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ABSTRACT
A graph property is called monotone if it is closed under
taking (not necessarily induced) subgraphs (or, equivalently,
if it is closed under removal of edges and vertices). Many
monotone graph properties are some of the most well-studied
properties in graph theory, and the abstract family of all
monotone graph properties was also extensively studied. Our
main result in this paper is that any monotone graph prop-
erty can be tested with one-sided error, and with query
complexity depending only on ε. This result unifies several
previous results in the area of property testing, and also
implies the testability of well-studied graph properties that
were previously not known to be testable. At the heart of
the proof is an application of a variant of Szemerédi’s Regu-
larity Lemma. The main ideas behind this application may
be useful in characterizing all testable graph properties, and
in generally studying graph property testing.

As a byproduct of our techniques we also obtain addi-
tional results in graph theory and property testing, which
are of independent interest. One of these results is that
the query complexity of testing testable graph properties
with one-sided error may be arbitrarily large. Another re-
sult, which significantly extends previous results in extremal
graph-theory, is that for any monotone graph property P,
any graph that is ε-far from satisfying P, contains a sub-
graph of size depending on ε only, which does not satisfy P.
Finally, we prove the following compactness statement: If a
graph G is ε-far from satisfying a (possibly infinite) set of
graph properties P, then it is at least δP(ε)-far from satis-
fying one of the properties.
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1. INTRODUCTION

1.1 Definitions and Background
All graphs considered here are finite, undirected, and have

neither loops nor parallel edges. Let P be a property of
graphs, namely, a family of graphs closed under isomor-
phism. All graph properties discussed in this paper are
assumed to be decidable, that is, we disregard properties
for which it is not possible to tell whether a given graph
satisfies them. A graph G with n vertices is said to be ε-
far from satisfying P if one must add or delete at least εn2

edges in order to turn G into a graph satisfying P. A tester
for P is a randomized algorithm which, given the quantity
n and the ability to make queries whether a desired pair of
vertices of an input graph G with n vertices are adjacent or
not, distinguishes with high probability (say, 2/3), between
the case of G satisfying P and the case of G being ε-far
from satisfying P. One of the striking results in the area of
property-testing is that many natural graph properties have
a tester, whose total number of queries is bounded only by
a function of ε, which is independent of the size of the input
graph. A property having such a tester is called testable.
Note, that if the number of queries performed by the tester
is bounded by a function of ε only, then so is its running
time. A tester is said to have one-sided error if whenever
G satisfies P, the algorithm declares that this is the case
with probability 1. Throughout the paper, we assume that
a tester first samples a set of vertices, queries all edges on
the set, and then accepts or rejects by considering the graph
spanned by the set. As observed in [3] and formally proved
in [20], this can be assumed with no loss of generality, as
this assumption at most squares the query complexity (and
we will not care about such factors in this paper).

The general notion of property testing was first formulated
by Rubinfeld and Sudan [29], who were motivated mainly by



its connection to the study of program checking. The study
of the notion of testability for combinatorial structures, and
mainly for labelled graphs, was introduced in the seminal
paper of Goldreich, Goldwasser and Ron [19], who showed
that several natural graph properties are testable. In the
wake of [19], many other graph properties were shown to be
testable, while others were shown to be non-testable. See
[15], [18] and [28] for additional results and references on
graph property-testing as well as on testing properties of
other combinatorial structures.

1.2 Related Work
The most interesting results in property-testing are those

that show that large families of problems are testable. The
main result of [19] states that a certain abstract graph parti-
tion problem, which includes as a special case k-colorability,
having a large cut and having a large clique, is testable. The
authors of [20] gave a characterization of the partition prob-
lems discussed in [19] that are testable with one-sided error.
In [3], a logical characterization of a family of testable graph
properties was obtained. According to this characterization,
every first order graph-property of type ∃∀ is testable, while
there are first-order graph properties of type ∀∃ that are not
testable. These results were extended in [14].

There are also several general testability and non-testability
results in other areas besides testing graph properties. In [4]
it is proved that every regular language is testable. This re-
sult was extended to any read-once branching program in
[24]. On the other hand, it was proved in [16], that there
are read-twice branching programs that are not-testable.
The main result of [6] states that any constraint satisfac-
tion problem is testable.

With this abundance of general testability results, a natu-
ral question is what makes a combinatorial property testable.
As graphs are the most well studied combinatorial structures
in the theory of computation, it is natural to consider the
problem of characterizing the testable graph properties, as
the most important open problem in the area of property
testing. Regretfully, though, finding such a characterization
seems to be a very challenging endeavor, which is still open.

1.3 The Main New Result
Our main goal in this paper is to show that all the graph

properties that belong to a large, natural and well studied
family of graph properties are testable. In fact, we even show
that these properties are testable with one-sided error. A
graph-property P is said to be monotone if it is closed under
removal of edges and vertices. In other words, if a graph G
does not satisfy P, then any graph that contains G as a (not
necessarily induced) subgraph does not satisfy P as well.
Various monotone graph properties were extensively studied
in graph theory. As examples of monotone properties one
can consider the property of having a homomorphism to a
fixed graph H (which includes as a special case the property
of being k-colorable, see Definition 2.2), and the property
of not containing a (not necessarily induced) copy of some
fixed graph H. Another monotone property is being (k,H)-
Ramsey: For a (possibly infinite) family of graphsH, a graph
is said to be (k,H)-Ramsey if one can color its edges using
k colors, such that no color class contains a copy of a graph
H ∈ H. This property is the main focus of Ramsey-Theory,
see [21] and its references. As another example, one can
consider the property of being (k,H, f)-Multicolorable; For

a (possibly infinite) family of graphsH and a function f from
H to the positive integers, a graph is said to be (k,H, f)-
Multicolorable if one can color its edges using k colors, such
that every copy of a graph H ∈ H receives at least f(H)
colors. See [13], [11] and their references for a discussion of
some special cases. The abstract family of monotone graph
properties has also been extensively studied in graph theory.
See [17], [10], [9] and their references. Our main result is the
following:

Theorem 1. (The Main Result) Any monotone graph
property is testable with one-sided error.

We stress that we actually prove a slightly weaker state-
ment than the one given above, as the monotone property
has to satisfy some technical conditions (which cannot be
avoided). However, as the cases where the actual result
is weaker than what is stated in Theorem 1 deal with ex-
tremely unnatural properties, and even in these cases the
actual result is roughly the same, we postpone the precise
statement to Section 4 (see Theorem 6). Another impor-
tant note is that in [20], Goldreich and Trevisan define a
monotone graph property to be one that is closed under
removal of edges, and not necessarily under removal of ver-
tices. They show that there are such properties that are
not testable even with two sided error. In fact, their result
is stronger as the property they define belongs to NP and
has query complexity Ω(n2). This means that Theorem 1
cannot be extended, in a strong sense, to properties that are
only closed under removal of edges.

As we have mentioned above, having a homomorphism
to a fixed graph H, k-colorability and the property of not
containing a copy of a fixed graph H, are monotone prop-
erties, and are thus testable with one-sided error by Theo-
rem 1. These properties were known to be testable before,
and as Theorem 1 applies to general monotone properties,
the bounds it supplies for these properties are inferior com-
pared to the ones proved by the ad-hoc arguments (see [5],
[19], [20] and [7]). In Theorem 4 we prove that this is un-
avoidable. The main importance of Theorem 1 thus lies
in its generality. However, as described in the beginning of
this subsection, there are additional natural and well-studied
monotone graph properties that prior to this work were not
known to be testable, and we may thus use Theorem 1 to
conclude that these properties are testable with one-sided
error. We also believe that Theorem 1 and its proof may be
an important step towards a combinatorial characterization
of the graph properties that are testable with one-sided er-
ror. Another important aspect of Theorem 1 is that it can
be used to prove general results on graph property testing.
Two examples are Theorems 4 and 5, which we describe in
the next subsection. Another result is discussed in Section 4.
We believe that Theorem 1 will be useful for proving other
consequences as well. See Section 7 for more details and
possible natural lines of research suggested by the results of
this paper.

1.4 Techniques and Additional Results
The first technical ingredient in the proof of Theorem 1 is

the proof of an (almost) equivalent formulation of it. For a
(possibly infinite) family of graphs F we say that a graph is
F-free if it contains no member from F as a (not necessar-
ily induced) subgraph. Clearly, being F-free is a monotone



property. It is well known (see e.g. [2]) that for any finite
family of graphs F , the property of being F-free is testable.
This follows from a standard application of Szemerédi’s Reg-
ularity Lemma. As we discuss in Section 2, this lemma is
inadequate for obtaining a similar result for infinite families
of graphs. The main technical step in the proof of Theo-
rem 1 is the following theorem, which is the main technical
contribution of this paper.

Theorem 2. For every (possibly infinite) family of graphs
F , there are functions NF (ε) and QF (ε) with the following
properties: If G is a graph on n ≥ NF (ε) vertices which
is ε-far from being F-free, then a random subset of QF (ε)
vertices of G spans a member of F with probability at least
2/3.

Note that Theorem 2 immediately implies that for every
family of graphs F , the property of being F-free is testable.
In order to prove Theorem 2 we apply a strong version of
the regularity lemma, proved by Alon, Fischer, Krivelevich
and Szegedy [3]. We believe that our application of this
lemma may be useful for attacking other problems. As a
byproduct of our argument we obtain the following graph
theoretic result.

Theorem 3. For every monotone graph property P, there
is a function WP(ε) with the following property: If G is ε-
far from satisfying P, then G contains a subgraph of size at
most WP(ε), which does not satisfy P.

The above theorem significantly extends a result of Rödl
and Duke [26], conjectured by Erdős, which asserts that the
above statement holds for the k-colorability property. Theo-
rem 3 applies to any monotone property, and in particular to
all the properties discussed in the beginning of the previous
subsection.

As will become evident from the proof of Theorem 1 (which
is based on Theorem 2), the upper bounds for testing a
monotone property depend on the property being tested. In
other words, what we prove is that for every property P,
there is a function QP(ε) such that P can be tested with
query complexity QP(ε). A natural question one may ask,
is if the dependency on the specific property being tested
can be removed. We rule out this possibility by proving the
following.

Theorem 4. For any function Q : (0, 1) 7→ N , there is
a monotone graph property P, such that for infinitely many
values of ε, P cannot be tested with one-sided error using
less than Q(ε) queries.

We note that proving the above for finitely many values
of ε is rather easy. This, however, will not imply that there
are monotone properties that cannot be tested using query
complexity, say, 2O(1/ε). Prior to this work, the best lower
bound proved for testing a testable graph property with one-
sided error was obtained in [1], where it is shown that for
every non-bipartite graph H, the query complexity of testing
whether a graph does not contain a copy of H is at least
(1/ε)Ω(log 1/ε). The fact that for every H this property is
testable with one-sided error, follows from [2] and [3], and
also as a special case from Theorem 1. As by Theorem 1
every monotone graph property is testable with one-sided
error, Theorem 4 establishes that the one-sided error query

complexity of testing testable graph properties, even those
that are testable with one-sided error, may be arbitrarily
large.

Our next result can be considered a compactness-type re-
sult in property testing. Suppose P1, . . . ,Pk are k graph
properties that are closed under removal of edges. It is clear
that if a graph G is ε-far from satisfying these k proper-
ties then it is at least ε/k-far from satisfying at least one of
them. However, it is not clear that there is a fixed ε′ > 0
such that even if k → ∞, G must be ε′-far from satisfying
one of these properties. By using Theorem 2 we can prove
that if these properties are monotone then such an ε′ exists.
We also show that in general there is no such ε′.

Theorem 5. For any (possibly infinite) set of monotone
graph properties P = {P1,P2, . . .}, there is a function δP :
(0, 1) 7→ (0, 1) with the following property: If a graph G is
ε-far from satisfying all the properties of P, then for some
i, the graph G is δP(ε)-far from satisfying Pi. Furthermore,
there are properties P = {P1,P2, . . .}, which are closed un-
der removal of edges for which no such δP exists.

1.5 Recent results
We have recently managed to extend Theorem 1 by show-

ing that any hereditary graph property is testable with one-
sided error (a graph property is hereditary if it is closed un-
der removal of vertices, and not necessarily under removal of
edges). Besides implying that many additional graph prop-
erties are testable, we can also use this result to obtain a
precise characterization of the graph properties, which can
be tested with one-sided error by testers with a certain nat-
ural restriction (all the testers that have been designed thus
far in the literature satisfy this restriction). Also, in a joint
work with Benny Sudakov, we have obtained approxima-
tion algorithms for estimating how far is a graph from sat-
isfying a monotone property P (namely approximating ε).
Some matching hardness of approximation results can also
be proved.

1.6 Organization
The rest of the paper is organized as follows. In Section

2 we introduce the basic notions of regularity and state the
regularity lemmas that we use and some of their standard
consequences. We also (do our best to) explain why the
standard regularity lemma and its applications seem inade-
quate for proving Theorem 2. In Section 3 we give a high
level description of the proof of Theorem 2 as well as the
main ideas behind it. The full proof of Theorem 2 appears
in Section 5. In Section 4 we give the precise statement
of Theorem 1 and use Theorem 2 in order to prove it. In
Section 7, we describe several possible extensions and open
problems that this paper suggests. The proofs of Theorems
3 and 5 appear in Section 5 and the proof of Theorem 4
appears in Section 6. Throughout the paper, whenever we
relate, for example, to a function f3.1, we mean the function
f defined in Lemma/Claim/Theorem 3.1.

2. REGULARITY LEMMAS: DEFINITIONS,
STATEMENTS AND APPLICATIONS

In this section we discuss the basic notions of regularity,
some of the basic applications of regular partitions and state
the regularity lemmas that we use in the proof of Theorem
2. We start with some basic definitions. For every two



nonempty disjoint vertex sets A and B of a graph G, we
define e(A, B) to be the number of edges of G between A
and B. The edge density of the pair is defined by d(A, B) =
e(A, B)/|A||B|.

Definition 2.1. (γ-regular pair) A pair (A, B) is γ-
regular, if for any two subsets A′ ⊆ A and B′ ⊆ B, satisfy-
ing |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality |d(A′, B′) −
d(A, B)| ≤ γ holds.

Note that a sufficiently large random bipartite graph, where
each edge is chosen independently with probability d, is
very likely to be a γ-regular pair with density roughly d,
for any γ > 0. Thus, in some sense, the smaller γ is, the
closer a γ-regular pair is to looking like a random bipartite
graph. For this reason, the reader who is unfamiliar with
the regularity lemma and its applications, should try and
compare the statements given in this section to analogous
statements about random graphs. Throughout the paper we
will make an extensive use of the notion of graph homomor-
phism, which we turn to formally define.

Definition 2.2. (Homomorphism) A homomorphism
from a graph F to a graph K, is a mapping ϕ : V (F ) 7→
V (K) that maps edges to edges, namely (v, u) ∈ E(F ) im-
plies (ϕ(v), ϕ(u)) ∈ E(K).

In what follows, F 7→ K denotes that there is a homo-
morphism from F to K. Let F be a graph on f vertices and
K a graph on k vertices, and suppose F 7→ K. Let G be a
graph obtained by taking a copy of K, replacing every ver-
tex with a sufficiently large independent set, and every edge
with a random bipartite graph of edge density d. It is easy
to show that with high probability, G contains many copies
of F . The following lemma shows that in order to infer that
G contains many copies of F , it is enough to replace every
edge with a ”regular enough” pair. Intuitively, the larger f
and k are, and the sparser the regular pairs are, the more
regular we need each pair to be, because we need the graph
to be ”closer” to a random graph. This is formulated in the
lemma below. Several versions of this lemma were previ-
ously proved in papers using the regularity lemma.

Lemma 2.1. For every real 0 < η < 1, and integers k, f ≥
1 there exist γ = γ2.1(η, k, f), δ = δ2.1(η, k, f) and M =
M2.1(η, k, f) with the following property. Let F be any graph
on f vertices, and let U1, . . . , Uk be k pairwise disjoint sets
of vertices in a graph G, where |U1| = . . . = |Uk| = m ≥
M . Suppose there is a mapping ϕ : V (F ) 7→ {1, . . . , k}
such that the following holds: If (i, j) is an edge of F then
(Uϕ(i), Uϕ(j)) is γ-regular with density at least η. Then the

sets U1, . . . , Uk span at least δmf copies of F .

Comment 2.1. Note, that the functions γ2.1(η, k, f) and
δ2.1(η, k, f) may and will be assumed to be monotone non-
increasing in k and f . Similarly, we will assume that the
function M2.1(η, k, f) is monotone non-decreasing in k and
f . Also, for ease of future definitions (in particular the one
given in (4)) set γ2.1(η, k, 0) = δ2.1(η, k, 0) = M2.1(η, k, 0) =
1 for any k ≥ 1 and 0 < η < 1.

A partition A = {Vi|1 ≤ i ≤ k} of the vertex set of a
graph is called an equipartition if |Vi| and |Vj | differ by no
more than 1 for all 1 ≤ i < j ≤ k (so in particular each
Vi has one of two possible sizes). The Regularity Lemma of
Szemerédi can be formulated as follows.

Lemma 2.2 ([30]). For every m and ε > 0 there exists
a number T = T2.2(m, ε) with the following property: Any
graph G on n ≥ T vertices, has an equipartition A = {Vi|1 ≤
i ≤ k} of V (G) with m ≤ k ≤ T , for which all pairs (Vi, Vj),
but at most ε

�
k
2

�
of them, are ε-regular.

The original formulation of the lemma allows also for an
exceptional set with up to εn vertices outside of this equipar-
tition, but one can first apply the original formulation with
a somewhat smaller parameter instead of ε and then evenly
distribute the exceptional vertices among the sets of the par-
tition to obtain this formulation. T2.2(m, ε) may and is as-
sumed to be monotone nondecreasing in m and monotone
non-increasing in ε.

A standard application of Lemmas 2.1 and 2.2 shows that
for any finite set of graphs F , the property of not containing
a member of F is testable. We just use Lemma 2.1 by setting
f and k to be the size of the largest graph in F . Lemma 2.1
tells us how regular an equipartition should be (that is, how
small should γ be) in order to find many copies of a member
of F in it, assuming the graph is ε-far from being F-free (this
is γ2.1 with appropriate η,k and f). We then apply Lemma
2.2, with ε = γ2.1. The main difficulty with applying this
strategy when F is infinite is that we do not know a priori
the size of the member of F that we will eventually find
in the equipartition that Lemma 2.2 returns. After finding
F ∈ F in an equipartition, we may find out that F is too
large for Lemma 2.1 to be applied, because Lemma 2.2 was
not used with a small enough ε. One may then try to find
a new equipartition based on the size of F . However, that
requires using a smaller ε, and thus the new equipartition
may be larger (that is, contain more partition classes), and
thus contain only larger members of F . Hence, even the
new ε is not good enough in order to apply Lemma 2.1.
This leads to a circular definition of constants, which seems
unbreakable. Our main tool in the proof of Theorem 2 is
Lemma 2.3 below, proved in [3] for a different reason, which
enables us to break this circular chain of definitions. This
lemma can be considered a variant of the standard regularity
lemma, where one can use a function that defines ε as a
function of the size of the partition1, rather then having to
use a fixed ε as in Lemma 2.2. To state the Lemma we need
the following definition.

Definition 2.3. (The function WE,m) Let E(r) : N 7→
(0, 1) be an arbitrary monotone non-increasing function. Let
also m be an arbitrary positive integer. We define the func-
tion WE,m : N 7→ (0, 1) inductively as follows: WE,m(1) =
T2.2(m, E(0)). For any integer i > 1 put R = WE,m(i − 1)
and define

WE,m(i) = T2.2(R, E(R)/R2). (1)

Lemma 2.3. ([3]) For every integer m and monotone non-
increasing function E(r) : N 7→ (0, 1) define

S = S2.3(m, E) = WE,m(100/E(0)4).

For any graph G on n ≥ S vertices, there exist an equipar-
tition A = {Vi|1 ≤ i ≤ k} of V (G) and an induced subgraph
U of G, with an equipartition B = {Ui|1 ≤ i ≤ k} of the
vertices of U , that satisfy:

1This is a simplification of the actual statement, see item
(3) in the statement of Lemma 2.3



1. m ≤ k ≤ S.

2. Ui ⊆ Vi for all i ≥ 1, and |Ui| ≥ n/S.

3. In the equipartition B, all pairs are E(k)-regular.

4. All but at most E(0)
�

k
2

�
of the pairs 1 ≤ i < j ≤ k are

such that |d(Vi, Vj)− d(Ui, Uj)| < E(0).

Comment 2.2. For technical reasons (see the proof in
[3]), Lemma 2.3 requires that for any r > 0 the function
E(r) will satisfy

E(r) ≤ min{E(0)/4, 1/4r2}. (2)

One of the difficulties in the proof of Theorem 2, is in
showing that all the constants that are used in the course of
the proof can be upper bounded by functions depending on
ε only. The following observation will thus be useful.

Proposition 2.1. If m is bounded by a function of ε only,
E(r) is a function of r and ε only, and E(r) satisfies (2),
then the integer S = S2.3(m, E) can be upper bounded by a
function of ε only.

3. OVERVIEW OF THE PROOF OF THEO-
REM 2

Though we believe that the proof of Theorem 2 is not
harder than several other proofs applying the regularity lemma,
we could not avoid the usage of a hefty number of constants
that may hide the main ideas of the proof. We thus give
in this section a general overview of the proof, and the way
we overcome the difficulties mentioned in Section 2. The
complete proof is given in Section 5.

For an equipartition of a graph G, let the regularity graph
of G, denoted R = R(G), be the following graph: We first
use Lemma 2.2 in order to obtain the equipartition satisfying
the assertions of the lemma. Let k be the size of the equipar-
tition. Then, R is a graph on k vertices, where vertices i and
j are connected if and only if (Vi, Vj) is a dense regular pair
(with the appropriate parameters). In some sense, the reg-
ularity graph is an approximation of the original graph, up
to εn2 modifications. One of the main (implicit) implica-
tions of the regularity lemma is the following: Suppose we
consider two graphs to be similar if their regularity graphs
are identical. It thus follows from Lemma 2.2 that for every
ε > 0, the number of graphs that are pairwise non-similar is

bounded by a function of ε only (2(T2.2(m,ε)
2 ) for an appro-

priate m). Namely, up to εn2 modifications, all the graphs
can be approximated using a set of equipartitions of size
bounded by a function of ε only. The reader is referred to
[12] where this interpretation of the regularity lemma is also
(implicitly) used. This leads us to the key definitions of the
proof of Theorem 2. The reader should think of the graphs
R considered below as the set of regularity graphs discussed
above, and the parameter r as representing the size of R.

Definition 3.1. (The family Fr) For any (possibly in-
finite) family of graphs F , and any integer r let Fr be the
following set of graphs: A graph R belongs to Fr if it has
at most r vertices and there is at least one F ∈ F such that
F 7→ R.

In the proof of Theorem 2, the set Fr, defined above, will
represent a subset of the regularity graphs of size at most
r. Namely, those R for which there is at least one F ∈ F
such that F 7→ R. As r will be a function of ε only, and
thus finite, we can take the maximum over all the graphs
R ∈ Fr, of the size of the smallest F ∈ F such that F 7→ R.
We thus define

Definition 3.2. (The function ΨF) For any family of
graphs F and integer r for which Fr 6= ∅, define

ΨF (r) = max
R∈Fr

min
{F∈F:F 7→R}

|V (F )|. (3)

Define ΨF (r) = 0 if Fr = ∅. Therefore, ΨF (r) is monotone
non-decreasing in r.

The function ΨF has a critical role in the proof of Theo-
rem 2. The first usage of this function is that as by Lemma
2.2 we can upper bound the size of the regularity graph R, we
can also upper bound the size of the smallest graph F ∈ F
for which F 7→ R. A second important property of ΨF is
discussed in Section 4. A natural question one may ask is
whether there is a function Ψ that can upper bound ΨF for
all families F . As it turns out, this is impossible, namely
the dependency on the specific family F is unavoidable. See
the discussion following the proof of Theorem 4 in Section
6. As we have mentioned in the previous section, the main
difficulty that prevents one from proving Theorem 2 using
Lemma 2.1 is that one does not know a priori the size of the
graph that one may expect to find in the equipartition. This
leads us to define the following function where 0 < ε < 1 is
an arbitrary real.

E ′(r) =

�
ε/8, r = 0
γ2.1(ε/8, r, ΨF (r)), r ≥ 1

(4)

In simple words, given r, which will represent the size
of the equipartition and thus also the size of the regular-
ity graph which it defines, E ′(r) returns ”how regular” this
equipartition should be in order to allow one to find many
copies of the largest graph one may possibly have to work
with. Note, that we obtain the upper bound on the size of
this largest possible graph, by invoking ΨF (r). As for dif-
ferent families of graphs F , the function ΨF (r) may behave
differently, E ′(r) may also behave differently for different
families F , as it is defined in terms of ΨF (r). However, and
this is one of the key points of the proof, as we are fixing
the family of graphs F , the function E ′(r) depends only on ε
and r. For ease of later reference we state this observation.

Proposition 3.1. For every fixed family of graphs F ,
E ′(r) is a function of r and ε only.

Given the above definitions we apply Lemma 2.3 with a
slight modification of E ′(r) in order to obtain an equiparti-
tion of G. We then throw away edges that reside inside the
sets Vi and between (Vi, Vj) whose edge density differs sig-
nificantly from that of (Ui, Uj) . We then argue that we thus
throw away less than εn2 edges. As G is by assumption ε-far
from not containing a member of F , the new graph still con-
tains a copy of F ∈ F . By the definition of the new graph,
it thus means that there is a (natural) homomorphism from
F to the regularity graph of G. We then arrive at the main
step of the proof, where we use the key property of Lemma



2.3, item (3), and the definition of E ′(r) to get that the sets
Ui are regular enough to let us use Lemma 2.1 on them and
to infer that they span many copies of F . It thus follows,
that a large enough sample of vertices spans a copy of F with
high probability. The complete details appear in Section 5.

4. PROOF OF THEOREM 1
For a monotone graph property P, define F = FP to be

the set of graphs which are minimal with respect to not
satisfying property P. In other words, a graph F belongs
to F if it does not satisfy P, but any graph obtained from
F by removing an edge or a vertex, satisfies P. Thus, for
example, if P is the property of being 2-colorable, then F is
the set of odd-cycles. Clearly, a graph satisfies P if and only
it contains no member of F as a (not necessarily induced)
subgraph.

As we have mentioned in Section 1, we will prove a slightly
different version of Theorem 1. In order to precisely restate
Theorem 1 we need two definitions. Note, that in defining
a tester in Section 1, we did not mention whether the error
parameter ε is given as part of the input, or whether the
tester is designed to distinguish between graphs that satisfy
P from those that are ε-far from satisfying it, when ε is a
known fixed constant. In fact, the literature about prop-
erty testing is not clear about this issue as in some papers
ε is assumed to be a part of the input while in others it is
not. We define a property to be uniformly testable if there
is a tester for it that receives ε as part of the input. We
define a property to be non-uniformly testable if for every
fixed ε, there is a tester that can distinguish between graphs
that satisfy P from those ε-far from satisfying it. It is im-
portant to note that the difference between being uniformly
testable and non-uniformly testable, is not as sharp as, say,
the difference between P and P/Poly. The reason is that
in P vs. P/Poly the non-uniformity is with respect to the
inputs, while in our case the non-uniformity is over the er-
ror parameter. In particular, a non-uniform tester should
be able to handle any input graph. We are now ready to
restate Theorem 1.

Theorem 6. (Theorem 1 restated): Every monotone
graph property P is non-uniformly testable with one-sided
error. Moreover, if the function ΨF is recursive (where F =
FP) then P is also uniformly testable with one-sided error.

We stress that all reasonable graph properties P, in par-
ticular those that were discussed in Section 1, are such that
ΨF is recursive (a function is recursive if there is an algo-
rithm that computes it in finite time). In particular, all the
monotone properties mentioned in Section 1 are uniformly
testable with one-sided error. We thus bother to define uni-
formly and non-uniformly testing as well as discuss ΨF be-
cause it has the following interesting property: Not only is
it sufficient to require ΨF to be recursive in order to infer
that P can be tested uniformly with one-sided error, but
this is also necessary. In other words, the recursiveness of
ΨF determines whether P can be tested uniformly. This
is somewhat surprising as ΨF has little to do with property
testing. Using this necessary condition, it is possible to show
that there are graph properties that can be non-uniformly
tested with one-sided error, but cannot be uniformly tested,
even with two-sided error. The proofs of the necessity of ΨF
being recursive in order to obtain a uniform tester, as well as

the existence of a property that cannot be tested uniformly
are rather involved and significantly deviate from the main
topic of this paper. Hence, we refrain from describing them
here. These results will appear in a subsequent paper [8].

Proof. (of Theorem 6): Let F = FP be as defined
above. As satisfying P is equivalent to being F-free, we fo-
cus on testing the property of being F-free. We first show
that every monotone property is non-uniformly testable. In
this case we may design a tester for every given error pa-
rameter ε (but one that can handle any graph as an input).
In this case, for every fixed ε, the tester knows the values of
NF (ε) and QF (ε) in advance (i.e. they are part of its descrip-
tion). If the size of the input graph is less than NF (ε), the
algorithm queries about all edges of the graph and accepts
if and only if the graph is F-free (obviously, in this case the
algorithm always answers correctly). If the size of the input
graph is larger than NF (ε), it samples QF (ε) random ver-
tices and accepts if and only if the graph spanned by this set
of vertices is F-free. Clearly, if G is F-free the algorithm de-
clares that this is the case with probability 1. On the other
hand, if it is ε-far from being F-free then by Theorem 2 the
sample of size QF (ε) will contain F ∈ F with probability at
least 2/3, and thus the algorithm will reject the input with
this probability. In any case, the query complexity, which is
max{NF (ε), QF (ε)}, is bounded by a function of ε only.

We now turn to uniform testers. In this case, we can imi-
tate the proof of the case where ε is given in advance, which
was described above. The only technical obstacle that may
prevent us from carrying out the same testing algorithm, is
that the algorithm should be able to compute NF (ε) and
QF (ε). As the details of the proof of Theorem 2 reveal (see
the discussion following the proof of Theorem 2 in Section
5), the only step in computing NF (ε) and QF (ε), which is
not well defined (i.e. that depends on F) is the computation
of the function ΨF (r) (see Definition 3.2). In other words, if
ΨF is recursive, then so are NF (ε) and QF (ε). We thus get
that if ΨF is recursive, we can uniformly test the property
of being F-free.

5. PROOFS OF THEOREMS 2, 3 AND 5
We start with the proof of Theorem 2. We assume the

reader is familiar with the overview of its proof given in
Section 3.

Proof. (of Theorem 2): Fix any family of graphs F .
Our goal is to show the existence of functions NF (ε) and
QF (ε) with the following properties: If a graph G on n ≥
NF (ε) vertices is ε-far from being F-free, then a random
subset of QF (ε) vertices of V (G) spans a member of F with
probability at least 2/3. For the rest of the proof, let E ′(r) :
N 7→ (0, 1) be as defined in (4). In order to apply Lemma
2.3, we need to define a function E , based on E ′, which will
satisfy the technical condition (2) in Comment 2.2. We thus
set E(0) = E ′(0) (= ε/8) and define for any k > 0,

E(r) = min{E ′(r), E(0)/4, 1/4r2}. (5)

For the rest of the proof set

S = S2.3(8/ε, E).

We may indeed define S using E as it satisfies (2). Further-
more, as we define S in terms of m = 8/ε and by Proposition
3.1 we know that E(r) is only a function of r and ε, we get



by Proposition 2.1 that S is a function of ε only. We now
set

N = NF (ε) = S ·M2.1(ε/8, S, ΨF (S)) (6)

(as we have just argued S and therefore also N are functions
of ε only). We postpone the definition of QF (ε) till the end
of the proof.

Given a graph G on n vertices, with n ≥ N ≥ S, we can
use Lemma 2.3 with m = 8/ε and E(r) as defined in (5), in
order to obtain an equipartition of V (G) into 8/ε ≤ k ≤ S
clusters V1, . . . , Vk (this is possible by item (1) in Lemma
2.3). By item (2) of Lemma 2.3, for every 1 ≤ i ≤ k we have
sets Ui ⊆ Vi each of size at least n/S. Remove from G the
following edges according to the following order:

1. Any edge (u, v) for which both u and v belong to
the same cluster Vi. As each of the clusters contains
at most n/k + 1 vertices, the total number of edges
removed is at most k(n/k)2. As k ≥ 8/ε we have
k(n/k)2 < ε

8
n2.

2. If for some i < j we have |d(Vi, Vj) − d(Ui, Uj)| >
ε
8

= E(0), remove all the edges connecting vertices that
belong to Vi to vertices that belong to Vj . By item (4)
of Lemma 2.3, there are at most ε

8
k2 such pairs i, j.

As Vi and Vj contain at most (n/k + 1) vertices, we
remove at most ε

8
k2 · (n/k + 1)2 ≤ ε

7
n2 edges in this

step.

3. If for some i < j we have d(Ui, Uj) < ε
8
, remove all the

edges connecting vertices that belong to Vi to vertices
that belong to Vj . As we have already removed in
the previous step all the edges between pairs (Vi, Vj)
for which |d(Vi, Vj)− d(Ui, Uj)| > ε

8
, we may conclude

that if d(Ui, Uj) < ε
8

then we also have d(Vi, Vj) <
ε
8

+ E(0) = ε
4
. As Vi and Vj contain at most (n/k + 1)

vertices, we thus remove at most k2 · ε
4
(n/k+1)2 ≤ ε

3
n2

edges.

Call the graph obtained after removing the above edges G′,
and observe that G′ is obtained from G by removing less
than εn2 edges. By item (3) of Lemma 2.3, in G all the
pairs (Ui, Uj) are E(k)-regular. Thus, by the third step of
obtaining G′ we get the following property:

Proposition 5.1. If vi ∈ Vi is connected to vj ∈ Vj in
G′, then (Ui, Uj) is a E(k)-regular pair with density at least
ε
8

in G.

Consider a graph R on k vertices r1, . . . , rk, where ver-
tices ri and rj are connected if and only if (Ui, Uj) is an
E(k)-regular pair in G with density at least ε

8
. This is the

regularity graph, which we have mentioned in Section 3, of
the graph induced by the sets U1, . . . , Uk. As G is by as-
sumption ε-far from being F-free, and G′ is obtained from
G by removing less than εn2 edges, G′ must contain a copy
of a graph F ′ ∈ F . Let Ri contain all the vertices of F ′ that
belong to cluster Vi and note that by Proposition 5.1, there
is a natural homomorphism ϕ : V (F ′) 7→ V (R) which maps
all the vertices of Ri ⊆ V (F ′) to ri. As |V (R)| = k and F ′

is a graph in F such that F 7→ R, we conclude that R ∈ Fk

(recall Definition 3.1). Therefore, there is a graph F ∈ F
of size at most ΨF (k) such that V (F ) 7→ V (R) (recall Def-
inition 3.2). Let ϕ : V (F ) 7→ V (R) be the homomorphism

mapping the vertices of F to the vertices of R. By defi-
nition, we have that whenever (i, j) is an edge of F their
image (ϕ(i), ϕ(j)) is an edge of R. Furthermore, by defini-
tion of R we know that if (ϕ(i), ϕ(j)) is an edge of R then
(Uϕ(i), Uϕ(j)) is an E(k)-regular pair with density at least ε

8
.

We have thus arrived at the following situation: We have
k clusters of vertices U1, . . . , Uk of the same size. We also
have a graph F of size at most ΨF (k), and a mapping ϕ :
V (H) 7→ {1, . . . , k} that satisfies the condition; if (i, j) ∈
E(F ) then (Uϕ(i), Uϕ(j)) is an E(k)-pair with density ε/8.
This, together with the definition of E(k), implies that we
can use Lemma 2.1 on the graph U spanned by U1, . . . , Uk.
Let f ≤ ΨF (k) denote the size of F . Item (4) in Lemma 2.3
states that each Ui contains at least n/S vertices. Also, by
(6), we have

n/S ≥ M2.1(ε/8, S, ΨF (S)) ≥ M2.1(ε/8, S, ΨF (k)).

Therefore, we may apply Lemma 2.1 on the sets U1, . . . , Uk

to conclude that U spans at least

δ(n/S)f (7)

copies of F , where δ = δ2.1(ε/8, k, ΨF (k)). By Comment
2.1, the function δ2.1(η, k, f) is monotone non-increasing in k
and f . Also, ΨF (k) is monotone nondecreasing in k. Hence,
as k ≤ S we have that δ ≥ δ2.1(ε/8, S, ΨF (S))), and in
particular 1/δ is upper bounded by a function of ε only. As
U is a subgraph of G, we may conclude that G contains at
least as many copies of F as (7). Thus, if we independently
sample 2Sf/δ sets of f vertices (which is a total of 2fSf/δ
vertices) we have probability at least 2/3 of finding a copy
of F ∈ F .

We can now give the formal definition of QF (ε). Given a
family of graphs F let ΨF (r) be the function from Definition
3.2. We note that the only place where QF (ε) depends on
F is in the function ΨF (r). Using ΨF (r) define the function
E(r) as in (5). Given ε > 0 define the function WE,8/ε as in

Definition 2.3. Put S = WE,8/ε(100/ε4). Finally, we can set

QF (ε) =
2ΨF (S) · SΨF (S)

δ2.1(ε/8, S, ΨF (S))
(8)

to be a function of ε only.

From the definition of E ′(r) in (4) it is clear that if the
function ΨF (r) is recursive, then so is E ′(r) and therefore
also E(r) (for this we also need the fact that γ2.1(η, k, f) is
recursive, which follows from the standard proofs of Lemma
2.1 (See, e.g., [23]) . In this case the function WE,m(i) is
also recursive (see Definition 2.3), and therefore also the
function S2.3(8/ε, E). Finally, this means that the integer S,
used in the above proof, can also be computed. Now, given
S and the fact that ΨF (r) is recursive, one can use (6) and
(8) as well as the fact that δ2.1(η, k, f) and M2.1(η, k, f) are
recursive (see the proof in [23]) in order to compute NF (ε)
and QF (ε).

We finish this section with the proofs of Theorems 3 and
5.

Proof. (of Theorem 3): We claim that we can set
WP(ε) = max{NF (ε), QF (ε)} with F = FP as in the proof
of Theorem 1, and NF (ε), QF (ε) the functions from Theo-
rem 2. Indeed, If G is ε-far from satisfying P, and G has less
than NF (ε) vertices, we can take G itself to be a subgraph
of G not satisfying P. Suppose now that G has more than



NF (ε) vertices. As G is also ε-far from being F-free, we get
from Theorem 2 that G contains a subgraph (in fact, many)
of size QF (ε), which is not F-free and therefore, does not
satisfy P.

Proof. (of Theorem 5): (sketch) For each of the
monotone properties Pi, let Fi be the family of graphs,
which are minimal with respect to not satisfying Pi, and
let F = F1

SF2

SF3

S
. . .. Clearly, a graph G satisfies all

the properties of P if and only if it is F-free. Consider a
graph G, which is ε-far from satisfying all the properties of
P. In this case G is also ε-far from being F-free. The proof
of Theorem 2 establishes that there is a graph F ∈ F of size
at most f = fF (ε) such that G contains δF (ε)nf copies of
F . Note, that removing an edge from G destroys at most�

n
f−2

� ≤ nf−2 copies of F . Thus, one must remove at least

δF (ε)n2 edges from G in order to make it F -free. Let i be
such that F ∈ Fi. We may now infer that G is δF (ε)-far
from satisfying Pi. Finally, note that as F is determined by
P, we can also say that G is δP(ε)-far from satisfying Pi.

To show that in case the properties Pi are just closed
under removal of edges the above does not hold, consider
the following: For any integer n, let H1, H2, . . . be some
ordering of the graphs on n vertices, which contain precisely
n3/2 edges. A graph of size n is said to satisfy property Pi if
it contains no copy of Hi. Clearly, any property Pi is closed
under removal of edges, but not necessarily under removal of
vertices. Observe, that any graph with at least n3/2 edges
does not satisfy one of the properties Pi. Therefore, any
graph G of size n, which contains 2εn2 edges is ε-far from
satisfying all the properties Pi. We claim that any such G
is not log n√

n
-far from satisfying any one of these properties.

To this end, it is enough to show that for any graph Hi, we
can remove at most n3/2 log n edges from G and thus make
it Hi-free. To see this, note that as G and Hi are both of
size n, G spans at most n! copies of Hi. As Hi contains n3/2

edges a randomly chosen edge of G is spanned by Hi with
probability at least n3/2/

�
n
2

�
> 1/

√
n. Thus, if we remove

from G a set of n3/2 log n edges, were each edge is randomly
and uniformly chosen from the edges of G (with repetitions),
the probability that none of the edges of one of the copies

of Hi in G were removed is (1− 1/
√

n)n3/2 log n < 1/n!. By
the union bound, the probability that for some copy of Hi

in G, none of its edges were removed is strictly smaller than
1. Thus, there exists a choice of n3/2 log n edges, whose
removal from G makes it Hi-free.

6. PROOF OF THEOREM 4
In this section we describe the proof of Theorem 4. We

remind the reader that we denote by F 7→ K the fact that
there is a homomorphism from F to K (see Definition 2.2).
In what follows, an s-blowup of a graph K is the graph ob-
tained from K by replacing every vertex vi ∈ V (K) with
an independent set Ii, of size s, and replacing every edge
(vi, vj) ∈ E(K) with a complete bipartite graph whose par-
tition classes are Ii and Ij . It is easy to see that a blowup
of K is far from being K-free (K-free is the property of
not containing a copy of K). It is also easy to see that if
F 7→ K, then a blowup of K is far from being F -free (see [1]
Lemma 3.3). However, in this case the farness of the blowup
from being F -free is a function of the size of F . As it turns
out, for the proof of Theorem 4 we need a stronger assertion
where the farness is only a function of k. This is given in

Lemma 6.1 below, which is proved in [8].

Lemma 6.1. ([8]) Let F be a graph on f vertices with at
least one edge, let K be a graph on k vertices, and suppose
F 7→ K (thus, k ≥ 2). Then, for every sufficiently large
n ≥ n(f), an n/k-blowup of K, is 1

2k2 -far from being F -
free.

As our goal is to prove a lower bound on the query com-
plexity we may and will assume that Q is strictly decreasing
(hence, strictly increasing in 1/ε). For every such function
Q we will define a property P = P(Q) needed in order to
prove Theorem 4. These properties can be thought of as
sparse bipartiteness as they will be defined in terms of not
containing a certain subset of the set of odd-cycles.

Let Q : (0, 1) 7→ N be an arbitrary strictly decreasing
function. For such a function, let Qi be the following i
times iterated version of Q. We put Q1(x) = Q(x) and for
any i ≥ 1 define

Qi+1(x) = 2Q

�
1

2(Qi(x) + 2)2

�
+ 1. (9)

Define I(Q) = {Qi(1/2) : i ∈ N} and note that I(Q)
contains only odd integers. For a function as above, let
C(Q) = {Ci : i ∈ I(Q)}, that is C(Q) is the set of odd cy-
cles whose lengths are the integers of the set I(Q). Finally,
given a strictly increasing function Q, let P = P(Q) denote
the property of not containing any of the odd-cycles of C(Q)
as a (not necessarily induced) subgraph.

Proof. (of Theorem 4): Given a strictly increasing
function Q, let P = P(Q) be the property defined above. We
show that for any positive integer k for which k− 2 ∈ I(Q),
any one-sided error tester that distinguishes between graphs
that satisfy P from those that are 1

2k2 -far from satisfying

it, has query complexity at least Q(1/2k2). As Q is by
assumption strictly increasing, I(Q) contains infinitely many
integers. Hence, for infinitely many values of ε, the query
complexity of such a one-sided error tester is at least Q(ε).

Fix any integer k for which k − 2 ∈ I(Q) and assume
k− 2 = Qi(1). As I(Q) contains only odd integers, k is also
odd. Define ` = Qi+1(1) and recall that by (9), we have
` = 2Q(1/2k2) + 1. As it is clear that C` 7→ Ck, we get
by Lemma 6.1, that for any n ≥ N(`), an n/k-blowup of
Ck is 1

2k2 -far from being C`-free. Denote such a blowup by

G. As by definition C` ∈ C(Q), the graph G is also 1
2k2 -far

from satisfying P. Also, as k− 2 is odd, G contains no copy
of Ck−2. In particular, G contains no member of C(Q) of
length less than `. As a one-sided error must find a copy of a
graph not satisfying P, in order to determine that it does not
satisfy P, the query complexity of any 1

2k2 -tester for P is at

least `, for any n ≥ N(`). As ` = 2Q(1/2k2)+1 ≥ Q(1/2k2)
the proof is complete.

An immediate consequence of Theorem 4 is that there is
no function Q(ε) that upper bounds QF (ε) for all families of
graphs, F . In other words, the dependence on the specific
family of graph is unavoidable. By the same reasoning, the
dependence on P in Theorem 3 is also unavoidable. As we
have commented after the proof of Theorem 2 in Section 5,
the only dependence of the function QF (ε) defined in the
proof of Theorem 1 (see (8)), on P is due to the function
ΨF from Definition 3.2 (where F = FP is the set of mini-
mal graphs with respect to not satisfying F). This implies



that the function ΨF must depend on F and thus also on
P, as otherwise we could obtain an upper bound on QF (ε)
which would apply to all families of graphs, thus contra-
dicting Theorem 4. As we have mentioned in Section 7, we
conjecture that Theorem 4 can be extended to two-sided
error.

As we have commented at the beginning of this section,
the proof of Theorem 4 heavily relies on the fact that the
farness of the graph considered in Lemma 6.1 from being
F -free is only a function of k. From the proof of Theorem
4 it should indeed be clear that if this farness had been a
function of the size of F , then the length of each cycle of the
family would have depended on its own size, which would
result in a cycle of definitions.

7. CONCLUDING REMARKS AND OPEN
PROBLEMS

• Besides proving that a large family of graph proper-
ties are all testable, and that specific properties that
were previously not known to be testable are in fact
testable, another important aspect of Theorem 1 is
that it can be used to prove general results on testing
graph properties. Two such results are Theorems 4
and 5. Another result, discussed in Section 4, is that
there are graph properties that can be non-uniformly
tested, but cannot be uniformly tested [8]. We believe
that Theorem 1 will be useful for proving other results
as well.

• Though there are known general results about testable
graph properties, a complete characterization of the
testable graph properties is nowhere in sight. We be-
lieve that as a first step towards such a characteriza-
tion, one should first consider characterizing the graph
properties that are testable with one-sided error. This
problem should be somewhat easier to resolve as nu-
merous previous works, as well as this paper, demon-
strated that testing with one-sided error is intimately
related to various well-studied combinatorial problems,
which can be handled using combinatorial tools. In
fact, the main result of this paper is part of an ongoing
research whose ultimate goal is to find such a char-
acterization. It seems, though, that even this seem-
ingly easier problem is still very challenging. As was
mentioned in the introduction we have recently made
a progress by giving a precise characterization of the
graphs properties that can be tested with one-sided
error by certain restricted testers.

• Two graph properties P1 and P2 are defined in [3] to
be indistinguishable if for every ε > 0 and large enough
n, any graph on n vertices satisfying one property is
never ε-far from satisfying the other. It is shown in
[3] that in this case, P1 is testable if and only if P2

is testable. It is first proved in [3] that ceratin col-
orability properties are testable with one-sided error.
It is then shown that every first order graph property
of type ∃∀ is indistinguishable from some colorability
property, thus obtaining that these properties are also
testable. It would be interesting to characterize (ei-
ther combinatorially, logically or by other means) the
graph properties that are indistinguishable from some

monotone property. By Theorem 1, this will immedi-
ately imply that these properties are testable, possibly
with two-sided error.

• As was mentioned in the introduction, a result of Gol-
dreich and Trevisan [20] rules out the possibility of ex-
tending Theorem 2 to graph properties that are only
closed under removal of edges. It seems interesting to
bridge the gap between their result and the main re-
sult of this paper by characterizing the testable graph
properties that are closed under edge removal.

• The proof of Lemma 2.3 uses iteratively the standard
regularity lemma [30]. Using iteratively the regular-
ity lemma for directed graphs from [7], one can obtain
a version of Lemma 2.3, suitable for dealing with di-
rected graphs. It is then an easy matter to extend
Theorems 1, 2 and 3 to directed graphs. As the proofs
are somewhat more cumbersome and do not use any
additional ideas, we omit the details. It seems inter-
esting to see if the new powerful hypergraph versions
of the regularity lemma (see [22], [25] and [27]) can be
used to obtain hypergraph versions of Lemma 2.3, and
if in that case, one can obtain hypergraph versions of
Theorems 1, 2 and 3.

• It will be interesting to strengthen Theorem 4 by prov-
ing the following conjecture

Conjecture 1. For any function Q : (0, 1) 7→ N ,
there is a monotone graph property such that for in-
finitely many values of ε, the property cannot be tested
using less than Q(ε) queries, even with two-sided error.

Currently, the best lower bound on the two-sided er-
ror query complexity of a monotone graph property is
a (1/ε)Ω(log 1/ε) lower bound for testing the property
of not containing a copy of a graph H, for any non-
bipartite H [7].

• The proof of Theorem 5 gives weak lower bounds for
the function δP(ε). It may be interesting to check if
this dependency can be linear or polynomial for some
natural families P.
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