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Abstract

The existence of EFX allocations is a fundamental open problem in discrete fair division.
Given a set of agents and indivisible goods, the goal is to determine the existence of an allocation
where no agent envies another following the removal of any single good from the other agent’s
bundle. Since the general problem has been illusive, progress is made on two fronts: (i) proving
existence when the number of agents is small, (ii) proving existence of relaxations of EFX. In
this paper, we improve results on both fronts (and simplify in one of the cases).

[CGM20] showed the existence of EFX allocations when there are three agents with additive
valuation functions. The proof in [CGM20] is long, requires careful and complex case analysis,
and does not extend even when one of the agents has a general monotone valuation function. We
prove the existence of EFX allocations with three agents, restricting only one agent to have an
additive valuation function (the other agents may have any monotone valuation functions). Our
proof technique is significantly simpler and shorter than the proof in [CGM20] and therefore
more accessible. In particular, it does not use the concepts of champions, champion-graphs,
half-bundles (in contrast to the algorithms in [CKMS21, CGM20, CGM+21]) and envy-graph
(in contrast to most algorithms that prove existence of relaxations of envy-freeness, including
weaker relaxations like EF1). Our technique also extends to settings when two agents have
any monotone valuation function and one agent has an MMS-feasible valuation function (a
strict generalization of nice-cancelable valuation functions [BCFF21] which subsumes additive,
budget-additive and unit demand valuation functions). This takes us a step closer to resolving
the existence of EFX allocations when all three agents have general monotone valuations.

Secondly, we consider relaxations of EFX allocations, namely, approximate-EFX allocations
and EFX allocations with few unallocated goods (charity). [CGM+21] showed the existence
of (1 − ε)-EFX allocation with O((n/ε)

4/5) charity by establishing a connection to a problem
in extremal combinatorics. We improve the result in [CGM+21] and prove the existence of
(1 − ε)-EFX allocations with Õ((n/ε)

1/2) charity. In fact, some of our techniques can be used
to prove improved upper-bounds on a problem in zero-sum combinatorics introduced by Alon
and Krivelevich [AK21, MS21].

1 Introduction

Fair division has been a fundamental branch of mathematical economics over the last seven decades
(since the seminal work of Hugo Steinhaus in the 1940s [Ste48]). In a classical fair division prob-
lem, the goal is to “fairly” allocate a set of items among a set of agents. Such problems find very
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early mentions in history, for instance, in ancient Greek mythology and the Bible. Even more
so today, many real-life scenarios are paradigmatic of the problems in this domain, e.g., division
of family inheritance [PZ90], divorce settlements [BT96], spectrum allocation [EPT05], air traffic
management [Vos02], course allocation [BBC10] and many more1. For the past two decades, the
computer science community has developed concrete formulations and tractable solutions to fair
division problems and thus contributing substantially to the development in the field. With the
advent of the Internet and the rise of centralized electronic platforms that intend to impose fair-
ness constraints on their decisions (e.g., Airbnb would like to fairly match hosts and guests, and
Uber would like to fairly match drivers and riders etc..), there has been an increasing demand for
computationally tractable protocols to solve fair division problems.

In this paper, we focus on one of the important open problems in discrete fair division. In a
classical setting of discrete fair division, we have a set [n] of n agents and a set M of m indivisible
goods. Each agent i is equipped with a valuation function vi : 2M → R≥0 which captures the utility
agent i derives from any bundle that can be allocated to her. One of the most well studied classes
of valuations are additive valuations, i.e., vi(S) =

∑
g∈S vi({g}) for all S ⊆ M . The goal is to

determine a partition X = 〈X1, X2, . . . , Xn〉 of M such that Xi is allocated to agent i which is fair.
Depending on the notion of fairness used, there are several different problems in this setting.

Envy-freeness up to any good (EFX) The quintessential notion of fairness is that of envy-
freeness. An allocation X = 〈X1, X2, . . . , Xn〉 is envy-free if every agent prefers her bundle as much
as she prefers the bundle of any other agent, i.e., vi(Xi) ≥ vi(Xi′) for all i, i′ ∈ [n]. However, an
envy-free allocation does not always exist, e.g., consider dividing a single valuable good among two
agents. In any feasible allocation, the agent with no good will envy the agent that has been allocated
one good. This necessitates the study of relaxed notions of envy-freeness. In this paper, we consider
the relaxation known as envy-freeness up to any good (EFX). An allocation X = 〈X1, X2, . . . , Xn〉
is EFX if and only if for all pairs of agents i and i′, we have vi(Xi) ≥ vi(Xi′ \ {g}) for all g ∈ Xi′ ,
i.e., the envy should disappear following the removal of any single good from i’s bundle. EFX is
in fact considered to be the “closest analogue of envy-freeness” in discrete fair division [CGH19].
Unfortunately, the existence of EFX allocations is still unsettled despite significant effort by several
researchers [Mou19, CKM+16] and is considered one of the most important open problems in fair
division [Pro20]. There have been studies on

• the existence of EFX allocations in restricted settings. In particular, EFX existence has been
studied when there are small number of agents [PR20, CGM20], and when agents have specific
valuation functions [HPPS20].

• The existence of relaxations of EFX allocations has also been investigated, e.g., approximate
EFX allocations [PR20, AMN20], EFX with bounded charity [CKMS21, BCFF21], approxi-
mate EFX with bounded charity [CGM+21].

Improving the understanding in both the above settings is a systematic direction towards the big
problem. We first mention the existing results in the above two settings and mention some of their
pitfalls. Thereafter, we highlight main results of this paper and show how they address the said
pitfalls. In particular, we focus on the existence of EFX allocations with small number of agents
and the existence of approximate EFX allocations with bounded charity.

1Check [spl] and [fai] for more detailed explanation of fair division protocols used in day to day problems.
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Existence of EFX Allocations with Small Number of Agents. Plaut and Roughgar-
den [PR20] first showed the existence of EFX allocations when there are two agents using the cut
and choose protocol. The existence of EFX allocations gets notoriously more difficult with three
or more agents. The existence of EFX allocations with three agents was shown by Chaudhury
et al [CGM20]. The proof of existence in [CGM20] involves several new concepts like cham-
pions, champion-graphs and half-bundles, spans over 15 pages, and requires a lot of careful and
detailed case analysis. Furthermore, the proof technique does not extend to the setting with four
or more agents [CGM+21]. We articulate the primary bottleneck here: At a high-level, the algo-
rithm in [CGM20] moves in the space of partial EFX allocations2 iteratively improving the vector
〈v1(X1), v2(X2), v3(X3)〉 lexicographically, where vi(·) is the valuation function of agent i. How-
ever, [CGM+21] exhibit an instance with four agents, nine goods and a partial EFX allocation X
such that in any complete EFX allocation X ′, v1(X

′
1) < v1(X1), i.e., agent 1 (which is the highest

priority agent) is better off in X than in any complete EFX allocation. All of this necessitates the
study of a different approach for the existence of EFX allocations. As the first main contribution
of this paper, we present a new proof for the existence of EFX allocations for three agents, which
is significantly shorter and simpler (we do not use the notions of champions, champion-graphs and
half-bundles) than the proof in [CGM20]. Our approach is algorithmic, but in contrast to the
approach in [CGM20], our algorithm moves in the space of complete allocations (instead of partial
allocations) iteratively improving a certain potential as long as the current allocation is not EFX.
Furthermore, the algorithm also allows us to prove the existence of EFX beyond additivity, i.e., even
when only one of the agents has an additive valuation function and the other agents have general
monotone valuation functions, our algorithm can determine an EFX allocation. We note that the
proof in [CGM20] crucially needs all the valuation functions to be additive.

Theorem 1. EFX allocations exist with three agents as long as there is at least one agent with an
additive valuation function.

Berger et al. [BCFF21] show the existence of EFX allocations for three agents when agents
have more general valuation functions, called nice-cancelable valuation functions (defined formally
in Section 2). Nice-cancelable valuation functions generalize many well known valuation functions
like additive, budget-additive, unit-demand and more. We introduce a class of valuation functions
called MMS-feasible valuation functions (defined formally in Section 2) that are very natural in the
fair division setting and they strictly generalize nice-cancelable valuations. Our proof of existence
also holds when two agents have general valuation functions and one of the agents has an MMS-
feasible valuation function. Thus, we also prove,

Theorem 2. EFX allocations exist with three agents as long as there is at least one agent with an
MMS-feasible valuation function.

Existence of Approximate EFX with Bounded Charity. Caragiannis et al. [CGH19] in-
troduced the notion of EFX with charity. The goal here is to find “good” partial EFX allocations,
i.e., partial EFX allocations where the set of unallocated goods are not very valuable. In particu-
lar, they show that there always exists a partial EFX allocation X such that for each agent i, we
have vi(Xi) ≥ 1/2 · vi(X∗i ), where X∗ = 〈X∗1 , X∗2 , . . . , X∗n〉 is the allocation with maximum Nash
welfare3. Following the same line of work, Chaudhury et al. [CKMS21] showed the existence of
a partial EFX allocation X such that no agent envies the set of unallocated goods and the total

2EFX allocations where not all goods are allocated.
3The Nash welfare of any allocation Y is the geometric mean of the valuations of the agents,

(∏
i∈[n] vi(Yi)

)1/n
.

It is often considered a direct measure of the fairness and efficiency of an allocation.
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number of unallocated goods is at most n − 1 � m. Quite recently, Chaudhury et al. [CGM+21]
showed the existence of a (1 − ε)-EFX allocation with O((n/ε)4/5) charity, where an allocation X
is said to be (1 − ε)-EFX if and only if vi(Xi) ≥ (1 − ε) · vi(Xi′ \ {g}) for all g ∈ Xi′ . While the
last result is not a strict improvement of the result in [CKMS21] (since it ensures (1 − ε)-EFX
instead of exact EFX), it is the best relaxation of EFX that we can compute in polynomial time,
as the algorithm in [CKMS21] can only be modified to give (1 − ε)-EFX with n − 1 charity in
polynomial time. Another key aspect of the technique in [CGM+21] is the reduction of the problem
of improving the bounds on charity to a purely graph theoretic problem. In particular [CGM+21]
define the notion of a rainbow cycle number : Given an integer d > 0, the rainbow cycle number
R(d) is the largest k such that there exists a k-partite graph G = (V1 ∪ V2 ∪ · · · ∪ Vk, E) such that

• each part has at most d vertices, i.e., |Vi| ≤ d, and

• every vertex in G has exactly one incoming edge from every part in G except the part
containing it, and

• there exists no cycle C in G that visits each part at most once.

Let h−1(d) denote the smallest integer ` such that h(`) = ` ·R(`) ≥ d. Then there always exist an
(1−ε)-EFX allocation with O( n

ε·h−1(n/ε)
). So smaller the upper bound on h(`), lower is the number

of unallocated goods. [CGM+21] show that R(d) ∈ O(d4) and thus establish the existence of
(1− ε)-EFX allocation with O((n/ε)4/5) charity. An upper bound of O(d22(log log d)

2
) was obtained

by [BBK22], thereby showing the existence of EFX allocations with O((n/ε)0.67) charity. In this
paper, we close this line of improvements by proving an almost tight upper bound on d (matching
the lower bound up to a log factor).

Theorem 3. Given any integer d > 0, the rainbow cycle number R(d) ∈ O(d log d).

As a consequence of the improved bound we obtain:

Theorem 4. There exists a polynomial time algorithm that determines a partial (1− ε)-EFX allo-
cation X such that no agent envies the set of unallocated goods and the total number of unallocated
goods is Õ((n/ε)1/2). Furthermore, NW (X) ≥ 1/2e1/e · NW (X∗) where X∗ is the allocation with
maximum Nash welfare.

Rainbow Cycle and Zero-sum Combinatorics. We believe that investigating tighter bounds
onR(d) is interesting in its own right. Quite recently, Berendsohn, Boyadzhiyska, and Kozma [BBK22]
showed intriguing connections between rainbow cycle number and zero sum problems in extremal
combinatorics. Zero sum problems in graphs ask questions of the following flavor: Given an
edge/vertex weighted graph, whether there exists a certain substructure (for example cliques, cy-
cles, paths etc.) with a zero sum (modulo some integer). In particular, [BBK22] show that the
rainbow cycle number is a natural generalization of the zero sum problems studied in Alon and
Krivelevich [AK21], and Mészáros and Steiner [MS21]. Both papers [AK21, MS21] aim to upper
bound the maximum number of vertices of a complete bidirected graph with integer edge labels
avoiding a zero sum cycle (modulo d). [BBK22] show through a simple argument that this is upper
bounded by the permutation rainbow cycle number Rp(d), which is defined by introducing an addi-
tional constraint in the definition of R(d) that for all i, j, each vertex in Vi has exactly one outgoing
edge to some vertex in Vj (in addition to exactly one incoming edge from some vertex in Vj). In
Section 5.2, we show through a simple argument that Rp(d) ≤ 2d− 2, thereby also improving the
upper bounds of O(d log(d)) in [AK21] and 8d− 1 in [MS21].
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Lemma 1. We have Rp(d) ≤ 2d − 2. Therefore, by the Observation made by [BBK22], the
maximum number of vertices of a complete bidirected graph with integer edge labels avoiding a zero
sum cycle (modulo d) is at most 2d− 2.

1.1 Further Related Work

Fair division has received significant attention since the seminal work of Steinhaus [Ste48] in the
1940s. Other than envy-freeness, another fundamental fairness notion is that of proportionality.
Recall that, in an envy-free allocation, every agent values her own bundle at least as much as she
values the bundle of any other agent. However, in a proportional allocation, each agent gets a
bundle that she values 1/n times her valuation on the entire set of goods. Since envy-freeness and
proportionality cannot always be guaranteed while dividing indivisible goods, various relaxations of
the same have been studied. Alongside EFX, another popular relaxation of envy-freeness is envy-
freeness up to one good (EF1) where no agent envies another agent following the removal of some
good from the other agent’s bundle. While the existence of EFX allocations is open, EF1 allocations
are known to exist for any number of agents, even when agents have general monotone valuation
functions [LMMS04]. While EF1 and EFX are fairness notions that relax envy-freeness, the most
popular notions of fairness that relaxes proportionality for indivisible goods are maximin share
(MMS), proportionality up to one good (PROP1), proportionality up to any good (PROPx), and
proportionality up to the maximin good (PROPm). The MMS was introduced by Budish [Bud11].
While MMS allocations do not always exist [KPW18], there has been extensive work to come up
with approximate MMS allocations [Bud11, BL16, AMNS17, BK17, KPW18, GHS+18, GMT19,
GT20]. On the other hand, PROPx is stronger than PROPm, which is stronger than PROP1.
While PROPx allocations do not always exist [Mou19], PROPm allocations are guaranteed to
exist [BGGS21]. Some works assume ordinal ranking over the goods, as opposed to cardinal values,
e.g., [AGMW15, BKK17].

Alongside fairness, the efficiency of an allocation is also a desirable property. Two common
measures of efficiency is that of Pareto-optimality and Nash welfare. Caragiannis et al. [CKM+16]
showed that any allocation that has the maximum Nash welfare is guaranteed to be Pareto-optimal
(efficient) and EF1 (fair). Barman et al. [BKV18] give a pseudo-polynomial algorithm to find an
allocation that is both EF1 and Pareto-optimal. Other works explore relaxations of EFX with high
Nash welfare [CGH19, CKMS21].

Independent Work. Independently and concurrently to our work, [BBK22] also investigate
upper bounds on rainbow cycle number. They obtain the same upper bound of 2d− 2 for Rp(d).

2 Preliminaries

An instance of discrete fair division is given by the tuple 〈[n],M,V〉, where [n] is the set of agents,
M is the set of indivisible goods and V = (v1(·), v2(·), . . . , vn(·)) where each vi : 2M → R≥0 denotes
the valuation of agent i. Typically, the valuation functions are assumed to be monotone, i.e., for
each agent i, vi(S ∪ {g}) ≥ vi(S) for all S ⊆M and g /∈ S. A valuation vi(·) is said to be additive
if vi(S) =

∑
g∈S vi({g}) for all S ⊆ M . For ease of notation, we use g instead of {g}. We also use

S ⊕i T for vi(S)⊕ vi(T ) with ⊕ ∈ {≤,≥, <,>}.
Given an allocation X = 〈X1, X2, . . . , Xn〉, we say that an agent i strongly envies an agent i′

if and only if vi(Xi) < vi(Xi′ \ {g}) for some g ∈ Xi′ . Thus, an allocation is an EFX allocation if
there is no strong envy between any pair of agents. We now introduce certain definitions and recall
certain concepts that will be useful in the upcoming sections.

5



Definition 1 (EFX feasibility). Given a partition X = (X1, X2, . . . , Xn) of M , a bundle Xk is
EFX-feasible to agent i if and only if Xk ≥i max j∈[n]max g∈XjXj \ g. Therefore an allocation
X = 〈X1, X2, . . . , Xn〉 is EFX if for each agent i, Xi is EFX-feasible .

Chaudhury et al. [CGM20] introduced the notion of non-degenerate instances where no agent
values two distinct bundles the same. They showed that to prove the existence of EFX allocations
in the additive setting, it suffices to show the existence of EFX allocations for all non-degenerate
instances. We adapt their approach and show that the same claim holds, even when agents have
general monotone valuations.

Non-Degenerate Instances [CGM20] We call an instance I = 〈[n],M,V〉 non-degenerate if
and only if no agent values two different sets equally, i.e., ∀i ∈ [n] we have vi(S) 6= vi(T ) for all
S 6= T . We extend the technique in [CGM20] and show that it suffices to deal with non-degenerate
instances when there are n agents with general valuation functions, i.e., if there exists an EFX
allocation in all non-degenerate instances, then there exists an EFX allocation in all instances. We
defer the reader to the appendix for the detailed proof.

Henceforth, we assume that the given instance is non-degenerate, implying that all goods are
positively valued by all agents.

MMS-feasible valuations. In this paper, we introduce a new class of valuation functions called
MMS-feasible valuations which are natural extensions of additive valuations in a fair division setting.

Definition 2. A valuation function v : 2M → R≥0 is MMS-feasible if for every subset of goods
S ⊆M and every partitions A = (A1, A2) and B = (B1, B2) of S, we have

max(v(B1), v(B2)) ≥ min(v(A1), v(A2)).

Informally, these are the valuations under which, an agent always has a bundle in any 2-partition
that she values more than her MMS value, i.e., given an agent i with an MMS-feasible valuation
v(·), in any 2-partition of S ⊆ M , say B = (B1, B2), we have max (v(B1), v(B2)) ≥ MMS i(2, S),
where MMS i(2, S) is the MMS value of agent i on the set S when there are 2 agents. Also, note
that if there are two agents and one of the agents has an MMS-feasible valuation function, then
irrespective of the valuation function of the other agent, MMS allocations always exist: Consider an
instance where agent 1 has an MMS-feasible valuation function and agent 2 has a general monotone
valuation function. Consider agent 2’s MMS optimal partition of the good set A = (A1, A2). Let
agent 1 pick her favorite bundle from A. Then, agent 1 has a bundle that she values at least as
much as her MMS value (as she has an MMS-feasible valuation function), and agent 2 has a bundle
that she values at least as much as her MMS value as A is an MMS optimal partition according to
agent 2.

MMS-feasible valuations strictly generalize the nice-cancelable valuation functions introduced
in [BCFF21]. A valuation function v : 2M → R≥0 is nice-cancelable if for every S, T ⊂ M and
g ∈M \(S∪T ), we have v(S∪{g}) > v(T ∪{g})⇒ v(S) > v(T ). Nice-cancelable valuations include
budget-additive (v(S) = min(

∑
s∈S v(s), c)), unit demand (v(S) = max j∈Sv(s)), and multiplicative

(v(S) =
∏

s∈S v(s)) valuations [BCFF21].

Lemma 2. Every nice-cancelable function is MMS-feasible .

Proof. We first make an observation about a nice-cancelable valuation function.

Observation 5. If v is a nice-cancelable valuation, then for every S, T ⊂M and Z ⊆M \ (S∪T ),
we have v(S ∪ Z) > v(T ∪ Z)⇒ v(S) > v(T ).
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S {g1} {g2} {g3} {g1, g2} {g1, g3} {g2, g3} {g1, g2, g3}
v 1 2 3 10 4 5 13

Table 1: valuation function v is MMS-feasible but not nice-cancelable.

Let v be a nice-cancelable function. For a subset of goods S ⊆M , consider any two partitions
A = (A1, A2) and B = (B1, B2) of S. Without loss of generality assume v(A1 ∩B1) < v(A2 ∩B2).
Since (A1∩B2) is disjoint from (A1∩B1)∪(A2∩B2), by the contrapositive of Observation 5 applied
to nice-cancelable valuation v, we have,

v((A1 ∩B1) ∪ (A1 ∩B2)) < v((A2 ∩B2) ∪ (A1 ∩B2)). (1)

Therefore,

min(v(A1), v(A2)) ≤ v(A1)

= v((A1 ∩B1) ∪ (A1 ∩B2)) A1 = (A1 ∩B1) ∪ (A1 ∩B2)

< v((A2 ∩B2) ∪ (A1 ∩B2)) Inequality (1)

= v(B2) B2 = (A2 ∩B2) ∪ (A1 ∩B2)

≤ max(v(B1), v(B2)).

In order to prove that MMS-feasible functions strictly generalize nice-cancelable functions, we
present an example of a valuation function which is MMS-feasible but not nice-cancelable.

Example 1. Let M = {g1, g2, g3}. The value of v(S) is given in Table 1 for all S ⊆ M . First
note that v(g1 ∪ g2) > v(g3 ∪ g2) but v(g1) < v(g3). Therefore, v is not nice-cancelable. Now we
prove that v is MMS-feasible . Let S ⊆ M and A = (A1, A2), B = (B1, B2) be two partitions
of M . Without loss of generality, assume |A1| ≤ |A2|. If A1 = ∅, min(v(A1, v(A2))) = 0 ≤
max(v(B1), v(B2)). Hence, we assume |A1| ≥ 1 and therefore, we have |S| ≥ 2. Moreover, if
A = B, then max(v(B1), v(B2)) = max(v(A1), v(A2)) ≥ min(v(A1), v(A2)). Thus, we also assume
A 6= B. If S = {g, g′}, the only two different possible partitioning of S is A = ({g}, {g′}) and
B = (∅, {g, g′}). For all g, g′ ∈ M , v({g, g′}) > max(v(g), v(g′)). Therefore, max(v(B1), v(B2)) ≥
min(v(A1), v(A2)). If S = {g1, g2, g3}, then |A1| = 1 and therefore, min(v(A1), v(A2)) ≤ v(A1) ≤
maxg∈M (v(g)) = 3. Without loss of generality, let g3 ∈ B1. For all T ⊆ M such that g3 ∈ T , we
have v(T ) ≥ 3. Thus, max(v(B1), v(B2)) ≥ v(B1) ≥ 3 ≥ min(v(A1), v(A2)).

Lemma 3 follows from Lemma 2 and Example 1.

Lemma 3. The class of MMS-feasible valuation functions is a strict superclass of nice-cancelable
valuation functions.

Preliminaries on Rainbow Cycle Number. [CGM+21] reduce the problem of finding approx-
imate EFX allocations with sublinear charity to a problem in extremal graph theory. In particular,
they introduce the notion of a rainbow cycle number.

Definition 3. Given an integer d > 0, the rainbow cycle number R(d) is the largest k such that
there exists a k-partite graph G = (V1 ∪ V2 ∪ · · · ∪ Vk, E) such that

• each part has at most d vertices, i.e., |Vi| ≤ d, and
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• every vertex has exactly one incoming edge from every part other than the one containing it4,
and

• there exists no cycle C in G that visits each part at most once.

We also refer to cycles that visit each part at most once as “rainbow” cycles.

They show that any finite upper bound on R(d) implies the existence of approximate EFX
allocations with sublinear charity. Better upper bounds on R(d) would give us better bounds on
the charity. In particular, they prove the following theorem.

Theorem 6. [CGM+21] Let G = (V1 ∪ V2 ∪ . . . Vk, E) be a k-partite digraph such that (i) each
part has at most d vertices and (ii) each vertex in G has an incoming edge from every part other
than the one containing it. Furthermore, let k > T (d) ≥ R(d). If there exists a polynomial time
algorithm that can find a cycle visiting each part at most once in G , then there exists a polynomial
time algorithm that determines a partial EFX allocation X such that

• the total number of unallocated goods is in O(n/εh−1(n/ε)) where h−1(d) is the smallest
integer ` such that h(`) = ` · T (`) ≥ d.

• NW (X) ≥ 1/(2e1/e) ·NW (X∗), where X∗ is the allocation with maximum Nash welfare.

3 Technical Overview

In this section, we briefly highlight the main technical ideas used to show our results.

3.1 EFX existence beyond additivity.

We present an algorithmic proof for the existence of EFX allocations when agents have valuations
more general than additive valuations. The main takeaway of our algorithm is that it does not
require the sophisticated concepts introduced by the techniques in [CKMS21, CGM20] that rely on
improving a potential function while moving in the space of partial EFX allocations. In fact, our
algorithm does not even require the concept of an envy-graph which is a very fundamental concept
used by the algorithms in [CKMS21, CGM20] and also by [PR20, LMMS04] to prove the existence
of weaker relaxations of envy-freeness (like EF1 and 1/2-EFX).

The crucial idea in our technique is to move in the space of partitions (of the good set), improving
a certain potential as long as we cannot find an EFX allocation from the current partition, i.e.,
we cannot find a complete allocation of the bundles in the partition such that the EFX property
is satisfied. In particular, we always maintain a partition X = (X1, X2, X3) such that (i) agent 1
finds X1 and X2 EFX-feasible and (ii) at least one of agent 2 and agent 3 finds X3 EFX-feasible.
Note that such allocations always exist: Agent 1 can determine a partition such that all bundles
are EFX-feasible for her (such a partition is possible as agent 1 can run the algorithm in [PR20] to
find an EFX allocation assuming all three agents have agent 1’s valuation function, thereby making
all bundles EFX-feasible for her) and we call agent 2’s favorite bundle in the partition X3 (which is
obviously EFX-feasible for her) and the remaining bundles X1 and X2 arbitrarily. Then, we have
a partition that satisfies the invariant.

Note that if any one agent 2 or 3 finds one of X1 or X2 EFX-feasible, then we easily get an
EFX allocation. Indeed, assume w.l.o.g. that agent 2 finds X3 EFX-feasible. Now, if

4In the original definition of the rainbow cycle number R(d) in [CGM+21], every vertex can have more than one
incoming edge from a part. However, by reducing the number of edges, we can only increase the upper-bound on
R(d).
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• agent 3 finds X2 EFX-feasible , then we have an EFX allocation: agent 1 ← X1, agent
2 ← X3, and agent 3 ← X2. We can give a symmetric argument when agent 3 finds X1

EFX-feasible.

• Similarly, if agent 2 finds X2 EFX-feasible, then we can let agent 3 pick her favourite bundle
in the partition (which is obviously EFX-feasible for her) and still give agents 1 and 2 an EFX-
feasible bundle. We can give a symmetric argument when agent 2 finds X1 EFX-feasible.

Therefore, we only need to consider the scenario where only X3 is EFX-feasible for agents 2 and
3. Essentially, in this scenario, X3 is “too valuable” to agents 2 and 3, as they do not find any
of the remaining bundles EFX-feasible. A natural attempt would be to remove some good(s) from
X3 and allocate it to X1 or X2, i.e., we can increase the valuation of agent 1 for her EFX-feasible
bundle(s) by removing the excess goods allocated to the only EFX-feasible bundle of agents 2 and
3. This brings us to our potential function: φ(X) = min(v1(X1), v1(X2)). Now, the non-triviality
lies in determining the set of goods to be removed from X3, and then allocating them to X1 and
X2 such that we maintain our invariants. Although non-trivial, this turns out to be significantly
simpler than the procedure used in [CGM20] and also holds when agents 1 and 2 have general
monotone valuation functions and agent 3 has an MMS-feasible valuation function. The entire
procedure is elaborated in Section 4.

3.2 Improved Bounds on Rainbow Cycle Number.

Our technique to achieve the improved bound involves the probabilistic method. It is significantly
simpler and yields better guarantees. We briefly sketch our algorithmic proof. Let there be k parts
in G = (V1 ∪ V2 ∪ . . . Vk, E). Note that each part has at most d vertices and each vertex has at
least one incoming edge from every part. We pick one vertex vi from each part Vi uniformly and
independently at random. Now, it suffices to show that with non-zero probability, the induced
graph on the vertices v1, v2, . . . , vk is cyclic for some k ∈ O(d log d). Note that if every vertex
in G[v1, . . . , vk] has an incoming edge, then G[v1 . . . vk] is cyclic. So we need to show a non-zero
lower bound on the probability of the each vertex having at least one incoming edge or equivalently
show an upper bound on the probability that each vertex has no incoming edge n G[v1 . . . vk].
To this end, let Evi denote the event that vertex vi has no incoming edge in G[v1 . . . vk]. Note
that P[Evi ] ≤ (1 − 1/d)k−1: vi has at least one incoming edge from each part and therefore the
probability that there is no incoming edge from vj to vi is at most (1− 1/d) for all j. Since all vj ’s
are independently chosen, the probability that vi has no incoming edge from any part is at most
(1− 1/d)(k−1). Then, by union bound, P[∪i∈[n]Evi ] ≤

∑
i∈[n] P[Evi ] ≤ k(1− 1/d)(k−1). Therefore,

the probability that G[v1 . . . vk] is cyclic is at least 1− k(1− 1/d)(k−1) which is strictly positive for
k ∈ O(d log d).

4 EFX Existence beyond Additivity

Before we give the new algorithm, we first give the reader a quick recap of the Plaut and Roughgar-
den algorithm [PR20] (PR algorithm) that determines an EFX allocation when all agents have the
same valuation function, v(·) (the only assumption on v(·) is that it is monotone). The algorithm
starts with any arbitrary allocation X (which may not be EFX), and makes minor reallocations
to improve the valuation of the agent who has the lowest value, i.e., it modifies X to X ′ such
that mini∈[n]v(X ′i) > mini∈[n]v(Xi). We now elaborate on the reallocation procedure: Let ` be the
agent with the lowest valuation in X. If X is not EFX, then there exists agents i and j such that
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v(Xi) < v(Xj \ {g}) for some g ∈ Xj . Since v(X`) < v(Xi), we also have v(X`) < v(Xj \ {g}). The
algorithm removes the good g from j’s bundle and allocates it to `. Observe that v(Xk) > v(X`)
for all k 6= ` as we assume non-degeneracy. Also, we have v(X` ∪ {g}) and v(Xj \ {g}) greater
than v(X`). Therefore, the valuation of every new bundle is strictly larger than the valuation of
X`. Therefore, the valuation of the agent with the lowest valuation improves. This implies that
the reallocation procedure will never revisit a particular allocation and as a result this process will
eventually converge to an EFX allocation Y with v(Yi) > v(X`) for all i ∈ [n]. Formally,

Lemma 4 ([PR20]). Let X = (X1, X2, X3) be an arbitrary 3-partition. Running the PR al-
gorithm with any monotone valuation v results in an EFX-partition X ′ = (X ′1, X

′
2, X

′
3) with

min(v(X1), v(X2), v(X3)) ≤ min(v(X ′1), v(X ′2), v(X ′3)). We have equality only if the input is already
EFX with respect to v.

In contrast to the algorithms in [CGM20, CKMS21, BCFF21, PR20], our algorithm moves in
the space of complete EFX allocations iteratively maintaining some invariants. As long as our
allocation is not EFX, we make some reallocations to the existing allocation and improve a certain
potential. We give the proof here assuming only monotonicity for the valuation functions of agents
1 and 2 and assuming MMS-feasibility for the valuation of agent 3, i.e., v1(·) and v2(·) are general
monotone valuation functions and v3(·) is MMS-feasible. We now elaborate our algorithm. We
maintain a partition (X1, X2, X3) of the good set such that

• X1 and X2 are EFX-feasible for agent 1.

• X3 is EFX-feasible for at least one of agents 2 and 3.

One can show the existence of allocations satisfying the above invariants by running the PR
algorithm and initializing: Agent 1 runs the PR algorithm with v = v1 to determine a partition
(X1, X2, X3) such that all the three bundles are EFX-feasible for her. Then, agent 2 picks her
favorite bundle out of the three, say X3. Clearly, X3 is EFX-feasible for agent 2, and X1 and X2

are EFX-feasible for agent 1. Thus X satisfies the invariants.
We define our potential function as φ(X) = min(v1(X1), v1(X2)). We now elaborate how

to modify X and improve the potential when we cannot determine an EFX allocation from the
partition X, i.e., we cannot determine an allocation of the bundles in X to the agents that satisfies
the EFX property.

4.1 Reallocation when we cannot get an EFX allocation from X

Let X = (X1, X2, X3) be a partition satisfying the invariants. Without loss of generality, let us
assume that agent 2 finds X3 EFX-feasible. Observe that if any one of agents 2 or 3 finds bundles
X1 or X2 EFX-feasible, then we are done: If agent 3 finds one of X1 or X2 EFX-feasible, then we
can allocate agent 3’s EFX-feasible bundle to her, X3 to agent 2 and the remaining bundle of X1

and X2 to agent 1 and get an EFX allocation. Similarly, if agent 2 finds X1 or X2 EFX-feasible,
we ask agent 3 to pick her favourite bundle out of X1, X2 and X3. Now, note that no matter
which bundle agent 3 picks, there is always a way to allocate agents 1 and 2 their EFX-feasible
bundles as agent 1 finds X1 and X2 EFX-feasible and agent 2 finds X3 and at least one of X1 or
X2 EFX-feasible5. Therefore, from here on we assume that neither agent 2 nor agent 3 finds X1 or
X2 EFX-feasible. Let gi be the good in X3 such that X3 \ gi ≥i X3 \ h for all h ∈ X3, i.e., X3 \ gi
is the most valued proper subset of X3 for agent i.

5If agent 3 picks X1, allocate X2 to agent 1 and X3 to agent 2. If agent 3 picks X2, then allocate X1 to agent
1 and X3 to agent 2. Finally, if she picks X3, then allocate the bundle among X1 and X2 that is EFX-feasible for
agent 2 to agent 2 and the remaining bundle to agent 1.
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Observation 7. For i ∈ {2, 3}, we have X3 \ gi >i max i(X1, X2).

Proof. We prove for i = 2. The proof for i = 3 is identical. Let us assume otherwise and say
w.l.o.g. X1 >2 X3 \ g2. Then, the only reason why X1 is not EFX-feasible for agent 2 is if
X1 <2 X2 \g for some g ∈ X2. But, in that case, we have X2 >2 X1 >2 X3 \g2. Therefore, we have
X2 >2 max `∈[3]maxh∈X`

X` \ h, implying that X2 is EFX-feasible, which is a contradiction.

W.l.o.g. assume that X1 <1 X2, implying that φ(X) = v1(X1). We now distinguish two cases
depending on how valuable the bundle X1 ∪ gi is to agent i for i ∈ {2, 3} and give the appropriate
reallocations in both cases. In particular, we first look into the case where X3 \ gi is still more
valuable to agent i than X1 ∪ gi for at at least one i ∈ {2, 3}.

Case: X3 \ g2 >2 X1 ∪ g2 or X3 \ g3 >3 X1 ∪ g3, i.e., X3 \ gi is the favorite bundle for
agent i in the partition X1 ∪ gi, X2 and X3 \ gi for at least one i ∈ {2, 3}. We provide the
reallocation rules assuming that X3 \ g2 >2 X1 ∪ g2. The rules for the case X3 \ g3 >3 X1 ∪ g3 is
symmetric. Now, consider the partition (X1 ∪ g2, X2, X3 \ g2).

By Observation 7, X3 \ g2 >2 X2 and by our current case X3 \ g2 >2 X1 ∪ g2, implying that
X3 \ g2 is an EFX-feasible bundle for agent 2. Let X ′1 be a minimal subset of X1 ∪ g2 w.r.t. set
inclusion that agent 1 values more than X1, i.e., agent 1 values X1 more than any proper subset
of X ′1 and X ′1 >1 X1. Let X ′2 = X2 and X ′3 = (X3 \ g2) ∪ ((X1 ∪ g2) \X ′1). We define the partition
X ′ = (X ′1, X

′
2, X

′
3). Observe that φ(X ′) > φ(X) as X ′2 = X2 >1 X1 (by assumption) and X ′1 >1 X1

(by definition). Also note that X ′3 is EFX-feasible for agent 2 as it is the most valuable bundle
in X ′ for agent 2. Now, if X ′1 and X ′2 are EFX-feasible for agent 1, then all the invariants are
maintained and we are done. So now we look into the case when at least one of X ′1 and X ′2 is not
EFX-feasible for agent 1 in X ′.

We first make an observation on agent 1’s valuation on the bundles X ′1 and X ′2.

Observation 8. We have X ′1 >1 X
′
2 \ g for all g ∈ X ′2 and X ′2 >1 X

′
1 \ h for all h ∈ X ′1.

Proof. Note that X ′1 >1 X1 by definition of X ′1 and X1 >1 X2 \ g for all g ∈ X2 as X1 was
EFX-feasible for agent 1 in X. Since X ′2 = X2, we have X ′1 >1 X

′
2 \ g for all g ∈ X ′2.

Similarly, X2 >1 X1 by assumption. Furthermore X1 >1 X
′
1 \ h for all h ∈ X ′1 by the definition

of X ′1. Since X ′2 = X2, we have X ′2 >1 X
′
1 \ h for all h ∈ X ′1.

By Observation 8, if X ′1 and X ′2 are not EFX-feasible for agent 1 in X ′, then X ′3 \ g >1

min1(X
′
1, X

′
2) for some g ∈ X ′3. However, in that case, we run the PR algorithm on the partition

X ′ with agent 1’s valuation. Let Y = (Y1, Y2, Y3) be the final partition at the end of the PR
algorithm. We have,

min(v1(Y1), v1(Y2), v1(Y3)) > min(v1(X
′
1), v1(X

′
2), v1(X

′
3)) (by Lemma 4)

= min(v1(X
′
1), v1(X

′
2)) (as v1(X

′
3) > min(v1(X

′
1), v1(X

′
2)))

= φ(X ′)

> φ(X)

We then let agent 2 pick her favorite bundle out of Y1, Y2 and Y3. Let us assume w.l.o.g. that she
chooses Y3. Then, allocation Y satisfies the invariants and we have φ(Y ) = min(v1(Y1), v1(Y2)) ≥
min(v1(Y1), v1(Y2), v1(Y3)) > φ(X). Thus, we are done.
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Remark: Note that we have not used the MMS-feasibility of v3(·) yet. All the arguments in
this case hold when all three valuation functions are general monotone. We use MMS-feasibility
crucially in the upcoming case.

Case: X3 \ g2 <2 X1 ∪ g2 and X3 \ g3 <3 X1 ∪ g3, i.e., X1 ∪ gi is the favourite bundle in the
partition X1 ∪ gi, X2 and X3 \ gi for all i ∈ {2, 3}: From Observation 7, we have X3 \ gi >i X2

for i ∈ {2, 3}. Therefore, we have,

X2 <2 X3 \ g2 <2 X1 ∪ g2 and X2 <3 X3 \ g3 <3 X1 ∪ g3.

By MMS-feasibility of valuation function v3(·), we conclude that X2 <3 max 3(Z,Z
′) where (Z,Z ′)

is any valid 2-partition of the good set X1 ∪ X3, as MMS-feasibility implies that max 3(Z,Z
′) ≥

min3(X1 ∪ g3, X3 \ g3) >3 X2. We run the PR algorithm on the 2-partition (X1 ∪ g2, X3 \ g2) with
agent 2’s valuation (v2(·))6. Let (Y2, Y3) be the output of the PR algorithm. We let agent 3 choose
her favorite among Y2 and Y3. Assume w.l.o.g. she chooses Y3. Now, consider the allocation X ′

agent 1 : X2 agent 2 : Y2 agent 3 : Y3.

We now analyze the strong envy in the allocation. To this end, we first observe that agents 2
and 3 do not strongly envy anyone.

Observation 9. Y2 is EFX-feasible for agent 2 and Y3 is EFX-feasible for agent 3 in X ′.

Proof. Since (Y2, Y3) is the output of the PR algorithm run on (X1 ∪ g2, X3 \ g2) with agent 2’s
valuation function, (i) Y2 >2 Y3 \ h for all h ∈ Y3, and (ii) Y2 ≥ min2(X1 ∪ g2, X3 \ g2) >2 X2,
where the first inequality follows from Lemma 4 and the second inequality follows from the fact
that X1 ∪ g2 >2 X3 \ g2 >2 X2. Therefore Y2 is EFX-feasible w.r.t. agent 2.

Now, we look into agent 3. Note that Y3 = max 3(Y2, Y3) as agent 3 picks her favourite among
Y2 and Y3. Therefore Y3 >3 Y2

7. Furthermore, due to the MMS-feasibility of v3(·) and the fact
that (Y2, Y3) is a valid 2 partition of the good set X1 ∪ X3, we have Y3 = max 3(Y2, Y3) >3 X2.
Therefore, Y3 >3 max 3(Y2, X2) and thus is an EFX-feasible bundle for agent 3.

Therefore, the only possible strong envy is from agent 1. We now enlist the possible strong
envy that may arise from agent 1 and also show corresponding reallocations.

• Agent 1 does not strongly envy Y2 and Y3: Then we are done as X ′ is an EFX allocation.

• Agent 1 strongly envies both Y2 and Y3: In this case, we have Y2 >1 X2 and Y3 >1 X2.
We run the PR algorithm on the partition (X2, Y2, Y3) with agent 1’s valuation function
(v1(·)) and let agent 2 pick her favourite bundle from the final partition X ′′ returned by the
PR algorithm. Then, we have a partition that satisfies the invariants and φ(X ′′) > φ(X)
as min1(X

′′
1 , X

′′
2 , X

′′
3 ) >1 min1(X2, Y2, Y3) = X2 >1 X1 = φ(X), where the first inequality

follows from Lemma 4.

• Agent 1 strongly envies one of Y2 and Y3: Let us assume without loss of generality that agent 1
strongly envies Y2. Let Y 2 be the minimal subset of Y2 w.r.t. set inclusion that agent 1 values
more than X2. Then, consider the partition X ′′ = (X ′′1 , X

′′
2 , X

′′
3 ) where X ′′1 = X2, X

′′
2 = Y 2

and X ′′3 = Y3∪(Y2 \Y 2). First note that X ′′3 is EFX-feasible for agent 3 as X ′3 = Y3 was EFX-
feasible in allocation X ′ and now the bundle X ′′1 remains the same, the bundle X ′2 has been

6Note that this time we run the PR algorithm with n = 2 as opposed to the usual n = 3 in the prior cases.
7Strict inequality follows due to non-degeneracy.
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compressed further in X ′′, and X ′3 ⊂ X ′′3 . Also note that φ(X ′′) = min(v1(X
′′
1 ), v1(X

′′
2 )) =

min(v1(X2), v1(Y 2)) = v1(X2) > v1(X1) = φ(X). If X ′′1 and X ′′2 are EFX-feasible for agent
1, then partition X ′′ satisfies the invariants and φ(X ′′) > φ(X) and we are done. So now
consider the case when at least one of X ′′1 and X ′′2 is not EFX-feasible for agent 1. Note
that X ′′1 >1 X

′′
2 \ h for all h ∈ X ′′2 and X ′′2 >1 X

′′
1 by the fact that X ′′1 = X2 and by the

definition of X ′′2 = Y 2. Thus, if one of X ′′1 or X ′′2 is not EFX-feasible for agent 1, then we
must have X ′′3 \h′ >1 min1(X

′′
1 , X

′′
2 ) for some h′ ∈ X ′′3 . In this case, we run the PR algorithm

on the partition (X ′′1 , X
′′
2 , X

′′
3 ) with agent 1’s valuation function v1(·) and let agent 2 pick her

favourite bundle from the final partition Z returned by the PR algorithm. Then Z satisfies
the invariants and

φ(Z) ≥ min(v1(Z1), v1(Z2), v1(Z3))

≥ min(v1(X
′′
1 ), v1(X

′′
2 ), v1(X

′′
3 ))

= v1(X2)

> v1(X1) = φ(X).

So we are done.

This brings us to the main result of this section.

Theorem 10. Given an instance I = 〈[3],M,V〉 such that v3(·) is MMS-feasible (no assumptions
other than monotonicity on v1(·) and v2(·)), there always exists an allocation X = 〈X1, X2, X3〉
such that X is EFX.

5 Bounds on Rainbow Cycle Number

In this section we improve the upper bounds on the rainbow cycle number introduced in [CGM+21],
thereby implying the existence of approximate EFX allocations with Õ(n/ε)1/2) charity. [CGM+21]
give an upper bound of R(d) ∈ O(d4) and they show it results in the existence of a (1 − ε)-EFX
allocation with O((n/ε)4/5) charity. In the same paper, [CGM+21] show a lower bound of d on R(d).
In this section, we show improved bounds on R(d). In particular, we first show in Section 5.1 that
R(d) ∈ O(d log d) (making the upper bound almost tight), and thereby implying the existence of
(1−ε)-EFX allocations with Õ((n/ε)1/2) charity. Secondly, in section 5.2, we show an upper bound
of 2d − 2 assuming that every vertex v ∈ Vi has exactly one incoming edge from any other part
Vj 6= Vi and exactly one outgoing edge to some vertex in Vj . We call this number Rp(d). We remark
that the lower bound of d in [CGM+21] also holds for Rp(d). The upper bound of 2d−2 immediately
improves the upper-bound on the zero-sum extremal problem studied in [AK21, MS21].

5.1 Almost Tight Upper Bound on R(d)

Recall that R(d) is the largest k such that there exists a k-partite digraph G with k classes of
vertices Vi so that each part Vi has at most d vertices, for all distinct i, j each vertex in Vi has an
incoming edge from some vertex in Vj and vice versa, and there exists no (directed) rainbow cycle,
namely, a cycle in G that contains at most one vertex of each Vi. In this section, we prove the
following improved bound which is tight up to the logarithmic factor.

Theorem 11. If
k(1− 1/d)k−1 < 1 (2)

then R(d) < k. Therefore R(d) ≤ (1 + o(1))d log d
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Proof. Suppose k(1− 1/d)k−1 < 1. Let S be a random set of k vertices of G obtained by picking a
single vertex vi in each Vi, randomly and uniformly among all vertices of Vi, where all choices are
independent. For each vertex v, let Ev be the event that S contains v and contains no other vertex
u so that uv is a directed edge. We claim that if v ∈ Vi then the probability of Ev is at most

1

|Vi|
(1− 1/d)k−1.

Indeed, the probability that v ∈ S is 1/|Vi|. Conditioning on that, since for every j 6= i there is
some uj ∈ Vj so that ujv is a directed edge, and the probability that uj is in S is 1/|Vj | ≥ 1/d, the
probability that v has non in-neighbor in Vj is at most 1 − 1/d. As the choices are independent,
the claim follows. By the union bound, the probability, that there is a vertex v so that the event
Ev occurs is at most

k∑
i=1

|Vi|
1

|Vi|
(1− 1/d)k−1 = k(1− 1/d)k−1 < 1.

Therefore, with positive probability every vertex in the induced subgraph of G on S has an in-
neighbor. Hence there is such an S and in this induced subgraph there is a cycle which contains at
most one vertex from each Vi. Thus R(d) < k, completing the proof.

Theorems 6 and Theorem 11 then imply Theorem 4.

Remark. The proof above can be derandomized using the method of conditional expectations
(cf., e.g., [AS92], chapter 16), giving the following.

Proposition 12. Let G be a k-partite digraph with classes of vertices Vi, each having at most d
vertices. Suppose that for all distinct i, j each vertex in Vi has an incoming edge from some vertex
in Vj and vice versa, and suppose that (2) holds. Then a rainbow cycle in G can be found by a
deterministic polynomial time algorithm.

Proof. We apply the method of conditional expectations to produce a set S = {s1, s2, . . . , sk} of
vertices of G, where si ∈ Vi, so that every indegree in the induced subgraph of G on S is positive.
This is done by choosing the vertices si one by one, in order, maintaining a potential function φ
whose value is the conditional expectation of the number of events Ev that hold, given the choices
of the vertices si made so far.

At the beginning, there are no choices made, and the value of φ is the sum

k∑
i=1

|Vi|
1

|Vi|
(1− 1/d)k−1 = k(1− 1/d)k−1 < 1.

Assuming s1, s2, . . . , si−1 have already been chosen and the above conditional expectation is still
smaller than 1, choose si ∈ Vi to be the vertex that minimizes the updated value of the conditional
expectation. As the expectation is the average over all possible choices of si, this minimum stays
below 1. The computation of the required conditional expectations, for each of the possible |Vi| ≤ d
choices of si ∈ Vi, can clearly be done efficiently. At the end of the process the value of the potential
function is exactly the number of events Ev that hold, and since this number is below 1, none of
them holds. This supplies the required set S. Starting in any vertex of S and moving repeatedly
to an in-neighbor of it in S until we reach a vertex we have already visited supplies the desired
rainbow cycle.
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5.2 A linear upper bound on Rp(d)

In this section we assume graph G satisfies all the properties in Definition 3 and also for all
different parts Vi and Vj , each vertex in Vi has exactly one outgoing edge to a vertex in Vj . We call
these graphs permutation graphs since the set of edges from any part to any other part defines a
permutation.

Definition 4. Given an integer d > 0, the permutation rainbow cycle number Rp(d) is the largest
k such that there exists a k-partite graph G = (V1 ∪ V2 ∪ · · · ∪ Vk, E) such that

• each part has exactly d vertices, i.e., |Vi| = d, and

• every vertex has exactly one incoming edge from every part other than the one containing it.

• every vertex has exactly one outgoing edge to every part other than the one containing it.

• there exists no cycle C in G that visits each part at most once.

Theorem 13. For all integers d > 0, Rp(d) < 2d− 1.

In the rest of this section we prove Theorem 13. The proof is by induction.

Basis: For the base case, consider d = 1. If there are 2 parts or more, the vertex in V1 has an
outgoing edge to the vertex in V2 and vice versa. Therefore, there exists a rainbow cycle C in G
which is a contradiction. Thus, Rp(1) < 2.

Induction step: We assume

for all d′ < d, Rp(d
′) < 2d′ − 1, (3)

and prove Rp(d) < 2d− 1. First we define i-restricted paths which are the paths that use each part
at most once and except for the last vertex, all vertices are in the first i parts.

Definition 5. We call path P = v1 → v2 → · · · → vt an i-restricted path if

• v1, . . . , vt−1 ∈ V1 ∪ V2 ∪ · · · ∪ Vi, and

• P visits each part at most once.

Note that for all j > i, every i-restricted path is also a j-restricted path. Now we prove the
following claim.

Claim 1. If k ≥ 2d− 1, for every vertex v, there is a way of reindexing the parts such that v ∈ V1
and for all i ∈ [d], there are i nodes in V2i−1 which are reachable from v via (2i − 2)-restricted
paths.

Proof. The proof of the claim is also by induction. For the base case let i = 1. If v ∈ U , set
V1 = U and the claim follows. For the induction step, we assume V1, V2, . . . , V2i−1 are already
defined and there is a (2i − 2)-restricted path from v to v1, v2, . . . , vi ∈ V2i−1. Consider any part
U /∈ {V1, V2, . . . , V2i−1}. For all j ∈ [i], let vj → uj be the outgoing edge from vj to U . Since each
node in V2i−1 has exactly one outgoing edge to U and each node in U has exactly one incoming
edge from V , u1, u2, . . . , ui are distinct. Therefore, at least i nodes in U are reachable from v via
(2i−1)-restricted paths. Let U ′ ⊆ U be the vertices that are reachable from v via (2i−1)-restricted
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Figure 1: W ′ has an outgoing edge to U
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Figure 2: k′ ≥ k − 2i− 1 and for all j, ` ∈ [k′], there exists no edge between U ′j and U `.

paths and let U = U \ U ′. If |U ′| ≥ i+ 1, we set V2i = W for some W /∈ {V1, V2, . . . , V2i−1, U} and
set V2i+1 = U and the claim follows. Otherwise, for all U /∈ {V1, V2, . . . , V2i−1}, we have |U ′| = i
and |U | = d − i. If there exist U,W /∈ {V1, V2, . . . , V2i−1} such that w ∈ W ′ has an outgoing edge
to u ∈ U , then we set V2i = W and V2i+1 = U . Note that all nodes in U ′ are reachable from v
using (2i−1)-restricted paths and u is reachable via a (2i)-restricted path. Therefore, in total i+1
vertices in U = V2i+1 are reachable from v via (2i)-restricted paths. See Figure 1 for an illustration.

Let V (G) = V1∪V2∪· · ·∪V2i−1∪U1∪U2∪· · ·∪Uk−2i+1. The only remaining case is that for all
j ∈ [k−2i+1], |U j | = d− i and for all j, ` ∈ [k−2i+1], there is no edge from U ′j to U `. This means

that all the d− i incoming edges of U ` come from U j . Hence all the d− i outgoing edges of U j go
to U `. Therefore, the induced subgraph on U1 ∪ U2 ∪ · · · ∪ Uk−2i+1, forms a permutation graph.
See Figure 2. By Inequality (3), we know Rp(d− i) < 2d−2i−1 and hence, k−2i+1 < 2d−2i−1.
This is a contradiction with the assumption of the claim which requires k ≥ 2d− 1. Therefore, this
case cannot occur.

Back to the assumption step, we want to prove Rp(d) < 2d−1. Towards a contradiction, assume
Rp(d) ≥ 2d−1 and consider a graph G with |Rp(d)| parts satisfying properties of Definition 4. Now
pick an arbitrary vertex v. By setting i = d in Claim 1, there exists a reindexing of the parts such
that all d nodes in part V2d−1 are reachable from v using (2d− 2)-restricted paths. Let u ∈ V2d−1
be the vertex with an outgoing edge to v. Then a (2d− 2)-restricted path from v to u followed by
the edge u→ v forms a rainbow cycle. Hence, Rp(d) < 2d− 1.
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and Junxing Wang. The unreasonable fairness of maximum Nash welfare. In Pro-
ceedings of the 17th ACM Conference on Economics and Computation (EC), pages
305–322, 2016.

[CKMS21] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa.
A little charity guarantees almost envy-freeness. SIAM J. Comput., 50(4):1336–1358,
2021.

[EPT05] R. Etkin, A. Parekh, and D. Tse. Spectrum sharing for unlicensed bands. In In
Proceedings of the first IEEE Symposium on New Frontiers in Dynamic Spectrum
Access Networks, 2005.

[fai] www.fairoutcomes.com.

[GHS+18] Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Masoud Seddighin, Saeed Sed-
dighin, and Hadi Yami. Fair allocation of indivisible goods: Improvements and gener-
alizations. In Proceedings of the 19th ACM Conference on Economics and Computation
(EC), pages 539–556, 2018.

[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. Approximating maximin share
allocations. In Proceedings of the 2nd Symposium on Simplicity in Algorithms (SOSA),
volume 69, pages 20:1–20:11, 2019.

[GT20] Jugal Garg and Setareh Taki. An improved approximation algorithm for maximin
shares. In EC, pages 379–380. ACM, 2020.

[HPPS20] Daniel Halpern, Ariel D. Procaccia, Alexandros Psomas, and Nisarg Shah. Fair division
with binary valuations: One rule to rule them all. In WINE, volume 12495 of Lecture
Notes in Computer Science, pages 370–383. Springer, 2020.

[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing
approximate maximin shares. Journal of ACM, 65(2):8:1–27, 2018.

[LMMS04] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On ap-
proximately fair allocations of indivisible goods. In Proc. 5th Conf. Economics and
Computation (EC), pages 125–131, 2004.
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A Appendix

Non-Degenerate Instances [CGM20]. We call an instance I = 〈[n],M,V〉 non-degenerate if
and only if no agent values two different sets equally, i.e., ∀i ∈ [n] we have vi(S) 6= vi(T ) for all
S 6= T . We extend the technique in [CGM20] and show that it suffices to deal with non-degenerate
instances when there are n agents with general valuation functions, i.e., if there exists an EFX
allocation in all non-degenerate instances, then there exists an EFX allocation in all instances.

Let M = {g1, g2, . . . , gm}. We perturb any instance I to I(ε) = 〈[n],M,V(ε)〉, where for every
vi ∈ V we define v′i ∈ V(ε), as

v′i(S) = vi(S) + ε ·
∑
gj∈S

2j ∀S ⊆M

Lemma 5. Let δ = mini∈[n] minS,T : vi(S)6=vi(T ) |vi(S)−vi(T )| and let ε > 0 be such that ε·2m+1 < δ.
Then

1. For any agent i and S, T ⊆M such that vi(S) > vi(T ), we have v′i(S) > v′i(T ).

2. I(ε) is a non-degenerate instance. Furthermore, if X = 〈X1, X2, X3〉 is an EFX allocation
for I(ε) then X is also an EFX allocation for I.

Proof. For the first statement of the lemma, observe that

v′i(S)− v′i(T ) = vi(S)− vi(T ) + ε(
∑

gj∈S\T

2j −
∑

gj∈T\S

2j)

≥ δ − ε
∑

gj∈T\S

2j

≥ δ − ε · (2m+1 − 1)

> 0 .

For the second statement of the lemma, consider any two sets S, T ⊆M such that S 6= T . Now,
for any i ∈ [n], if vi(S) 6= vi(T ), we have v′i(S) 6= v′i(T ) by the first statement of the lemma. If
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vi(S) = vi(T ), we have v′i(S) − v′i(T ) = ε(
∑

gj∈S\T 2j −
∑

gj∈T\S 2j) 6= 0 (as S 6= T ). Therefore,

I(ε) is non-degenerate.
For the final claim, let us assume that X is an EFX allocation in I(ε) and not an EFX allocation

in I. Then there exist i, j, and g ∈ Xj such that vi(Xj \ g) > vi(Xi). In that case, we have
v′i(Xj \ g) > v′i(Xi) by the first statement of the lemma, implying that X is not an EFX allocation
in I(ε) as well, which is a contradiction.
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