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ABSTRACT

For n > k = 3, let f(n,C*) denote the maximum number m for which it is
possible to color the edges of the complete graph K” with m colors in such a
way that each k-cycle C* in K” has at least two edges of the same color. Erdds,
Simonovits, and S6s conjectured that for every fixed k = 3,

f C")_—n<k -1_—1 >+01
n, 3
( 2 =] 30

and proved it only for k= 3. It is shown that f(n,C*)=n + [¥n] — 1, and the
conjecture thus proved for K =4. Some upper bounds are also obtained for
#(n,C¥), k = 5.

In this paper we use the notation of [ 1]. All graphs considered here are finite
and have no loops and no multiple edges. E(G) is the set of edges of a graph
G. G™ is a graph with m vertices. K* and C* are the complete graph and the
cycle with & vertices, If K" is edge-colored in a given way and a subgraph H
contains no two edges of the same color, then H will be called a totally
multicolored (TMC) subgraph of K" and we shall say that K" contains a
TMC H. For a graph H and an integer n, let f{n, H) denote the maximum
number of colors in any edge-coloring of K" with no TMC H (i.e., with no
TMC subgraph isomorphic to H).
Erdos, Simonovits, and Sés in [1] made the following conjecture.

*This paper forms part of a Ph.D. thesis written by the author under the
supervision of Professor M.A. Perles from the Hebrew University of Jerusalem.
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Conjecture 1. For every fixed £ > 3,

. k=2 1
finC=nlsos oyl 0a).

They exhibited an edge-coloring of K" showing that if n = (k—1)g+r,
where 0 < r< k — 1, then

f(nC")>n<k—2+‘ - )—r(k—l_r-i- 1 ) (1)
Qi 2 k=il 2 kil

No general upper bound for f{r, C¥) is given in [1]. However, the authors
showed that

Fn Y h

and thus proved their conjecture for k = 3.
The following theorem establishes Conjecture 1 for k = 4.

Theorem 1.
(i) For every n = 4,
f(n,CHY=n+[%n] — 1. 3
(ii) for every n = k = 5,
fin,C*) < g(k,n), (3)
where

(B—=n—tR = 2¥fotn>= 2k — 4 and k= 5 or 6,
glk,n) = (4)
(=m0 otherwise.

We shall need one of the results of [1], and some more notation. For a
family M of finite graphs, let ext{n, M) be the maximum number of edges a
graph G” can have if it has no subgraph isomorphic to any member of M. For
a graph H let L(H) be the family of graphs G having the property that any
edge-colored complete graph containing a TMC G contains also a TMC
H.

Lemma 1 of [1] asserts that if L C L(H), then

fin, H) < ext(n,L). (5)
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Let F denote the family of all even cycles and all the graphs consisting of
two odd cycles with one common vertex., For & = 3 let F), denote the family
of all cycles of length = 2[mod(k — 2)].

Our results follow from the foilowing three lemmas.

Lemma 1. Let G, H be graphs. Suppose that adjoining a new edge e to G
results in a graph which is the union of two members 4, B of L(H) which are
edge-disjoint, except for the common new edge e. Then G € L(H).

Proof. Let K" be an edge-colored complete graph that contains a TMC G.
The color of the edge €' of K" that corresponds to e can occur in at most one
of the graphs A — ¢/, B — ¢'. Thus, K" contains eithera TMC 4 € L(H) or a
TMC B € L(H). In both cases K" contains a TMC H. Thus G € L(H). B

Lemma 2.
(i) For every k = 3, F, C L(C").
1 P o AT exs'

Proof. (i) Suppose k= 3,t=2+ g(k —2), g = 1. We use induction on
g.Ifg =1, then C' = C* € L(C*). If g > 1, let a,b be two vertices of C’ that
separate it into two paths P,,P, of lengths k — 1, t — k + 1, respectively.
Since P, U ab= C* € L(C*) and P, U ab = C"**? € L(C*) (by the induc-
tion hypothesis), Lemma 1 implies C* € L(C"). (ii) By part (i) of the Lemma
every even cycle belongs to L(C*). Let G be a graph consisting of two odd

cycles C? = (¢,a5,a3, . . ., @,¢) and C" = (¢, b,,b;, . . ., b, ¢) with a common
vertex ¢. G is the edge-disjoint union of the two odd paths P, =(a,, ...,
a,.¢,by) and P, =(b,, ..., b,ca,). Since the even cycles P, U a,b, and

P, U a,b, belong to L{C*), we conclude that G € L(C*), by Lemma 1. B

Lemma 3.
(i) for every n 2 k 2 5,

ext(n, F) < g(k,n), (6)
where g(k,n) is defined in (4).
(i1)
ext(n, F)=n+[%n] — 1,
for all n = 1.

Proof. (i) Suppose n = k = 5 and let G" be a graph with more than g(k, 1)
edges. By a simple result proved in [2, pp. 386, 387], G contains a cycle with
k — 3 diagonals emanating from one vertex. Thus there is a path Pin G and a
vertex x not on P that is joined by & — | edges to k — 1 vertices of P, say




94 JOURNAL OF GRAPH THEORY

P1s¥as - - - » Yi—1- One can easily verify that there exist vertices y;, y;, 1 < i<
J < k — 1, whose distance on P is 0 modulo k& — 2. The cycle formed by the
edges xy;, xy;, and the segment of P from y; to y; belongs to F,, which proves
(6). (ii) For every n there is a connected graph G" with n -+ [V4n] — 1 edges,
whose blocks are triangles and single edges, with no two triangles having a
common vertex. Thus

ext(n, F) =2 n+[%n] — 1. (7)

The opposite inequality is proved by induction on 7. For # < 3 it is trivial.
Now let G = G”" (n > 3) be a graph with no subgraph in F. We must show
that |E(G)| < n +[%n] — 1. If G is not connected this follows by applying
the induction hypothesis to each component of G. Assume, therefore, that G
is connected. If G has a bridge (i.e., a separating edge) u, apply the
induction hypothesis to each component of G — u; this works even in the
case in which one of these components is an isolated vertex. Since G contains
no even cycle, it is easily checked that every block of G is either a single edge
or an odd cycle. Therefore, if G contains no bridge, then G' must be 2-
connected, since otherwise the union of any two adjacent blocks of G would
belong to F. However, if G is 2-connected then G is an odd cycle and
|[E(G)l=n=<n+[sn]—1. N

The proof of Theorem 1 is now trivial.

Proof of Theorem 1. The case k=4 of inequality (1) (due to Erdds,
Simonovits, and Sos) implies

Jir Y= n-+ (#aa] = L.

The opposite inequality follows from (5), part (ii) of Lemma 2, and part (ii)
of Lemma 3. This establishes (2). (3) follows from (5), part (i) of Lemma 2,
and part (i) of Lemma 3. W
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