− 1)d, completing the proof.
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