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For a configuration S of n points in the plane, let gk(S) denote the number of 
subsets of cardinality <k cut off by a line. Let gk,“=max{gk(S): (SI =n}. Good- 
man and Pollack (J. Combin. Theory Ser. A 36 (1984), 101-104) showed that if 
k < n/2 then g,,, < 2nk - 2k2 -k. Here we show that g,,” = k. n for k <n/2. c‘; 1986 

Academic Press, Inc. 

Let S be a finite set of points in the plane. Following Goodman and 
Pollack [GP2] we call the intersection of S with a half plane a semispace 
of S. A semispace of S of cardinality k is called a k-set of S. Let f,JS) 
denote the number of k-sets of S and put gk(S) = Cr= I f,(S). 

Define 

Thus gk,n is the maximal number of (6 k)-sets of n points in the plane. 
Since gk,n = & - k,n we may restrict our attention to the case k 6 n/2. 

Goodman and Pollack [GP2] considered the problem of estimating g,., 
and proved that if k < n/2 then g,., < 2nk - 2k2 - k. 
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In this note we deterime g k,n precisely for all k < n/2, by proving: 

THEOREM 1. For k < n/2, g,, = k * n 

We have two proofs of Theorem 1; a combinatorial one and a geometric 
one. Since the first proof is more general we present it in detail and only 
sketch the second. Our combinatorial proof is based on the ideas of 
[GP2]. 

The n vertices of any convex polygon in the plane show that g,,, is at 
least the quantity mentioned in the theorem. To prove the upper bound we 
first note that we may assume that the points of S form a simple con- 
figuration, i.e., no three points of S are collinear and no two connecting 
lines (i.e., lines determined by two points of S) are parallel. This follows 
from the fact that a small perturbation of S will not decrease gk(S). 

Following [GP2] we consider a more general combinatorial problem. 
We associate with S a sequence of permutations on the n points of S as 
follows. Choose a directed line L, which is not orthogonal to any con- 
necting line of S, and project the points of S orthogonally onto L. Let PO 
denote the order of these projections on L. Now rotate L counterclockwise. 
Whenever L passes a direction orthogonal to a connecting line determined 
by the points a, b E S the order of the projected points on L is changed by 
the adjacent transposition (a, b). 

After 180” the points fall on L in the reverse order. In this way (after 
360”) we obtain a cyclic sequence of permutations Z’(S) = 
PO, p, Ye’., P,,= P,, where N= (‘;) and 

(1) Pi and Pi+N are in reverse order (from here on addition of 
indices is taken modulo 2N); 

(2) pk+l differs from Pk by an adjacent transposition (=switch). 

Note that a k-set of S occurs as an initial k-segment of some Pi (and 
hence as a terminal k-segment of Pi+ ,,,). As a matter of fact Sk(S) is 
precisely the number of switches in position k in P, i.e., the number of 
switches between the kth and the (k + l)st indices, since each such switch 
creates exactly one new k-set. This number equals, of course, the number of 
switches in position n -k in P. 

Call a sequence of permutations P satisfying (1) and (2) an n-sequence. 
(Note that in [GP2] an n-sequence is half of our n-sequence.) For k < n/2 
let I;,(P) denote the number of switches in position k in P, put Gk( P) = 
Cf= i Fk( P) and define 

G,,, = max{ G,(P): P is an n-sequence}. 

Our result clearly follows from the following. 
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Claim 2. For k -c n/2, Gk,, < n ’ k. 
Note that since n * k < g,., < Gk,, for k < n/2, the last claim implies; 

THEOREM 3. For k < n/2, g,,, = Gk,, = k . n. 

As shown above every simple configuration is associated with an n- 
sequence. The converse, however, is not true (see [GPl I). Hence 
Theorem 3 is more general than Theorem 1. 

Proof of Claim 2. Let b be a fixed point. The total number of switches 
involving b is precisely 2n - 2 (twice with any other point). If b occurs in a 
switch in position iE (1, 2,... k) it also occurs in a switch in position n - i. If 
i < j < n - i then, by continuity, b occurs in at least two switches in position 
j (one somewhere between the switch in position i and this in position n - i 
and one somewhere between the switch in position n-i and this in 
position i). Thus, any point occurs in at most 2n - 2 - 2(n - 2k - 1) = 4k 
switches in positions { 1,2 ,..., k} u (n-k ,..., n - 1 }. The total number of 
switches in these positions is half of the sum of occurrences of points in 
such switches, i.e., < 4. n. 4k = 2nk. The total number of switches in the 
first k positions is precisely half of this quantity, i.e., 6n. k. This completes 
the proof of Claim 2 and hence of Theorems 1 and 3. 1 

Remarks. 1. Let S be a set of n points in general position in the plane 
and suppose k < n/2. For a, b E S let I= /(a, b) be the directed line from a to 
b and let N+(l) denote the number of points of S in its positive side. Erdos, 
Lo&z, Simmons and Straus [EL%] denoted by Gk the directed graph on 
the set of vertices S whose edges are all segments ab, where a, b E S and 
N+(Z(a, b)) = k. One can easily check that the number of k-sets of S is 
precisely the number of edges of Gk ~ 1 ( = number of edges of G, _ k _ , ). It is 
also easy to see (analogously to the proof of Lemma 3.1 of [ELSS] ) that if 
a E S is incident with an edge of Gi and i < j< n - 2 - i then a is also 
incident with at least two edges of G,. Thus the total number of edges 
incident with a in GOuG,u ... uG~-,uG~~~-~u ... uG,-* is at most 
2n-2-2(n-2k - 1)=4k. Therefore the total number of edges of G, u 
.” uG,-, is 6 n ’ k. This yields another proof of Theorem 1 (but not of the 
more general Theorem 3). 

2. The problem of determining or estimating fk,n = max{ fk(S) : S is a 
configuration of n points in the plane} is much more difficult than the 
corresponding one for g,,,. However, as is easily checked, 2. g,,z,n = 
0 - 1) +fHlz,, (f or even n), i.e., the two problems are equivalent (and seem 
to be difficult) for k = n/2 (see [ELSS, Lo] ). 

By the results of Stanley [St], Lascoux and Schiitzenberger [LS] and 
Edelman and Greene [EG] there is a surprising one to one correspon- 
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dence between n-sequences and Standard Young Tableaux of shape (n - 1, 
n - 2,..., 1) which might help in tackling this problem. 
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