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Explicit construction of families of lincar expanders and superconcentrators is
relevant to theoretical computer science in several ways. Here we construct better
expanders than those previously known and use them to construct explicitly
n-superconcentrators with = 122.74n edges; much less than the previous most
€Conomical CONSINICon. & 1987 Academic Press. ine.

1. INTRODUCTION )
An (n, k, c)-expander is a k-regular bipartite graph on the sets of vertices
I (inputs) and ©Q (outputs), where [[| = |Q| = n, and every set of x < n/2
inputs is joined by edges to at least x + ¢(1 — x/n)x different outputs. A
family of linear expanders of density k and expansion ¢ is a set { G, }72,,
where G, is an (n;, k, ¢)-expander, n, = o0 and n,_,;/n, > 1 as i = oo0.
Such a family is the main component in the recent parallel sorting
network of Ajtai er al. It also forms the basic building block used in the
construction of graphs with special connectivity properties and small num-
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ber of edges (see, e.g., Chung [Ch]). An example of a graph of this type is an
n-superconcentrator (s.c.), which is a directed acyclic graph with » inputs
and n outputs such that for every 1 < r < n and every two sets 4 of r
inputs and B of r outputs there are r vertex disjoint paths from the vertices
of A to the vertices of B. A family of linear s.c.-s of density k is a set
{G, }r_,, where G, is an n-s.c. with < (k + o(1))n edges. Superconcentra-
tors, which are the subject of an extensive literature, are relevant to
computer science in several ways. They have been used in the construction
of graphs that are hard to pebble (see Lengaver and Tanan [LT], Pippenger
[P2] and Paul et al. [PTC]), in the study of lower bounds (see Valiant [Va])
and in the establishment of time space tradeoffs for computlng various
functions (Abelson [Ab], Ja'Ja [Ja|, and Tompa [To]).

It is not too difficult to prove the existence of a family of linear
expanders (and hence a family of linear s.c.-s) using probabilistic arguments
(see, e.g, Pinsker [Pi], Pippenger [P1], and Chung [Ch]). However, for
applications an explicit construction is desirable. Such a construction is
much more difficult and the search for explicit, economic linear expanders
and s.c.-s attracted considerable attention. Margulis [Ma] was the first to
construct a family of linear expanders. A similar family is used in [GaGa]
to construct n-s.c.-s with = 271.8n edges. This was improved by Chung to
= 261.5n and later, by Buck [Bu] to = 190n, and by Alon and Milman
[AM1, AM2] to 175n.

Very recently Jimbo and Maruoka [JM] constructed slightly different
expanders than those of [Ma, GaGa] that enabled them to produce s.c.-s of
density 248. In this note we modify their construction and obtain a family
of expanders that supplies s.c.-s of density = 122.74.

Shamir [Sh] constructed families of nonacyelic directed s.c.-s of density
= 204 and of undirected s.c.-s of density = 118. Our new expanders enable
us to improve these densities to = 49.84 and = 30.3, respectively.

Our results are proved by combining several results {rom [GaGa] and
[IM] with some of the ideas of [AM1, AM2] and [A1] about the connection
between the eigenvalues of the adjacency matrix of a graph and its
expansion properties. Qur paper is ocrganized as follows. In Scction 2 we
construct our expanders and estimate their expansion properties. In Section
3 we use our expanders to construct better s.c.-s. In Section 4 we construct
better nonacyclic and undirected s.c.-s. Section 5 contains some open
problems,

2. BETTER EXPANDERS

Our expanders are double covers of nonbipartite graphs. Let G be a
graph on the set of vertices {v,,v,,...,v,}. The (extended) double cover
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G=(1,0,E) of G is a bipartite graph on the classes of vertices | =
{x, Xgyeeny X, ANA O = { ), Yoy ..ox Yo psinwWhich x, ¥, E Eforl <i<n
and x,y, € E iff v,v; is an edge of G. For a graph G = (V, E) and for
XcV put Ne(X)={y€V:xve E for some y € X}. Clearly if G =
(1,0, E) is the double cover of G, X is a set of vertices of G and X C [ is
the corresponding set of inputs in G, then [Nz(X)| = |X U Ng(X)| =|X]
+ |Ng( X) = X|. Hence in order 1o estimate the expansion properties of G
one has to estimate the quantities |[N;(X) — X|.

Let n=m* and let 4, be {0,1,...,m — 1} X {(0,1,..., m — 1}. Define
the following 6 permutations on 4,

dIl(":= )"J ==(x,y—|—2.r), 02{er’}=(-’¢s}’+2x+ I)!
o5(x, y) = (%, + 2x + 2) ag(x, y) = (x + 2y, ),
as(x, y) =(x+2y+1,y), oglx,y)=(x+2p+2y),

where all additions are modulo m.

Let 7, denote the 8-regular graph on the vertex set V A, in which
(x, y) € V¥ isjoined by edges to o,(x, y) (and to o, '(x, ¥)) forr 1.2.4.5.
Let H, denote the 12-regular graph on the vertex set '/ = 4 in which
(x, ¥) € V' is joined by edges to a,(x, y) (and to o, (x, y)) for1 <i < 6.
Let 7, and H, denote the double covers of 7, and H,, respeciively. For any
set A C V put a = |A|/|V]| = |A|/n. As shown in Corollary 2.3 below, the
family 7, has remarkable expansion properties, which will be used later for
constructing efficient s.c.-s. The expansion properties of the family H,, can
be approximated similarly (see Remark 24), but since the best constants
are obtained from T,, we deal here mainly with this family.”

Our main tool for estimating the expansion properties of a graph is the
following theorem. More details on the tight connection betwesn A

defined below, and the expansion properties of a graph G appear in [Al].

THeEOREM 2.1. Let G = (V, E) be a graph with maximal degree p. Let
Q=0;=(4.). .cv be the matrix given by q,, = p(u) for al u€V,
where p(u) is the degree of u, q,, = —1 foru# v, uw € E and q,, = 0 for
u#+ v, uw & E, Let A=\ 20 be the second smallest eigenvalue of Q. If
XC V, W= Ng(X)— X then '

Z-21-2x—a)w—4x(1 —x) 20,
where a = (1 + 2d)/4d. d = A/2p. (2.1)

Proof. Put |V| = n. By Rayleigh’s principle, if f: V' — % is a function
and ¥, .,f(v) =0 (i.e, f is orthogonal to the eigenvector of ( = the
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smallest eigenvalue of Q) then

(Qf.f)= X (flu)=f(0))’ 2A X (o). (22)

wneE E e M

Put Y=V—(XUW).Ilx=0o0ry=0(21)is trivial. Otherwise define
afunctiong: V>R bye(v)=1/xforveE X, p(v)= ~1/yforve Y
and @(v) = ¥((1/x) = (1/y)) for v € W. Define f= @ — b, where b =
(1/n)E, cvo(v) = H(1/x) = 1/y)w. Clearly £, ¢ ,.f(v) = 0 and hence it
satisfies (2.2). ITowever, if wo € E then |f(u) — f(v)] = 3((1/x) + (1/¥)
if |{u, v} N W| =1 and 0 otherwise. Therefore,

) L e FHA - TNE
2

AR RS T H o R PR
Substituting in (2.2) we thus obtain

p-n-w-i—(%+'—}) EAZfz{u]

veEV
Al b]z ( L
= ——=b|lnx+|——=b|n
L X Y .
HESROL
+ l=|l===)—b] nw
le y i
or, since 4\ /p = 84, 3
S b (1 2 11 134 &
w|— +— zm\——ﬂx+ ~|===|-b]|wl|.
< T \ X 2\x y,

Inequality (2.1) follows from the last inequality by simple arithmetic
manipulations. These appéar in Appendix 1. O

1 2
~==b|y+
J

Combining Theorem 2.1 with the results of [JM] we obtain

THEOREM 2.2. Ler X be a set of verticesof T=T,. Pt W = N.(X) — X.
Then

w2 —2(1—-2x—a)w—4x(1 —x) =0, (2.3)
where

a=(1+2d)/4d,d= (8 — 5/2)/16. (2.4)
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Proof. Jimbo and Maruoka [JM] proved that A = A = 8 — 5/2. Clearly
here p = 8. The result now follows from Theorem 2.1. O

Let wy,wy, (w; <w,) be the two roots of (2.3). Clearly (2.3) implies
w 2w, = —4x(1 — x)/w,. Substituting the value of w, we obtain the
following corollary.

COROLLARY 2.3, Let T, X, W, x, w and « be as in Theorem 2.2. Then
w2d4x(1 - x)/(-1+2x+a+ 1/(1 — a)® + 4xa). Thus for x < Lw

> 4x(1 — x)/(a + V1 + a?) and hence T, is an (n, 9, c)-expander, where
c=4/(a + V1 + a*) = 0412,

Remark 2.4, Combining Theorem 2.1 with the results of [JM] (or with
some of the results of [GaGa]), we can obtain similar estimates for the
expansion properties of the graph H, defined above. In particular we can

show that H, is an (n, 13, ¢’)-expander, where ¢’ = 0.466. We omit the
details.

3. BETTER SUPERCONCENTRATORS

Theorem 3 in [GaGa] shows how to construct from a family of linear
expanders of density k& and expansion 2/( p — 1) a family of linear s.c.-s of
density (2k + 3)p + 1. By corollary 2.3, the expansion of fn is = 0412
> 1, which supplies s.c.-s of density (2-9+ 3) -6 + 1) = 127.

The method of Appendix 1 of [GaGa] enables us to improve these
constructions to = 122.74, as shown below. It is worth noting that the
method used by Chung to improve the construction of [GaGa] does not
apply here, since it can work only if the expansion is very close to a number
of the form 2/( p — 1), where p is an integer.

An (n, 0, k) bounded concentrator (b.c.) is a bipartite graph with n
inputs, fn outputs, (3 < # < 1), and kn edges such that for every subset X
of inputs of size at most n/2, IN(X)| = |X|. In [P1] and in [GaGa] it is
shown how to construct linear s.c.-s from a family of b.c.-s. Thus, e.g., our
n-s.c.-s of density 127 mentioned above are constructed from a family of
(n,6/7, k) b.c.-s, which are produced using the expanders f,-, s70e W now
show how to construct from the 7, — s (n, 6, k) b.c.-s with ;< 8 < § and
k = k(8). Let : < f < § be a parameter, to be determined later, with fn a
square integer. We construct a b.c. B = B, from the expander T,, as
follows. The set O of #n outputs of B is the set of outputs of Tj,. The set [
of n inputs of B is S U R, where § is the set of inputs of ']T'ﬂ,, and R is a set
of (1 — #)n additional vertices. The set of edges of B consists of the edges
of Ty, (from § to Q) together with @n edges which connect R to O in a one
to one fashion: the ith vertex of R is joined to the jth vertex of O iff
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i = jmod((1 — #)n). Clearly B has 100n edges. Suppose X C [ satisfies
x=|X|/n<i Put X;=XNR, X;,=XNS, ¥, =NX) x,=|X]|/n
and p, = |Y)|/n (i=1,2). 8 is chosen such that either y, > x or y, = x
(and thus B is a b.c.). Since (6 — 78)n is the number of inputs in R that are
connected to only 5 outputs we have

Sx,, X <6—170
) s =T % =T,

If y, > x we are done. Otherwise y, < x, ie,

[ X
3 il x <5(6—70)
e x+ (6 —178) ;
e i S€C.
- otherwi
Thus
4x
- if x < 5(6 — 70)
*212 1 5x — (6 —70) _
e otherwise.

In the worst case equality holds. For y, > x to hold, a se: of x,n inputs in
T,, must be connected to at least xn outputs, In Appendix 2 we substitute
the various parameters into (2.3) to obtain the best possible (i.e., smallest
possible) # = 085288. In Lemma 8 of [GaGa] it is shown (using the
construction of [P1]) how a sequence of (n, #, k) b.c-s supply n-sc.-s of
density (2k + 1),/(1 — @). In our case k = 106 and the density of the s.c.-s
is (200 + 1)/(1 — 8) = 122.74.

Similarly, if we use H, instead of T,, we obtain s.c-s of density =~ 157.35.

4. WEAKER 5.C.-§

Shamur [Sh| constructed two types of weaker s.c.-s: nonacyclic s.c.-s and
undirected s.c.-s. Here we improve the density of both his constructions
using our expanders.

We first consider nonacyclic s.c.-s. Let G = (¥, E) be a directed graph,
where V is the disjoint union of 3 sets; 7 (inputs), O (outputs) and N. Here
|[I]=|0|=n and |N|= 5n. The set of edges EC (JUN)X (N U Q)
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consists of three parts: (1) The edges of a graph of the form T3, with every
edge taken in both directions on the set of vertices N. The number of these
edges is 5n - 8§ = 40n. (2) A matching of n edges from I to 0. (3) 5n edges
from N to O joined in a one to one fashion (i.e., each vertex of N is joined
to precisely one input and one output). Altogether we have 51n edges. We
proceed 1o show that G is an n-s.c. Otherwise. as is shown in [Sh], Menger’s
Theorem implies that there are 4 € I, B € O, with |4| = |B| £ »/2 and
FC N, |F| <|A|, such that F scparatcs A and B. Without loss of gen-
erality we may assume that the set A’ € N — F of vertices reachable from
A by paths that avoid F satisfies |4'| < |N — F|/2 < 5n/2. (Otherwise
replace A and B.) Let A” = N (A’) N N. Clearly | 4’| > 5|A4| — |F| = 4|4]
We will show that

|A” — A'| = |A] = |F|. (4.1)

This implies that A” — (A" U F) # 0, contradicting the definition of 4,
To prove (4.1) put a =|A|/|N| = |4|/5n 0 <a < 5, x=|A"|/5n (4a <
x < 1yand w=|4"— A'|/5n (w > 0). By Theorem 2.1,

flw)=w?=2(1 -2x-a)w—4x(1 — x) 20,

where « is as in (2.4). We must show that this implies w > a. It is enough to
check that for each permissible values of x, a the value of f(w) for w = &
is at most 0, i.e, that for4a < x < L, ¢? — 2(1 — 2x — a)a — 4x(1 — x)
= 0. It is enough to check this for x = 4q and x — 1 (foreach 0 < a < ).
For x = 4 we have 10 check that @ + 2aaz — 1 < 0. For x = 4a we have
to check that a®>—2(1 — 8a —a)a — 16a(l —4a) <0, ie, a < (18 =
2a)/81. Substituting the value of a from (2.4) it follows that both inequali-
ties hold for 0 < a < . This proves (4.1) and shows that G is an acyclic
s.C., as needed.

By ignoring the direction of edges of G we obtain an undirected n-s.c.
with (8 - 5n/2 + 11n = 31n edges. One can slightly improve these densitics
using the method discussed before for acyclic s.c.-s and obtain nonacyclic
s.c.-s with 49.84n edges and undirected s.c.-s with 30.3n edges. For details

see Appendix 3.

5. OPEN PROBLEMS

(1) Bassalygo [Ba] proved the existence of a family of (acyclic) s.c.-s of
density = 36. One might try to improve our explicit construction and
obtain an explicit family with a similar density.

(2) A very intriguing problem, mentioned in [GaGal, is to find a
purely combinatorial proof that a given explicit family of graphs is a family
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of linear expanders. All the proofs known at present [Ma, GaGa, AMI, JM,
Sc, Bu] are not elementary.

APPENDIX 1

We obtained the inequality
(1) A = B, where

1 12 1 2 2
A——w(—+-— ,B=28d (——b)x+(———b]y
x ¥y x y
rr 1 b)z
(2[x .v) "
b=—(~——)w and x+yp+w=1.
x )
SD:
xboacnl apanedlil (b o o 2 e galk, o 1Y
B(xy}/2d—4(xy}L*y+b(x+y)+4(w 1) T W

=dxy(x +y) + (x = p)wi(x +3) + (x +y)(x - y)'w
= (x j—y}[4xy +(x = pVw(w+ x+ y‘,l]
= (x+ )[4y + (x = )’ = (x +y))]
= (x+p)|(x+y)' = (x=y)(x + )]
= (x+y)(x +2) = (x =)
Substituting into (1) we get
w22d[1=w— (w+2x-1)]
or

! 2
2aw=w(1+-2—‘})21—(w+2x—])

from which (2.1) follows.
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APPENDIX 2
We have
4x
T if x < 5(6 = Tﬁ)
x2=l5x—(6—?ﬁ') _
: otherwise.

Recall (2.1) w? — 2(1 = 28 — a)W - 4%(1 — £) 2 0. (We rename the vari-
ables to avoid confusion with x =|X|/n). In our case £ = x,/6 and
w = x,/0 (since y, > x). To guarantee w > x,/# we must have

(7] -de-23 -5 - {30 (%

We now consider two cases:

Casel. x <5(6—70) and x, = 4x/5 = 4x,.

) < 0. (1)

Substituting into (1) we get (x,/0) — 2(1 — (8x,/6) — &) — 16(1 —
(4x,/8)) < 0 or 81x, < (18 — 2a)f. But x, = x/5 < 6 — 7. So the re-
quired inequality holds if 81(6 — 79) < (18 — 2a)#. Taking B = (18 —
2a) /81, we get 0 = 6/(7 + B) = 0.84465.

Case 2. 5(6 —78) < x <1/2.

In this case, x, = (5x — (6 — 79))/6 and x, = (x + (6,— 78))/6 are sub-
stituted 1ato (1). For a fixed # we get a quadratic in x, and for (1) to held it
must hold for x = 5(6 — 78) and for x = . The former is covered by Case
1 (for 8 > 0.84465) so we need only consider x = 1 and substitute x, =
(6.5 — 78)/6 and x, = (—3.5 + 18)/6 in (1). We obtain 82(77 — Ty) +
0(6.5y — 105) + 0.25 < 0 where y = 16 + 12a, which yields # > 0.85288.
Choosing 6 = 0.85288 guarantees that (1) holds in both cases.

APPENDIX 3

We improve both constructions by taking |N| = tn, with 7 = 121 /(44 -
4a) = 4,884, As a result, (5 — #)n elements of I and O will be connected to
only 4 elements of N. The density of the nonacyclic (undirected) s.c.-s is
10r +1 = 49.84 (61 + 1 = 30.3).

Let A, A’, A” and F be as in Section 4. We chose the smallest ¢ such
that (4.1) still holds (and thus the resulting graph is the corresponding s.c.).
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To prove (4.1) put @ = |A|/|N| = |A|/tn, x = |A"|/tn

=t
3a ifas—l‘-—

(5~1)
e

L g BB db -

4aq otherwise,

and w = |4” — A’|/tn (w = 0). By Theorem 2.2
gx,w)=w?-2(1-2x-a)w—4x(1 -x) 20,

where a is as in (2.4). We show that g(x, a) < 0 (for x in the appropriate
range) and hence w > a (which is (4.1)). Again we have two cases:

Casel. 0<ax<(5—1t)/tand }= x = 3a.

Since g(%, a) < 0, it suffices to check that g(34, a) < 0 or a*> — 2(1 — 6a
— a)a — 12a(l — 3a) < 0 or49a < 14 = 2a. The latter holds for 0 < a <
(5 — 1)/t since it holds for a = (5 — t)/t because 1 > 245/(63 — 2a) =
4.589.

Case2. 5-1)/t<sa<l/ltandi> x> 4da~- (5~ 1)/t

As in Appendix 2 we have only to check the case a =1/2r and x =
4a - (5—=1t)/t=(—3)/t. As in Case 1 we must only verify that
gl(t = 3/t.1/2t) < 0. But we chose (= 121/(44 — 4a) so that
gt —3)/t,1/21) = 0.
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Note added in proof: Very recently, Lubotzky, Phillips, and Sarnak [LPS] constructed, for
every prime p, a family of p = p + l-regular graphs G with A > p — 2y/(0 — 1) , where L
is as in Theorem 2.1, These graphs (choosing p = 5 or p = 7) together with Theorem 2.1, the
construction described in Section 3, and the optimization of Appendix 2 lead to directed,
acyclic superconcentrators of density less than 60. In a recent version of [Sh] (to appear in
Information and Control) these graphs (choosing p = 35) and Theorem 2.1 yield nonacvdic
s.c.-s of density 25 and undirected s.c.-s of density 13.
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