On Disseminating Information Reliably
Without Broadcasting

by
Noga Alon
Amnon Barak
Udi Manber
Computer Sciences Technical Report #621

December 1985

ON DISSEMINATING INFORMATION RELIABLY
WITHOUT BROADCASTING

Noga Alonf
Department of Mathematics
Tel Aviv University / MIT

Amnon Barak”
Department of Computer Science
Hebrew University

Udi Manbﬁr§
Department of Computer Science
University of Wisconsin - Madison
Madison, WI 53706

November 1985

ABSTRACT

A general scheme for collecting information in a multicomputer system is presented. The scheme
allows data to be exchanged efficiently and quickly among many machines without broadcasting. 1In
addition, certain operations can be performed on the data while it is being collected. Several applica-
tions to distributed computing are discussed. As a byproduct of the combinatorial part of the paper, a
problem of Babai and Erdds in combinatorial group theory is solved.

+ Supported in part by the United States Air Force Office of Scientific Research under grant AFOSR-82-0326.
% Supported in part by the United States Air Force Office of Scientific Research under grant AFOSR-85-0284.
§ Supported in part by the National Science Foundation under grants MCS-8303134 and DCR-8451397.

1. INTRODUCTION

The problem of exchanging data in multicomputer systems is an important basic problem.
There are many cases in which the movement of data constitutes the main cost of the computation.
In this paper we present a scheme for disseminating information among several machines connected
through a local area network. We consider a model of computation based on existing systems. We
first reduce the problem in this model to a combinatorial problem. We then present a simple elegant
solution, using latin squares and finite fields, for the case when the number of machines is a power
of 2. The solution is optimal and easy to implement. For the other cases we present schemes based
on random generation of permutations and show that these schemes are optimal to within a constant.
The combinatorial problems we encounter are interesting on their own. In particular, we solve a
problem raised by Babai and Erdos [BE82] about the representation of all the elements of a group as
short products (see theorem 6.8).

Consider a multicomputer system having N independent computers and workstations connected
through a local area communication network. There are two major types of local area networks in
operation today: Token Ring networks, and Ethernets (see for example [Ta81]). Both of these net-
works are based on a broadcast medium so that each message reaches the whole network. All
machines look at the address of the message, and only the destination reads the message. As a
result, the cost of sending a message is independent of the participants.

Consider now a problem of computing a simple function of variables that reside at the different
machines (e.g., computing the average), in a way that the outcome becomes known to all machines.
A straightforward solution is to send all the data to one machine, perform the computation there, and
broadcast the results. This approach produces a bottleneck and it is obviously not very robust.
Another approach is to simply broadcast all the data to all machines and have all of them perform the
computation. The main problem with this approach is that the cost associated with sending messages
is not only the transmission delay but also the processing time for each machine. If we use broadcast
too often we may lose in processing time what we gain in delay. Another major problem of using
broadcast even in broadcast media is acknowledgments. This is especially critical in the Ethernet
since, unless we are careful, after one broadcast all machines will try to acknowledge at the same
time causing significant additional delay due to transmission conflicts.

In this paper we present a scheme to ‘‘broadcast without broadcasting’’. We use repeated for-
warding and packaging of messages to disseminate information. We show that broadcasting can be
achieved quickly without physical broadcast and with some measure of reliability. (For the rest of
this paper we use the word broadcast to denote our method of disseminating information rather than
an actual broadcast.) We also show that one can use this scheme of forwarding messages to design
efficient algorithms for certain problems. We view this scheme as part of a high level algorithm
geared towards specific applications such as load balancing. We do not suggest to implement it as
part of an all-purpose communication network. We assume a local area network in which the cost of
messages between any two machines is the same. We do not assume any other special capabilities.
For a different, more efficient, scheme that requires additional hardware see Livny and Manber
[LM85]. The emphasis in this paper is on the algorithmic aspects of the scheme.

2. MOTIVATION AND DEFINITIONS

The original motivation for this paper was a problem in load balancing [BD84]. The main part
of the problem was to find the average load of N independent machines with little overhead for the
communication. The following communication pattern was used in the solution. Communication
was divided into rounds, in which each machine sends exactly one message to another machine. The
cost of processing messages is thus divided equally among the machines. (Communication in rounds
is especially natural if the access to the network is allocated in a round robin fashion, independently
of the activity of the machines. This type of multiaccess technique is called a fixed assignment tech-
nique [To80].) The destination of each message was selected at random. Each message incorporates

the current knowledge of that machine. In [DB84] it was proved that this scheme allows broadcast-
ing in (1+1n2)logyN = 1.693logy N expected number of rounds. Since all machines initiate broad-
casts (with their load), after 1.693logyN expected number of rounds all of them can incorporate the
loads of all other machines in their computation (a description of the computation is given in section
5). This approach was used in the MOS distributed operating system, which supports load balancing
by dynamic process migration [BL85]. In this paper we improve on these results in several ways. In
particular, we describe, for all N=2", a deterministic algorithm for broadcasting in logo N rounds,
which is the smallest possible number of rounds.

There are several drawbacks in the probabilistic approach used in [BD84]. First, the proba-
bilistic nature of the algorithm implies that the exact number of rounds required for a completion of a
“‘broadcast’’ is unknown. Moreover, even though the expected number of rounds is small, it is still
more than the lower bound (of log,N). Second, the probabilistic algorithm is not robust. Since
messages are received at random there is no way to detect whether all machines cooperate. If several
machines fail during (or before the start of) the broadcasting and if the broadcasting is used as part of
an algorithm (such as computing the average load) then the outcome may be imprecise. In a deter-
ministic algorithm each machine expects messages from specific machines, and if a message does not
arrive it can take preventive actions (assuming that messages are reasonably [not necessarily com-
pletely] synchronized). It is also important to make the algorithm as symmetric as possible to prevent
greater dependency on a small number of machines. Third, as was mentioned in the introduction,
processing time of each message may be significant; hence, it is important that each machine
receives only one message in each round and not only transmits only once in each round.

The three issues above led us to develop the following scheme for a solution to the problem.
The solution is completely deterministic, optimal for N=2", robust, and symmetric. We start with a
combinatorial definition of the problem.

Denote the machines by Mg,M1, . . . ,My_1. In each round k each machine sends a message
to another machine. Round k can thus be described by a vector Ry = (ag,a2, - - -, an- 1), where
@, = j iff machine M; sends a message to machine M, in round k. In order to distribute the work
evenly among machines in a round we further assume that each machine receives one message in
each round. Hence, each round vector corresponds to a permutation. Our second and most impor-
tant objective is to achieve fast dissemination of information. Define the broadcast set of machine [
for rounds k to k+ 1 as follows. At the beginning of round k only i belongs to the broadcast set.
Assuming that at the beginning of round k+j (j=0) the broadcast set is B, then after round k+ j all
machines that receive messages from any machine in B are added to the broadcast set. The broad-
cast set for rounds k to k+ ¢ is the broadcast set after round k+t. (We assume here that machines
forward all the information they have. In many cases this will not be required; we discuss this point
in detail in section 5.) Optimally, the broadcast set will be doubled in each round. The broadcast
time for machine i beginning at round k is defined as the minimal ¢ such that the broadcast set for
rounds k to k+7—1 includes all machines. It is obvious that for N machines the broadcast time is
always at least [logoN]. We would like to achieve a broadcast time close to logy N for all machines
and all starting rounds.

Our third objective is to allow easy determination of machines that failed (or stopped cooperat-
ing). This is achieved by requiring that in any N—1 consecutive rounds each machine receives mes-
sages directly from all other machines. Hence, if the status of machines do not change in N—1
rounds then all machines know exactly who failed. It is easy to see that the requirement above
implies that every machine transmits to all other machines in any N—1 rounds, and hence the order
in which every machine transmits is a cyclic permutation of the N~ 1 other machines. This require-
ment also makes the algorithm more symmetric. If we now build an N— 1X N matrix such that rows
correspond to consecutive round vectors, then each column j is a permutation of the numbers from 0
to N—1 except for j. In other words, if we put the identity vector 0,1,2,...,N—1) at the end of the
matrix we get a latin square. The problem now becomes a combinatorial problem of designing latin
squares that minimize the broadcast time as defined above. We call the N—1XN latin squares

without the identity vector truncated latin squares.

We will show that for any N = 2" there exists a truncated latin square that always achieves the
optimal broadcast time of n. Algorithms that are based on this framework will be discussed. We
will also present efficient truncated latin squares for N which is not a power of 2.

3. A REDUCTION OF THE PROBLEM TO A COMBINATORIAL PROBLEM

The broadcast time is defined in terms of an iterative procedure (machines forwarding mes-
sages in rounds). This makes it harder to analyze. We reduce the problem to an easier to describe
combinatorial problem by restricting the types of truncated latin squares we consider. Let G =
$80,81,-+-,8v—1} be a group of order N with an identity element gg. It is convenient to think of the
integers modulo N as the group, but any group will do. In fact, the group need not be abelian,
although, for convenience we use abelian groups terminology. We will use the fact the all the results
hold for non-abelian groups to solve the problem of Babai and Erdos in section 6. Let 4 = G -
{go}. For notational convenience we associate each number i, 0=<i < N with the group element g;,
and consider truncated latin squares whose entries are the g;’s, and whose columns are indexed by
G. The column indexed by g of the latin square is, by definition, a permutation of A. Denote this
permutation by m=(m1,%y,...,y-1). For 0<i<N, we set the g;’th column to be a shift by g; of
the first column. Namely, the (j,g)’th entry equals g;+m;. The group properties guarantee that
this is indeed a truncated latin square. It is easier to compute the broadcast time for such latin
squares than for general ones. This is done in the next two simple theorems.

THEOREM 3.1. Let G,4,wn=(71,79,...,my—1) be as above. Then the broadcast set for machine
t
g for rounds j to j+1is {s€G |s =g+ 3 cmjri,GE {0,1}}, where the subscripts of w are taken
i=0

cyclically in the range (1,,N—1).

PROOF: We apply induction on ¢. At round j machine g sends a message to machine g+, and
hence the broadcast set for t=0 is {g;,g,+ ™}, proving the theorem for t=0. Assuming the result
for t—1 we prove it for ¢, (>0). Let M be the broadcast set for g for rounds j to j+t—1. If
5€M, then at round j+ ¢, machine s sends a message to machine s+ ;,. Thus the new broadcast
setis M\ J(M+m ;4 ,), and the theorem follows.

O

COROLLARY 3.2. The broadcast time is independent of the machine that initiated the broadcast. It
depends only on the starting round number j, and it is equal to the minimum ¢ such that each g€ G
has the form

-1
(3.1) .EOCi"Tj-H;
iz

where ¢; € {0,1} and all subscripts are taken cyclically in the range (1,,N—1).

PROOF: The corollary follows immediately from Theorem 3.1 and the fact that & is a group.
o

From now on we will assume that the broadcast is always initiated by machine go. Theorem
3.1 gives a clear characterization of broadcast time. We need to find a cyclic permutation = of
G- {go}, such that every small number of consecutive elements of the permutation ‘‘generate’’ G in
the sense expressed in (3.1). We say that a cyclic permutation has broadcast time ¢ if the
corresponding truncated latin square has broadcast time 7, i.e., for every j, every g€ G has the form
@3.1.

4. OPTIMAL TRUNCATED LATIN SQUARES

As mentioned in Section 2, the broadcast time for N machines is always at least [logoN]. By
the results of section 3, to obtain such time it is enough to find a group G of order N and a cyclic
permutation m of A=G— {0}, such that any k= [logoN] consecutive elements of m generate G.
The following two theorems supply two families of such permutations, using some elementary pro-
perties of finite fields (cf. [Ha67] or [He64]).

THEOREM 4.1. Suppose N =2k and let G be the additive group of the finite field GF(2%). Let
g€G be a primitive root of GF(2*). Then m= (,gvo,gl,...,g2 "2y is a cyclic permutation of
GF(2%)— {0} whose broadcast time is k = logyN.

PROOF: g is the root of a primitive polynomial p(x) of degree k over GF (2). The field GF 2% is
represented by the residue classes modulo p(x) of the polynomials over GF(2), and g is a generator
of the multiplicative group of GF(2%) (see [Ha67)] or [He64]). Therefore, go,gl,...,g""2 is a per-
mutation of 4 = GF(2¥)— {0} and every element g€ G has a unique representation as a polynomial
of degree at most k—1 over GF(2). To prove the theorem we must show that for every
0< j=2F—-2=N-2, every g¢ GF(2%) can be expressed in the form

k-1
4.1 g= S gt where ¢€{0,1}.
i=0
I3 k~1 .
However, g/g' is an element of GF (2%) and thus can be expressed as a polynomial ¥ ¢g' of
i=0

degree at most k—1 over GF(2). This implies (4.1) and completes the proof.
o

It is worth noting that once a primitive root g for GF (2%) is found and the permutation = is
constructed, every power g’ of g can be expressed as a vector of length k over GF(2) (representing
the corresponding polynomial) and the addition in the group G is just the usual addition of vectors
modulo 2. Hence the implementation of the broadcast algorithm is very simple.

THEOREM 4.2. Suppose N=p is a prime and 2 is a generator of the multiplicative group modulo
p. Let G be the abelian group Z, and put m = (20,21,...,2””2). Then 7 is a cyclic permutation of
Z,— {0} whose broadcast time is k= [logoN].

PROOF: A}(s ll)efore, we must show that for every 0= j=p—2, every g€ Z, can be expressed in the

form g = 3 ¢2/7 7, where ¢;€{0,1}. However, the element g/2/ €Z, has a binary representation
-1 10
S ¢;2', which gives the desired result.
i=0
o

Although the results above hold only for powers of 2 and certain primes they can be used to
design an approximate scheme for any N in the following way. Let N be such that 2¥7 1< N<2*.
Denote by M; the set of N machines and by M; the set of 2% machines. Let T denote the first
2¥— N machines in M;. These machines will ‘‘take over’’ the forwarding for the last 2k—-N
machines in M,. We “‘simulate’” each round of the solution for M, by two semi-rounds with M.
In a semi-round not all machines may transmit or receive but no machine sends or receives more
than one message. The communication pattern will be the same as the one for M, except that mes-
sages that involve the last 2k~ N machines in M, will be handled by T. We now show that each
round can always be divided into 2 semi-rounds. Each machine in T sends and receives exactly 2
messages and all other machines in M; send and receive one message. Assume that all machines in
M, send and receive 2 messages; this is obviously a worst case (one can always add dummy mes-
sages). The problem is to divide the messages into two groups (colors) such that two messages in the
same group do not originate from the same machine and do not have the same destination. This can

always be done in linear time (e.g., use Hall-Konig Theorem [Ha67]).

The approximate scheme described above has many of the advantages of the original scheme.
The main drawback is that it takes 2[logoN| to broadcast and 2(N—1) to receive messages from all
other machines.

5. ALGORITHMS BASED ON THE COMMUNICATION PATTERN

Let N=2% and consider the optimal scheme presented in the previous section. Assume that
each machine has a value and that all machines start broadcasting their values at the same time.
Furthermore, assume that all machines forward all the values they receive. It is clear that after &
rounds every machine will know the values of all other machines and thus can perform any algorithm
on the values. Overall, there are N logyN messages whose sizes double at every round, and, since
the scheme is optimal, no value is ever sent twice to the same machine. This compares favorably
with the N2 messages required to exchange the N values directly. In many cases, especially if the
values have short representation, longer messages do not cost significantly more.

There is however a much greater benefit with this scheme since for some algorithms the values
need not be accumulated. The algorithms can be performed by the machines as they forward the
messages, thus saving time and communication. We present two examples of such algorithms.

First we consider the problem (which motivated this research) of finding the average load in a
multicomputer system. Assume that the computation starts every k rounds. In the first round all
messages contain one load. In the second round all machines know of one other load in addition to
their own. They can average the 2 loads and send that information. After the second round all
machines have 2 averages, each of 2 loads, hence they can get the average of 4 loads. The full algo-
rithm is given below.

Algorithm Average

1. at round 1 each machine sends out its load; all messages are sent according to the truncated
latin square given in section 4.

2. at round j, 1 <j=k, each machine sends out the average of the message (load) it received at
round j—1 and the message it sent at round j—1.

THEOREM 5.1. In Algorithm Average after k rounds all machines have the exact average load.

PROOQOF: The proof is by induction on the number of rounds.

Induction hypothesis: at the beginning of round j, 1= j=<k+1, each outgoing message contains the
average load of 27~ 1 distinct machines.

The hypothesis is clearly true for j=1, and it implies the theorem since if at round k+1 each
machine could send the average of 2% loads then each machine knows the average. Consider round
j+1 and machine M. At round j M received the average load of 2/ ! machines and sent away an
average load of 2/ 7! machines. We only have to prove that these 2/ loads are all distinct. Assume
the contrary. Then, there exists one machine M such that its original load was involved in 2 mes-
sages sent to M. One message at some round i <j (so that M can use it in the message it sent at
round j), and another message at round j. However, by the optimality of the broadcast starting from
M at round 1, every time M’s message is forwarded it is sent to new machines. Hence, within k
rounds, M cannot receive M’s message twice.
o

Notice that the proof above is independent of the specific truncated latin square; it depends only
on the fact that the broadcast is optimal. Algorithm Average computes the average load every logo N
rounds. The total number of messages is NlogyN. If we need the average load more frequently we
can start the computation more often and have several computations proceed in parallel. Each

message will contain several averages in different phases of the computation. Messages will be
longer but more computation will be done. In many networks the overhead associated with sending a
message is high and as a result sending long messages is much more cost effective than sending
several shorter messages. In practice having a message with logoN numbers is very reasonable.
Such messages allow us to compute the average load in each round (although we get the average load
of logy N rounds ago).

Finding averages is not the only efficient algorithm we can perform using our scheme. It is
easy to see that finding a maximum or minimum of N variables can be done in exactly the same way.
It is interesting to try to identify the type of problems that can be solved in logaN rounds (or just
O(log n)) with this scheme. We give here one more such problem - the majority problem. The
majority problem is to determine, given N votes (integers), whether one vote appears more than N/2
times (a majority) and if so to find it. It is important, for example, in distributed databases recovery
algorithms [TH79]. The algorithm is an extension of the sequential algorithm given by Fischer and
Salzberg [FS82].

Algorithm Majority

The algorithm is divided into two phases, each lasting logoyN rounds: 1. selection of a candidate, and
2. verification. In the first phase we select a vote that is guaranteed to be the majority provided a
majority exists. In the second phase we verify that this vote is indeed a majority. In the first phase
each message contains two integers, C (candidate) and M (multiplicity). Initially each machine sets
C to be its vote and M=1. Let C;,(M;,) be the values machine p received in round j (I<j<k+1),
and C,,,(M,,,) the values it sent in round j. The values C, and M sent out in round j+1 are the
following.

1. if C;;,= Cpyy then C:=Cyyy 5 M:= My + Moy

2. if ;= C,y, then there are two cases:
2a. if M;,,=M,,, then C:=Cy, ; M:=My; — Myyy;

2b. if My, <My, then Ci=Coy; M= Moy = Mip;

The idea behind the algorithm is the following. If a majority exists and if, given two different
votes, we eliminate both of them and continue doing so until only one vote remains, then this vote
must be the majority since there are not enough other votes to eliminate it. Hence, if, after logo N
rounds, the multiplicity of the candidate C is not zero then C is a candidate (and the only possible
one). The second phase consists of counting how many times C appears. That can be easily
achieved by initially sending out a 1 (if your vote equals C) or 0 (otherwise), and in each of the other
rounds just sum the values.

If N is not a power of 2 then the approximate scheme described in the previous section can be
used. It takes twice the time but the algorithms can be very similar. The only difference is that
some messages are ‘‘dummy’’ messages used only to simulate the optimal scheme. We have to
make sure that these messages do not contribute to the algorithm. In the algorithm for finding the
average one can assign 0 loads to the non existing machines and scale everything at the end. In the
algorithm for finding the majority it is sufficient to assign multiplicity of 0 to non existing machines.

6. RANDOM TRUNCATED LATIN SQUARES

In this section we prove that a random permutation of the non-identity elements of any group G
of order N produce, with high probability, a truncated latin square whose broadcast time is
O(log n). Empirical results (for the group Zy) suggest that for large number of machines the con-
stant is less than 2 (see section 7). Hence, this may be faster than the approximate scheme described
in the previous section. While the choice of the truncated latin square is random, once it is made the

algorithm is completely deterministic, thus the broadcast time is fixed and can easily be determined.
As a byproduct of our method we settle a problem of Babai and Erdos in combinatorial group theory.
We start with some technical lemmas. Although we use here additive notation for convenience, we
do not assume that the groups in this section are abelian.

LEMMA 6.1. Let G be a group, and let H be a subset of G. Let g be a random element of G.
Then the expected value of | HN(H+g)| is |H|%| G].

PROOF: For every fixed b€ H the number of g¢ G such that b+ g € H is precisely the cardinality of
—b+H, whichis | H|. Since | HN(H+g)| = = |HN{b+g}| the desired result follows.

bEH
a
LEMMA 6.2. Let G,H be as in Lemma 6.1. Then the number of g€ G such that
2
|HN(H+g)| > E1R: 1l
2| G|
is less than 2/3| G| .
PROOF: Immediate from Lemma 6.1.
O

LEMMA 6.3. Let G,H be as in Lemma 6.1. Then the number of g€ G such that

|G-y > S

is less than 2/3| G|, where H= G—H.

PROOF: Notice that G—(H\J(H+g)) = (G- H)N(G—(H+g)) = HN(H+g). Hence, the lemma
foliows from Lemma 6.2 by replacing H by H.

i
LEMMA 6.4. Let G,H be as in Lemma 6.1, and suppose | H| <%| G|, KCG, | K|=]|G|/6. The
number of g€ G— K such that (HU(H+g))| =5/4| H| is at least | G|/6.

PROOF: By Lemma 6.2 for at least (1/3—1/6) | G| elements g€ G—K

31H|?
HNO(H+ s—u~.
l (g) l 2 l G|
Hence, for those elements g,

| HU(H+g)| = 2| H| - |HN(H+g)| = 5/4| H].

o
LEMMA 6.5. Let G,H be as in Lemma 6.1, and suppose | H| >%| G|, KCG, | K|=|G|/6. The
number of g€ G—K such that | G—(HU(H+ g))| < 3/4| G—H] is at least | G|/6.

PROOF: By Lemma 6.3 for at least (1/3—1/6) | G| elements g€ G—K

3|H|? _ 3|G-H]|

|G- (HUH+g) | = 216 = 2

o
Suppose now that G is a group of order N. We say that a sequence B = (b1,ba,-..,b;) of ele-
ments of G represents G if every g€ G has a representation of the form 5 ¢ b;,where ¢; € {0,1}.
i=1
Put k=36logs/sN and assume that k= N/6.
LEMMA 6.6. The probability that a random sequence B = (by,bo,..., by of k distinct non-identity
elements of G does not represent G is less than N

PROOF: Choose the elements of Bone by one. Put B; = (b, ..,b;) and let H; be the set of all ele-
ments of G represented by B;. Call the choice of b;,.1€G— B; a success if one of the following hap-
pens; either | H; | <% |G| and | H;y1| = 54| H; | or |H;| >%|G| and | G—H; 1] =3/4|H;|.

By Lemma 6.4 and Lemma 6.5 the probability that ;4 is a success, given all the previous
choices, is always at least 1/6. Hence, the expected number of successes in k=236logs/sN choices is
at least 6logssN, and we can lower bound the probability for having at least
2logs4N = logs 4 N-+logs/3N successes by using the standard estimate given by Chernoff’s inequality
(cf. [ES74]) for a binomial distribution with p=1/6. (Notice that this is justified by the preceding
remarks although, in fact, we do not have here a binomial distribution.) Hence, the probability of
having at least 2logs/4 N successes is at least 1-N~1-1. However, that many successes guarantee, as
can be easily checked, that H, = G, i.e., that B represents G.

o

As an immediate corollary we obtain the following theorem.

THEOREM 6.7. Let G be a group of order N with identity 0, and suppose k=36logs/sN = N/6.
Then there is a permutation w = (7g,m ...,my-2) of A=G— {0} such that for all 0=i<N—1, the
Sequence m;,T; 1 1,-..,T;+—1 where the indices are reduced modulo N -1, represents G. More-
over, almost all permutations have that property.

Remarks:

1. By a more careful analysis one can reduce the constant in our estimate 36logs 4N consider-
ably. We only wanted to establish O(logN). It might be that the correct estimate is
logy N+ O(log log N). At the moment, however, we are unable to prove it.

2. By a trivial modification of the proof of Lemma 6.6 (considering multiplicative non-abelian
groups), one can prove the following (slightly easier) result;

THEOREM 6.8. There exists a positive constant ¢ such that for every group G of order N and a
random choice of (not necessarily distinct) xp,xp,...,x,€ G, the probability that the sequence
B = (x1,x2,...,x;) represents G tends tI? 1 while N-= and k = [clog N]. (B represents G if every
g€ G has a representation of the form] bie" ,where €; € {0,1}).
i=1
This answers in the affirmative a question raised by Babai and Erdos in [BE82].

7. EMPIRICAL RESULTS

7.1. Random permutations

Since the constant in the O(logN) in the proof of Theorem 4.1 is larger than 2 we ran experi-
ments (by choosing random permutations in the group Zy) to find the broadcast time for reasonable
values of N. We found that for all N=3200 the constant is less than 2. As mentioned, it may be
possible that the multiplicative constant is 1. Table 1 gives the results of a simulation using random
permutations. For each value of N 10 random permutations were tried (the variance was very
small). The average and maximum broadcast times over all starting rounds and all trials are given.

10

N [logoN] | average | maximum
25 5 6.7 8
50 6 8.0 11
100 7 9.2 12
200 8 10.3 13
400 9 11.5 14
800 10 12.8 15
1600 11 14.0 16
3200 12 15.1 18

Table 1: Broadcast time for randem truncated latin squares

7.2. Random failures

The results of the previous sections depended on the cooperation of all machines. Itis impor-
tant to see what happens if several machines fail. In this section we present simulation results on the
expected broadcast time for random failures. The simulations indicate that the broadcast time
remains low even if significant number of machines fail. In the simulations we did not assume any
knowledge of failures. One may be able to improve the performance by adaptively changing the
communication patterns once machines learn about failures. Table 2 below gives the average and
maximum broadcast times for N machines over N—1 rounds with different number of random
failures. Broadcast time in this case is defined as the time to reach all non-failing machines. The
variances in the simulation were always less than 10%. The truncated latin squares are the optimal
ones presented in section 4. While this data is not enough to predict the asymptotic behavior of the
broadcast time with random failures, we believe it gives strong evidence that the broadcast time in
our scheme is still pretty low. With a 10% failure rate the broadcast time (for N=1024) is no more
than double the optimal time and about 40% above optimal time on the average.

11

number of | percentage of
machines failures average | maximum
64 5 7.0 9
64 10 7.6 11
64 20 8.7 14
128 5 8.4 13
128 10 9.4 13
128 20 10.9 16
256 5 10.0 14
256 10 11.0 15
256 20 12.7 18
512 5 11.4 15
512 10 12.5 17
512 20 14.6 22
1024 5 12.8 17
1024 10 14.1 19
1024 20 16.4 24

Table 2: Broadcast time with random failures

8. CONCLUSIONS AND FURTHER RESEARCH

We introduced a new scheme for achieving broadcasting without physical broadcasts. The
scheme can be used for a variety of algorithms. It is easy to implement and it does not require any

special support from the operating system or the communication network.

Several open problems remain.

1. Determining the expected broadcast time in the presence of failures. Our simulations indicate
that the algorithms can tolerate failures reasonably well. It seems hard to be able to find ana-
Iytic solutions. One may also be able to improve the broadcast time by using the information

about machine failures.

2. Finding the optimal truncated latin squares for N which is not a power of 2 and not a prime.

We expect the broadcast time to be very close to loggN.

3. Designing more algorithms that use the communication pattern suggested in the paper.

Acknowledgment: We would like to thank L. Babai, E. Bach, R. Finkel, R. Manber, and M. Solo-

mon for fruitful discussions.

REFERENCES

[BD84]

A. Barak and Z. Drezner, ‘‘Distributed Algorithms for the Average Load of a Multicom-
puter,”” University of Michigan, Computing Research Laboratory, Technical report CRL-TR-

17-84, (March 1984).

12

[BES82]
I.. Babai and P. Erdos, ‘‘Representation of group elements as short products’ in Theory and
Practice of Combinatorics, (A. Rosa et al eds.), Annals of Discrete Math. 12 (1982), 27-30.
[BLS5]
A. Barak and A. Litman, ‘“MOS: A Multicomputer Distributed Operating System,’” Sofiware
Practice and Experience, 15 (August 1985), 725-737.

[DB84]
Z. Drezner and A. Barak, ‘‘An Probabilistic Algorithm for Scattering Information in a Multi-
computer System,”” University of Michigan, Computing Research Laboratory, Technical report
CRL-TR-15-84, (March 1984).

[ES74]
P. Erdos and J. Spencer, ‘‘Probabilistic Methods in Combinatorics,”” Academic Press (1974),
New York and London, pp. 18.

[FS82]
M. J. Fischer and S. L. Salzberg, ‘‘Finding Majority Among n Votes,”” Research Report
#252, Yale University, Department of Computer Science, October 1982.

[Ha67]
M. Hall Jr., Combinatorial Theory, Blaisdell Publishing Company, London, 1967.

[He64]
1. N. Herstein, Topics in Algebra, Blaisdell Publishing Company, London, 1964.

{1.M85]
M. Livny and U. Manber, ‘‘Distributed Computation via Active Messages,’” to appear in IEEE
Transactions on Computers, Special issue on Distributed Computing, (December 1985).

[TA8L]
A. S. Tanenbaum ‘‘Computer Networks,”” Prentice-Hall, 1981.

[TH79]
R. H. Thomas, ‘‘A Majority Consensus Approach to Concurrency Control for Multiple Copy
Database,”> ACM Transactions on Database Systems, 4 (June 1979), 180-209.

[To80]
F. A. Tobagi, ‘‘Multiaccess Protocols in Packet Communication Systems,”” IEEE Transactions
on Communication, Vol. COM-28, (April 1980), 468-488.

