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Expanding graphs are relevant to theoretical computer science in several ways. Here we 
show that the points versus hyperplanes incidence graphs of finite geometries form highly (nonlinear) 
expanding graphs with essentially the smallest possible number of edges. The expansion properties 
of the graphs are proved using the eigenvalues of their adjacency matrices. 

These graphs enable us to improve previous results on a parallel sorting problem that arises 
in structural modeling, by describing an explicit algorithm to sort n elements in k time units using 
O(n ~k) parallel processors, where, e.g., cq=7/4, ~q--8/5, 0q=26/17 and ~q=22/15. 

Our approach also yields several applications to Ramsey Theory and other extremal prob- 
lems in combinatorics. 

1. Introduction 

A graph G is called (n, ct, fl)-expanding, where 0<ct<=fl<_-n, if it is a bipar- 
tite graph on the sets of  vertices 1 (inputs) and O (outputs), where ]l[=[Ol=n, 
and every set of  at least ct inputs is joined by edges to at least fl different outputs. 

Expanding graphs with a small number of  edges, which are the subject of  
an extensive literature, are relevant to theoretical computer science in several ways. 
Here we merely point out two examples. A family of  linear expanders of  density k 
and expansion d is a set {G,}7=1 of graphs, where G, has <=(k+o(1))n edges and 
is (n, ct, ~(1 +d(1 -~/n)))-expanding for all ~_n/2,  where d > 0  and k are fixed. 
Such a family is the basic building block used in the constructions oI  grapns wire 
special connectivity properties and small number of edges (see, e.g., Chung [13]). 
An example of  a graph of  this type is an n-superconcentrator, which is a directed 
acyclie graph with n inputs and n outputs such that for every 1 <=r~_n and every 
two sets A of  r inputs and B of r outputs there are r vertex disjoint paths from the 
vertices of  A to the vertices of B. Superconcentrators have been used in the construc- 
tion of graphs that are hard to pebble (see Lengauer and Tarjan [29], Pippenger [34] 
and Paul, Tarjan and Celoni [36]). in the study of  lower bounds (see Valiant [42]), 
and in the establishment of  time space tradeoffs for computing various functions 
(Abelson [1], Ja'Ja'  [27] and Tompa [40]). 

A family of  linear expanders is also essential in the recent parallel sorting 
network of  Ajtai, Koml6s and Szemer6di [2]. 

AMS subject classification (1980): 68 E 10, 68 E 05, 05 B 25, 05 C 55 
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It is not too difficult to prove the existence of a family of linear expanders 
using probabilistic arguments (Pinsker [32], see also Pippenger [33] and Chung [13]). 
However, for applications an explicit construction is desirable. Such a construction 
is far more difficult and was first given by Margulis [30] and modified by Gabber 
and Galil [20]. (See also [5], [6], [7] for a similar but more general construction.) 

The expanding graphs used in [20] to construct superconcentrators and those 
used in the sorting network of [2] are 0l, c~, fl)-expanding for some fixed (indepen- 
dent of n) ratio of fl/~, i.e., they are rather weakly expanding. For some applications, 
however, a higher amount of expansion is necessary and (n, c~(n), fl(n))-expanding 
graphs are needed, where fi(n)/~(n)o ~, as n ~ o .  A possible (and essentially the 
only known) method to obtain (explicitly) highly expanding graphs with a small 
number of edges is an "iteration" of the known expander of [20] (see Pippenger [35]). 
Unfortunately, this method is a poor substitute for the probabilistic construction 
since it supplies.graphs with too many edges. This makes some of the applications 
impossible. 

Here we use finite geometries to construct explicitly highly expanding graphs 
with essentially the smallest possible number of edges. Specifically, we show using 
the correspondence (proved independently by  Tanner [3.9] and by Milman and the 
author [6]) between the eigenvalues of the adjacency matrix of a graph and its ex- 
pansion properties, that the points versus hyperplanes incidence graph of a finite 
geometry of dimension d is an (n, x, n--nl+l/d/x)-expanding graph, for all 0 < x < n .  
Our proof here is very similar to that of Tanner in [39]. In [3] we present a more 
elementary proof of this result, using a certain "second moment" method. We believe, 
however, that in view of the tight correspondence between the eigenvalues of a graph 
and its expansion properties (see [39], [6], [7], [4J) the method here is more natural. 

One can check easily that any graph which is (n, x, n--nt+~/d/x)-expanding 
for all 0 < x < n  nmst have at least f2(n 2-1/d) edges. The geometric expanders we 
consider have (1 +o(l))n ~-l/d edges; only a constant times the theoretical lower 
bound. The previous methods were not sufficient to construct graphs with this amo- 
unt of expansion having o(n 2) edges. 

By a theorem of Singer ([23], p. 128), the edges of the geometric expanders 
can be defined by translations modulo n of a set of size -~ n ~-l/d, in contrast to the 
result of Klawe [28] that asserts that no family of linear expanders can have this 
form. This reveals a difference between weakly expanding and highly expanding 
graphs, 

From the expansion properties of the geometric expanders we deduce a cer- 
tain strengthening of a theorem of de Bruijn and Erd6s [9] on the number of lines 
determined by a set of points in a finite projective plane. We also obtain, using 
similar methods, several interesting results on Hadamard matrices and quadratic 
residues modulo a prime p, and construct explicitly some graphs relevant to Ramsey 
Theory. For example, a ~aph on n vertices with no cycle of length 4 and no inde- 
pendent set of size >2n 3/~. 

The geometric expanders enable us to obtain an explicit algorithm for sort- 
ing n elements in two time units using O(n w~) parallel processors (and only direct 
implications). This improves results of H~iggkvist and Hell [25], Bollob~is and Ro- 
senfeld [I 1] and Pippenger [35], who gave explicit algorithms to this problem using 
(13/30) (n2-n), (2/5)n~+O(n 3/2) and O(na,°43..-(logn) °,9~3...) processors, respecti- 
vely. 
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We also improve the best known algorithms for sorting n elements in k time 
units, for all (fixed) k~4 .  Very recently, Pippenger has found a better way of 
using the geometric expanders to get an explicit algorithm for sorting n elements 
in two time units using only O(n 26/~) parallel processors. His algorithm, however, 
uses indirect implications of arbitrary size. 

The paper is organized as follows. In Section 2 we show how the eigenvalues of 
the adjacency matrix of a graph are related to its expansion properties, and use this 
to prove the expansion properties of the geometric expanders, i.e., the point-hyper- 
plane incidence graphs in finite geometries. In Section 3 we describe how these 
geometric expanders can be applied to the problem of sorting in rounds. In Section 
4 we obtain further results using similar methods and construct several graphs 
relevant to Ramsey Theory. Section 5 contains some concluding remarks. 

2. The eigenvalue method and the geometric expanders 

Relations between the expansion properties of a graph and the eigenvalues 
of certain matrices associated with it were proved, independently, by Tanner [39] 
and by Milman and the author ([6], [7/, [4]). 

For our purposes here we need a simple generalization of a result of Tanner 
[39]. Its proof is based on the ideas of [39]. 

Let G be a bipartite graph with clas,;es of vertices U and V, where IU[ =n, 
I V[=m. Suppose the degree of each u~U is k and the degree of each vE V is s. 
(Thus kn=sm).  Let A=(a,~),,~v,~cv be the ~TXm adjacency matrix of G defined 
by 

/ t  if u and v are adjacent 

a,~. = [0 otherwise. 

AA r is a real symmetric positive semi-definite matrix and thus has real non-negative 
eigenvalues with orthogonal eigenvectors. Let 21~2-~=... ----:~2n be these eigenvalues 
and let v~, v.~, ..., v,, be a corresponding orthonormM set of eigenvectors. One can 
easily check that 2~ =ks and a possible choice for va is (1, 1 .... ,1)/~/n. 

For X ~  U, let N(X)  denote the set of all neighbors of X in G. If X= {x} 
we write N(x) instead of g({x}). 

Theorem 2.1. Suppose ZC= V, [Zl=z and assume b<=kz/(2m). Put X =  
={uEU: [N(u)AZl<=b}. Then 

22n(m-z)  ( 2~nm ) 
IX] ~ k s z _  2kbn + 22(m _ z) + b2n ~ .lcsz--Z-~b~ ~ . 

Remark 2.2. For XC= U, 
b = 0  to obtain that 

one can apply Theorem 2.1 with Z = V - N ( X )  and 

IN(X)I k~lXl 
( k s  - )~ . . ) Ix  l / n  + ).~. " 

This is the main result of Tanner [39]. 
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Proof of Theorem 2.1. Let f be the characteristic vector of X, and put IXl=x. 
The scalar product (f,  vl) is x / ~ n  and ( f , f ) = x .  Therefore 

(ATf, AT f )  = (AAT f,  f )  = .,~ 2,(f,  v,) 2 <= ksx*'/n+ 22(x-x2/n) .  
i = I  

Arf=(gv)v(v  is a vector indexed by the outputs vE V, where gv is the number 
of neighbors of v in X. By the definition of X, ~'{g~: vE V - Z } > = x ( k - b ) .  This 
and the convexity of the function yZ imply 

Thus 

(Arf, A r f )  = Z g~ >= Z g~ > = x ' ( k - b ) ' / ( m - z ) .  
vEV v ( V - - Z  

x ( n ( k - b ) 2 - ( m -  z ) (ks -22) )  <= 2 2 n ( m -  z). 

If b~(kz) / (2m) then n ( k - b ) 2 - ( m - z ) ( k s - 2 ~ ) = k s z - 2 n k b + 2 2 ( m - z ) + b 2 n > O  
and the assertion of the theorem follows. 1 

We can now describe the geometric expanders. Let d , q > 2  be integers. 
Let U and V be, respectively, the sets of points and hyperplanes of a finite geometry 
of dimension d and order q. (As is well known, such a geometry always exists if q 
is a prime power, and has an easy explicit description--see [23], p. 128.) Let G= 
=G(q, d) denote the bipartite graph with classes of vertices U and V in which 

pE U is joined to h~ V iffp is incident with h. The next theorem shows that G(q, d) 
is a highly expanding graph. 

Theorem 2.3. Put n = (qd+ 1 _ 1)/(q -- 1), k = (qd __ 1)/(q -- 1). 
O) G = G ( q , d )  is k-regular and IUl=lV1--n; thus G has (l +o(1))n 2-aId 

edges, (as q~=,  for f ixed d). 
(ii) I f  XC= U, [Xl=x then 

( n - x ) ( n ( q -  I )+ 1) > n 1+1/a 
IN(X)I >= n n ( q - 1 ) + l + ( n - q - 1 ) x  = n -  x 

Thus G is (n, x, n--nl+ l/d/x)-expanding for all 0 < x < n .  

Proofi Part (i) is an easy well-known fact (see, e.g., [23], p. 128). To prove (ii), let 
M=(mph)pEV. h~v be the n×n  0 - 1  incidence matrix of U and V, i.e., mph--1 
iff p is incident with h. By [23] (p. 128) M M T = L I + ( k - 2 ) L  where 2= 
=(qd-l--1)/(q--1) ,  I i s t h e  n×n  identity matrix and J is the n×n  all l's mat- 
rix. It follows that the eigenvalues of M M  r are 2 x = 2 n + k - 2 = k Z  and 2 3 - . . . -  
= 2 , = k - 2 .  Let XC=L IXl=x=~n.  By Tanner's Theorem (see Remark 2.2) 

k 2 

IN(X)I ~ a(k2 k + 2 ) + k _  2 x = 
( n -  1)2~n 

~(n 2 - n ( q +  1))+ n ( q -  1)+ 1 

( n - x ) ( n ( q -  1)+ I) n ( n ( q -  1)+ 1) nq n l+~/a 
= n - n ( q - 1 ) + l + ( n - q - - l ) x  >=n-  ( n - q - l ) x  >-n--->=n--~x x 1 
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Remarks. 1. The known results about the distribution of primes (see e.g., [8]) clearly 
imply that for every fixed d_~2 and every integer n there exists a prime p such that 
n<=(pd+X--1)/(p--l)<=n+O(nX-1/t3d)). Any induced subgraph of G(p,d) with n 
inputs and n outputs has (1 +o(1))n 2-d-1 edges and every set of x of its inputs is 
not joined to at most (l+o(1))n~+I/dx -~ outputs, i.e., has at least n -  
- (1-1- o (1)) n x+ I/ax- 1 neighbors. Thus we have for every d~2,  an explicit construc- 
tion of a family of graphs {H(n, d)};= 1 where H(n, d) has (1 +o(1))n ~-~/a edges 
and is (n, x, n - (1  +o(l))nl+l/dx-~)-expanding for all 0 < x < n .  

2. Theorem 2.3 implies that if pc=u, IPl=q~nl/d then [N(P)I~-n - 
-(1/2)(n-q)~_n/2. Thus G(q, d) is (n, n l/d, n/2)-expanding. As noted by Pippenger 
[35], the well-known results about the problem of Zarankiewicz (see, e.g., [22]) 
supply lower bounds on the number of edges of expanding graphs. Using the results 
of [22] one can easily show that the number of edges of an (n, n ~/d, n/2)-expanding 
graph is at least (1 +o(1))(ln2)n 2-va. Note that the number of edges of G(q, d) 
(or of H(n, d)) is (1 +o(1))n ~-~/d and thus these graphs have (up to a constant 
1/ln2) the smallest possible number of edges. 

3. Let PG(d, q) be the finite geometry of dimension d over the field GF(q) 
and let G(q, d) be the corresponding expander. Let n, k be as is Theorem 2.3. By 
Singer's Theorem ([23], p. 128) there exist 0=<al<a2<. . .<ak<n such that G(q, d) 
is isomorphic to the bipartite graph with classes of vertices A = B = {0, 1,2 .... , n -  1} 
in which a~A is joined to bCB iff b=(a+ai) (modn) for some l~_i~k. This 
contrasts with the result of [28] that implies that no family of linear expanders can 
have this form and thus shows a difference between highly expanding and weakly 
expanding graphs. 

3. Sorting in rounds 

Suppose we are given n elements with a linear order unknown to us. In the 
first round we ask ml simultaneous questions, each a binary comparison. Having 
the answers we deduce all implications and ask, in the next round, another ma ques- 
tions, deduce their implications, and so on. A choice of our questions that guaran- 
tees that after r rounds we will know the complete order of the elements is an algo- 
rithm for sorting in r rounds. The need for such algorithms with fixed r arises in 
structural modeling (see H~ggkvist and Hell [26]). Since all comparisons within 
a round are evaluated simultaneously, such algorithms have obvious connection 
to parallel sorting, as defined by Valiant [41], and seem to be practical in situations 
like testing consumer preferences (see Scheele [37]), where the communication bet- 
ween the sorting computer and the consumers is being performed by correspondence. 
Many results about sorting in rounds can be found in the survey article [10]. 

Let fr(n) denote the minimum possible number of comparisons sufficient 

to sort n elements in r rounds. C lea r ly /~ (~)= l~ l  Haggkvist and Hell [24, 25] 
J ~ 

and Bollob~s and Thomason [12], used probabilistic arguments to obtain estimates 
of  f~(n) for r~_2. In particular it is known that f~(n)=O(n siz log n) and fz(n)= 
= O(na/'2), (see [12]). For practical applications, however, a probabilistic argument 
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is not enough and an explicit sorting algorithm is desirable. Hiiggkvist and Hell 
observed this fact and in [26] they gave explicit algorithms for sorting in k rounds 
with O(n.~0 comparisons, where Sk~l as k - - ~  and, e.g., s3=8/5, s4=20/13 and 
s5=28/19. It seems more difficult to find an efficient explicit sorting algorithm in 
two rounds. H/iggkvist and Hell [25] gave such an algorithm with (13/30)(n~-n) 
comparisons. A somewhat better algorithm was given by Bollobfis and Rosenfeld 
in [ l l ]--wiih (2/5)n~+O(n3' 0 comparisons. The only construction with o010 
comparisons is due to Pippenger [35]--0 (n:, 9~... (log n)°,~4a"-). 

In some situations it may be undesirable to allow deducing all implications, 
since conclusions derived from relations themselves derived by transitivity may be 
unreliable. Thus one may be willing to allow only direct implications (i.e., if we find 
in the first round that x<y,  y < z  and z < t  we conclude that x < z  and y < t  but 
not necessarily that x<t) .  In [12] a lower bound of  f2(n ~ta) is proved for such an 
algorithm in 2 rounds. }Iere we use the geometric expanders arising from finite 
geometries of dimension 4 to obtain the following result. 

Theorem 3.1. By an explicit construction that uses only direct implications f2(n)= 
= O ( n V %  

Note that by the lower bound mentioned above this construction is not that 
far from being best possible. Theorem 3.1, together with the results of H/iggkvist 
and Hell [26], Theorem 3, supply an explicit sorting algorithm in k rounds with O(n~O 
comparisons, where cq =2, c( 2 =7/4 and ~-k = rain (2(2~-1) CZk_ j --2J)/((2 i -  1)CC,_j --1), 
with the minimum taken over all./, 0 <j<k,  for which ~k-j-->2J/( 2j -1) .  This impro- 
ves the results of [26] for all k_->4. In particular, one can easily check that ~4=26/17 
and ~5 = 22/15, slightly better than the corresponding bounds s 4 = 20/13 and s5 = 28/19 
given in [26]. 

Proof of Theorem 3.1. Let A be the set of n objects we have to sort. Clearly we may 
assume that t7 is of the form (qS-1) / (q-1)  for some prime power q (otherwise, 
add o(n) dummy objects to obtain an n of this form). Let G=G(q, 4) be a geometric 
expander corresponding to a finite geometry of dimension 4 and order q. Let U=  
= {u~, u~ . . . .  , u,} and V= {v~, w, . . . . .  v,,} be the sets of inputs and outputs of G, 
respectively. In the first round we compare the i-th element of A to thej - th  element 
if uiv j is an edge of G. There are O(n 7/'~) such comparisons. 

We proceed to show that even by deducing only direct implications we will 
have to compare in the second round only O(nT/0 pairs. 

For X_cs_-_A put N(X)={y~ .A:y  is compared in the first round to some 
x~X}. We need the following two facts. 

Fact 1. I f  ZC=A, IZl=(3+o(l))t?/' and X={x~X: IN(x)nZl~n ~/°-} then 
IXl~(1 +o(1))nl/-. 

This follows by substituting m=n, )~= l +o( l ) )n  3/*, k = s - ( 1  +o(1))t73/4, 
z=(3+o(1))n  a/~ and b=n 1/2 in Theorem 2.1. (The fact that here 22=q~=((1 + 
+o(1))n ~/:t appears in the proof of Theorem 2.3.) | 

Fact 2. I f  YC=A, ]Y]>n 1/'~ then I N ( Y ) l ~ n - n  ~j~. 
This follows by substituting x = n  1/~ and d = 4  in Theorem 2.3. II 
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Define a partition of A into l=[n~/~/3] blocks A1, ..., At, each of size 
(3 +o(1))n a/4, such that each A i consists of consecutive objects (in the linear order 
we have to find) and the maximal element of A i is smaller than the minimal element 
of A~+~. Call an element a~Ai+ ~ bad if )N(a)AA~I<=n ~/2, otherwise call it good. 
By Fact 1 the number of bad elements in Ag+l is -<_(1 -}-o(1))n lr~. Let aEAi+ ~ 
be good and suppose b~ U {Aj: 1 <=j<-_i-l}. If 

(3.1) N(b)2qN(a)~A,  ~ 0 

then, by direct implication from the first round, b<a.  However, ]N(a)NAzl >n ~j'2, 
and thus, by Fact 2 the number of b's that violate (3.1) is ~n  a/4. It follows that 
the total number of comparisons of an element a6Ai+ ~ to elements in U {A): 1~_ 
N j ~ i +  1} left for the second round is bounded by n (of course) if a is bad and by 
[Ai[ +[A~+~{ +n3/4=(7+o(1))n 3/~ if a is good. The total number of these compa- 
risons is thus bounded by 

1 (1 q- o (l))nl/2n -t- n (7 -/- o (1))n ~/4 =- 0 (nV/4). 

Since the first round also requires O(n 7/4) comparisons, the total number of com- 
parisons is 0(n7/4). I 

Very recently Pippenger has shown that by using indirect implications of 
arbitrary length, the nmnber of comparisons can be reduced to O(n2n/~). The first 
round of his algorithm uses the geometric expanders arising from finite geometries 
of dimensions 3. 

4. Further results 

The proof of Theorem 2.1 indicates that its conclusion will be of particular 
accuracy when applied to graphs that arise fi'om block designs, since in this case 
all the eigenvalues except the largest one are equal. The graphs of the finite geomet- 
ries that appear in Theorem 2.3 are one family of such examples. A second family 
of examples arises from Hadamard matrices. An Hadamard matrix H of dimension 
t is a t by t matrix over {1, - 1}  in which every two distinct rows (and hence also 
every two distinct columns) are orthogonal. See, e.g., [23], Chapter 14 for the basic 
properties of Hadamard matrices. A submatrix of H is called monochromatic if 
all its entries have the same sign. The next theorem asserts that every relatively large 
submatrix of a Hadamard matrix is "balanced". Very recently, Frankl, R6dl and 
Wilson [18] have found several surprising extensions of it. A somewhat weaker 
version of this theorem can be proved using eigenvalues, as in Section 2. Here we 
present a very simple proof that uses a certain "second moment" method. A similar 
method is used in [3] to estimate the expansion properties of the geometric expanders. 

Theorem 4.1. Let H=(h~j) be an Hadamard matrix o f  dimension t. Then both the 
number o f  + l' s and the number o f  - l ' s in eve O, k by I submatrix o f  H are 
at least 

kI-(Icl t)  1/2 

2 
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In particular H contains no monochromatic square submatrix o f  dimension > t 112. 

Remark. The last statement is sharp in the sense that for every t = 4  k there is a t by 
t Hadamard matrix Hk with a t/t'× 1/t submatrix all of  whose entries are +1. Such 
an Hk is, e.g., the Kronecker product of k copies of 

' l 

- 1  1 - 

1 - - 1  

- 1  - 1  

Proof. Let (hi~)ie,4.jeB be a k by l submatrix of H, where A, Be= {1, 2, ..., t}, 
[A[ =k ,  [Bi =L By the convexity of the square and the orthogonality of the columns 
we obtain : 

1 t 

i E A J E B  lEA jCB  "= 

Thus 

= z~ z~h~j +2  ~ ~ h i j h , j , = l t .  
JEB 1=1 j , j 'EB ,  I < J '  i = I  

J~B 

and the desired result follows. II 

A similar result can be proved for linear shift registers (=LFSR's) .  For 
n ~ l  let N = 2 n - 1  and let ao, al, ..., a~- i  be the output sequence of  a binary 
maximal length LFSR with n cells. (See [21] for the basic properties of such sequen- 
ces.) Define an N × N  circulant 0-1 matrix B=(bij) by b~j=a~+j)(m~aN). One can 
show that the matrix 

where C=(co) is given by c~j=(-1)b,~ and e is the all 1 vector is an Hadamard 
matrix of dimension N + I ,  and thus Theorem 4.1 can be applied here. In parti- 
cular, B contains no square submatrix of  dimension 2 "/~ all of  whose entries are 
zero. This is sharp for any even n, since one can show that each such B contains a 
(2 n/9- 1)×(2 n ~ -  1) submatrix all of whose entries are 0. We omit the details. 

A similar proof establishes the following result about squares and nonsquares 
in finite fields. 

Proposition 4.2. Let g=p" be an odd prime power. Let A, B be two subsets o f  the 
finite fieM GF(q), where IAl=k, [B[=I, k<=L Then 

[{(a, b): aEA, bCB and a+b  is a nonzero square}[ ~ f (q ,  k, l) 
and 

[{(a, b): aEA, bEB and a+b is not a square}[ ~_ f (q ,  k, I), 
where 

f (q ,  k, l) = 1 (kl - k - ( k l ( q -  0)1/2). 
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Proof. Let Z(x) be the character defined on GF(q) where ~(0)=0, X(x)= +1 if 
x # 0  is a square and Z(x) = - 1 if x is not a square. 

We need the easy, known fact that for every 0~cEGF(q) 

(4.1) ~ Z(x)z(x+c) =-1. 
x E G F(q) 

Indeed 

Z z(x)z(x+c)= Z z(x)z(x)  1+ = Z z 1+ x = - 1 .  
x E G F(q) 0 ~ x E (3F(q) 0 # x E GF(q) 

Combining (4.1) with the convexity of the square we obtain 

1 (.~a b ~  x(a + b)) ~ <-- ~ca ~ '  (bEn ~ z(a + b)) 2 =< 

~ '  (~Y'g(a+b))  ~ =  ]B[(q-1)-lBl(lBl-1)= l(q-1). 
a E GF(q) bEB  

Since [{(a, b): aEA, bEB and a+b=O}[~k the desired result follows. II 

Next we consider some constructions of graphs related to Ramsey Theory. 
Let /-/1 and Ha be two families of graphs. The Ramsey number r(H1, H~) is the 
maximal number of vertices of a graph G, such that G contains no subgraph iso- 
morphic to a member of/-/1 and its complement G contains no copy of a member 
of H~. Usually it is much easier to obtain lower bounds to r(H1, H~) using proba- 
bilistic arguments, than to explicitly construct a graph G demonstrating this bound. 
Thus, e.g., the problem of constructing an explicit graph G showing that r(K,,, Kin)> 
>c = for some c > l ,  where Km is the complete graph on m vertices, is still open 
(see [14], [19]), while the existence of such a constant c is proved very easily using 
probabilistic arguments. Here we apply Theorems 2.3 and 4.1 to bound, by explicit 
constructions, two families of Ramsey numbers. 

For k=>2, let k, denote a topological complete graph on k vertices, i.e., 
a graph obtained from the complete graph on k vertices Kk by replacing some of 
the edges by internally vertex disjoint paths. Thus 2t is a path and 3~ is a cycle. 
Erd6s and Hajnal [16] proved that there exists a constant c>0  such that in any 
two-coloring of the edges of K, there is a monochromatic (¢ t/~')t. They also proved, 
using probabilistic methods, that there exists a constant d>0  and a two-coloring 
of  the edges of K, with no monochromatic (d t/-~-)t. Theorem 4.1 supplies an explicit 
construction of such a coloring. Indeed, let H =  (h~i) be an n × n symmetric Hada- 
mard matrix. (E.g., the matrix mentioned in the remark following Theorem 4.1, 
or the matrix constructed using the LFSR.) Color the edges of K, by the colors _ 1 
according to H, i.e., the color of {i,j} is hii. We claim that in this coloring there 
is no monochromatic (3 l~-)t. Indeed, suppose this is false and let Z be the set of 
vertices of a monochromatic (3 l/n)t of color + 1 (say). By Theorem 4.1 the induced 

, I  

graph on Z contains at least + ( 3 3 - 3 ) ( l + o ( 1 ) ) n > n  edges of color - 1 .  Each 

such edge has to be replaced by a path and all these paths have to be internally 
disjoint. However, this is impossible since the total number of vertices is only n. 
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The second construction is related to the Ramsey number r=r(C4,  K,), 
which is the maximal number of vertices of a graph G that contains no 4-cycle and 
no independent set of size n. It is known [15], [38] that clnl+c~_r<-csn2/log (n) 
for some cl, c2, Ca>0. However, the lower bound is probabilistic and there is no 
known explicit construction of a graph G on D.(n 1+~) vertices with the desired pro- 
perties. Theorem 2.3 supplies such an example (with 5=  1/3). It is worth noting that 
this example is still not as good as the probabilistic lower bound--f2(n/log n)a/2--given 
by Spencer [38]. The explicit example we consider is a well known graph G=(V, E), 
first constructed by Erd6s and R6nyi ([ 17], see also [8], p. 314). Let q be a prime power, 
and let V be the set of points of the projective plane PG(2, q) over the field of order 
q (I VI =q2 +q + 1). A point (x, y, z) is joined to all the points on its polar with res- 
pect to the conic _¥2 +),2 +z  ~ = 0. Thus (x, y, z) and (a, b, c) are joined iff ax +by + 
+ c z = 0 ,  that is, iff the point (x, y, z) lies on the line (a, b, c). Clearly G contains 
no 4-cycle, since any two points in PG(2, q) lie in exactly one common line. By 
Theorem 2.3, every set of]V[ 3/~ points in PG(2, q) is incident with at least r V] -]V[ Bt4 
lines. Thus G contains no independent subset of size >21 V[ a/4. Substituting n =  
=2lVI 3/4 we conclude that G is an explicit example showing r(C4, K,)>qn 4& 
(Using Theorem 2.1 one can replace the constant 2 here by (1 +e).) We note that 
a similar nonlinear explicit lower bound for r(C6, K,) can be described analogously, 
using generalized n-gons. 

We conclude this section with a certain strengthened version of the de Bruijn-- 
Erd6s theorem. Let M be a projective plane of order q, and let P denote the set of 
its q 2 + q + l  points. For X~P,  let L(X) denote the set of all lines determined by 
X, (i.e., the set of lines containing at least two points of X.) Similarly, for X1, X2= P, 
let L(Xt, X~) denote the set of lines that intersect both X~ and X~. de Bruijn and 
Erd6s [9] proved that if X is not collinear then IL(X)I =>IXI. Meshulam [31] showed 
that if X1UX~ is not collinear and [X~[ =[X2[ then IL(X1, X2)[=>[XI[. Our results 
supply an improvement of these results for relatively large sets of points. Indeed, 
Theorem 2.3 for d = 2  implies that a set of x points in M is incident with at least 
(q+l)2x/(q+x) lines. This gives the exact result for x = 0 ,  I, 2 and x>=q 2 and 
implies that if )(1, X2c=P satisfy [Xl[=lX2[=cq, where c > l ,  then 

c - 1 .  2 
IL(X~, X2)} ~ q+ c----~(q+ 1). 

In particular, if XC=M and [Xl=2cq, where c > l  then 

c - 1  
IZ(X)l ~ q + ~ , l ( q +  1) 2. 

However, here one can prove directly the following stronger result: 

I f  XC=M, [ ) V l = q + l + r ,  where q~r~=l then 

rq+r2(q+ 1 -r)/2 
(4.2) [L(X)[ -~ q+  1 + r  

Note that (4.2) implies that if ]X[ = (1 + e)(q + 1), where e > 0 then 

e2(1-e) 
[L(X){ > 2+2e (q+l)2" 
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To prove (4.2), partition X into k = [ ( q + l  +r)/r] parts, X1 . . . . .  Xk, each of size 
_-<r. Let N(X~) denote the set of lines incident with points of Xz. One can easily 
check that IN(X~)] =>_(q+l)+q+... +(q+2-1Xil)  and thus 

Put 

k 

Z IN(X,)I > (q+ 1 - r / 2 ) ( q +  1 + r) = (q2+ q+ 1)+ q + 2  (q+ 1 --r). 
i = 1  

T={(l, xl):l<=i<=k,l is a line of M and IEN(Xi) }. 

Clearly 

IT[ > (q2+q+ l ) + q + 2  (q+ 1 - r )  

and since no line occurs in more than k pairs of T, there are more than 
(q+(r/2)(q+l+r))/(k-1) lines that belong to ->2N(X/)'s. Since k - l <  
< ( q + l  +r)/r, (4.2) follows. Corresponding results to higher dimensions can be 
proved analogously. 

5. Concluding remarks 

1. There are certain algorithmic problems that can be solved using networks 
whose existence is proved using probabilistic arguments. In some cases, however, 
an explicit construction is desirable. Expanding graphs share some of the properties 
of random graphs and can thus sometimes replace the "random" components of 
these networks by explicit ones. Indeed, the problem of existence of superconcent- 
rators with a linear number of edges was first solved using probabilistic methods 
(see [42], [33]) and only afterwards was an explicit construction given using a small 
variation of the expanding graphs of [30], (see [20]). The first version of the sorting 
network of [2] also used random graphs (see [2], page 1) and again expanding graphs 
supplied an explicit construction. 

The existence of a two round sorting algorithm using o(n 2) comparisons was 
proved in [12], [25] using probabilistic arguments. As shown in [35] and in Section 3, 
here, once more, expanding graphs supply an explicit construction of such an algo- 
rithm. Notice that there still exists a gap between what is done probabilistically in 
[12] and the known explicit constructions. It would be nice to close this gap, and 
also to decide whether f~(n) is closer to O(n a/~ log n) or to O(n3/'z). 

As mentioned in [3] the geometric expanders are useful also in explicit con- 
structions of efficient superconcentrators of limited depth. 

2. More results about the correspondence between the eigenvalues of a graph 
and its expansion properties appear in [39], [3], [6], [7]. In particular, in [6] this cor- 
respondence is combined with some results on group representations to obtain, by 
explicit construction, many linear families of expanders. 

Added in proof: Some recent lower and upper bounds for sorting in rounds 
appear in [43]. Better explicit parallel sorting algorithms, that use the expanders 
constructed in [44], appear in [45]. 

2* 
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