ISRAEL JOURNAL OF MATHEMATICS, Vol. 73, No. 2, 1991

INDEPENDENT SETS IN
REGULAR GRAPHS AND
SUM-FREE SUBSETS OF FINITE GROUPS

BY

NOGA ALONTt
Department of Mathematics
Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

ABSTRACT
It is shown that there exists a function € (k) which tends to 0 as k tends to infinity,
such that any k-regular graph on n vertices contains at most 2(/2+¢(¥)7 indepen-
dent sets. This settles a conjecture of A. Granville and has several applications in
Combinatorial Group Theory.

1. Introduction

All graphs considered here are finite, undirected and simple. For a graph G =
(V,E), let I(G) denote the number of independent sets of G. During the 1988
Number Theory Conference at Banff, A. Granville (private communication from
P. Erdos) conjectured that for any k-regular graph G on n vertices, I(G) <
241724tk where e (k) tends to 0 as & tends to infinity. Note that, since any k-
regular bipartite graph on n vertices contains at least 2"?*! — | independent sets,
this conjecture, if true, is best possible, up to the actual behavior of the best pos-
sible error term e (k).

In the present paper we settle Granville’s conjecture by proving the following.

TuroreM 1.1 For any k-regular graph G on n vertices, I(G) < 2(V2+04:™"n,

The estimate O(k ~°!) can be easily improved, but since it seems that our
method cannot supply the best possible estimate, we do not make any attempts to
optimize our estimates here and throughout the paper. It is also worth noting that

_ our method actually implies that if G is a graph on # vertices with minimum de-
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gree 6 and maximum degree A, then I(G) < 2(1/2+/(5.a0n where f(5,A) tends to
zero when 6 — o, A/§ — 1. To simplify the presentation, we do not prove this
stronger result (whose proof is analogous to that of Theorem 1.1 presented here)
in detail.

By applying Theorem 1.1 to Cayley graphs, one can obtain several applications
in Combinatorial Group Theory. For a finite group G and for a set S € G, we call
a subset A € G S-freeif ASN A = @, i.e., if there are no s € S and a,,a, € A
such that ¢;s = a,. Theorem 1.1 implies the following.

TrEOREM 1.2. Let G be a group of order n and suppose S € G, |S| = k. Then,
the number of S-free subsets of G does not exceed 2172+ nn_

Notice that if G has a subgroup H of index 2 and S C G\ H then all the 22
subsets of the coset G\ H are S-free, showing that the last theorem is essentially
best possible.

A subset A of a finite group G is called sum-free (or product-free) if A-A N
A = J, i.e., if there are no a,,a,,a; € A such that a,a, = a;. As observed by
Granville, Theorem 1.2 implies the following Corollary, which is, again, essentially
best possible for any group containing a subgroup of index 2.

CoroLLARY 1.3. The number of sum-free subsets of any group G of order n is
at most 212N \where o(1) tends to 0 as n tends to infinity.

This result is closely related to some of the problems considered in [C],[CE]. See
also [AK] and [WSW] for some related results.

The proof of Theorem 1.1 relies heavily on probabilistic arguments. In partic-
ular, it contains a somewhat surprising method presented in the next section of ob-
taining an exponentially small upper bound for the probability of a certain event.
This method together with the well-known Kruskal-Katona theorem ([Kr],[Ka]) en-
ables us to prove a variant of Theorem 1.1 for bipartite graphs. The general case
is then deduced, in section 3, by applying the Lovasz Local Lemma [EL]. In sec-
tion 4 we describe the applications in Combinatorial Group Theory. The final sec-
tion 5 contains some concluding remarks and open problems.

2. Almost regular bipartite graphs

In this section, which is the heart of the paper, we prove the following variant
of Theorem 1.1 for bipartite graphs. (From now on, whenever we write g = O( f)
we mean that g < ¢f for some absolute positive constant c).
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THEOREM 2.1. Let G be a bipartite graph on n vertices in which the degree of
each vertex is at least k — k> and at most k + k*3. Then I(G) < 2(1/2+0*k *'yn,

The proof of this theorem is presented in the rest of this section. In the proof
we assume, whenever it is needed, that k is sufficiently large.

Let U and V denote the two vertex-classes of G. Put |U| =1, |V| = m, and as-
sume, without loss of generality, that / < m. Observe that by the assumptions on
the degrees /- (k + k°'®) = m- (k — k*’®) and thus

@2.1) Isms= = (1+0(k%)).

[~

The total number of sets of vertices A satisfying |4 N U| = lk~'? does not
exceed

(2.2) 2" Z ! < pmtiHy (k~Y?) o 9n/2(1+0(k )
i=ic—12 \i J

where here H,(x) = —xlog, x — (1 — x)logs(1 — x) is the binary entropy func-
tion, log, is the logarithm in base 2, and we applied the standard estimates for bi-
nomial distributions (see, e.g., [ES]) to conclude that

Z ! <2IH1(I(‘V2)
i=ik—172 \i

It thus suffices to bound the number of independent sets of vertices containing
at least /k ~'2 members of U. For a subset 4 € U let N(A) denote the set of their
neighbors in V. A is called an s-set if | N(A)| = s. Let I(s,t) denote the number
of s sets of cardinality 7. The total number of independent sets in G is clearly

{ m
ST (s, 1) -2,
1=0 s=0

This is because if A € U is an s-set there are precisely 27 independent sets in G
whose intersection with U is 4. In view of (2.2) it suffices to consider the sets with
at least /k~'/2 vertices in U, i.e., to bound the sum

(2.3) > E I(s1)-205"%
Ik~ Y2<t</ 5=0

Put ¢, = lk~'/? and define I'(s,t) = X5_, I(i,t). Thus I’(s,t) is the number of
subsets of cardinality 7 in U which have at most s neighbors in V.
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CrLam 2.2,
—-1/7
I'(s,t) < (s+ O(tlk )).
(4]

Proor. Since our graph is almost regular, /(s,,) = 0 for, say, s < %to and
hence we may assume s > 34,. (This is because for every subset B of U, |N(B)| =
|Bl(k — k°7%)/(k + k%) = |B|(1 — O(k~®)).) Let us choose an ordered ran-
dom subset A = (vy,v,,-..,v,) of cardinality 7, in U by choosing its elements,
one by one, randomly and independently, where in each step an element of U is
chosen randomly according to a uniform distribution among those members of U
not chosen so far. Let us call the choice of v; a failure if

IN({vi,...,vr',ll)ISS and |N({U],...,U,‘])\N(’Ul,...,U,’_]’))Sk:!/:.

Fact 2.3. For every given fixed choice of vy, ..., v;_;, the conditional prob-
ability p that the choice of v; is a failure is at most s// + ck~'3, for some abso-
lute positive constant c.

Proor. If N({vy,...,v;_1}) > sthen p = 0 and the Fact follows. Otherwise,
there are at least m — s vertices in V\N([v,...,v;_}). For each such vertex u,
the probability that it is a neighbor of the new chosen vertex v; is precisely
dg(u)/(I—i+1)= (k— k*%)/l, where d;(u) is the degree of u in G. It follows
that the expected value of

Y= IN([UI,...,U,‘I)\N({vl,...,vj_ll)l
is at least

=8

(k — k%) > (1 5 -Si) (k — k%8).
Since the random variable Y is never more than k + £°/% it follows that

PK¥ + (1 = p)(k + k%) = (1 - ”—;) (k — k7).

Therefore p < s/1 + O(k '), establishing Fact 2.3. ®
Returning to the proof of Claim 2.2, observe that if for 4 = (v,,,...,,v,) we
have

lN(lUl!!- . -nU,rO])] =5
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then

lN({vlu L uvil)\N(l Vysy o v oy Uiy })] = k2/3
for no more than s/k%? values of i. Thus, the number of failures is at least 7, —
§/k*? =ty — O(tyk ~'/%), where here we used the fact that s < m and 1, = Ik~ 2.
By Fact 2.3, the conditional probability of every failure, given all the previous

choices, is small. Hence, the probability of having at least , — O (¢,k ") failures
is at most

tU 5 lafo{ruk‘l/ﬁ)
2_4 o k—1/3 -
e (O(rok—"ﬁ))(l” )

Since

f

and since, as s// > t,/2] = 1/2k, we have

< (1+O(k~V7))n,

s —O(tok ~1%)
(— + ck“m)
l

the quantity (2.4) is at most

(f +0(k=7)

i o —1/7y \t
1 )“S(s to+ O(lk ))0

!

o (SO t!
to 1o

We have thus proved that the probability that an ordered random subset 4 of
cardinality /, in U has at most s neighbors in V does not exceed

(s+ O(lk“”)) !
ts "

Since there are /(/ — 1)-... - (/ — 1, + 1) possibilities for choosing an ordered
set A of 1, vertices, and since any unordered set of cardinality £, is counted in this
manner #,! times, we conclude that

I(l—=1)-...-(I—ty+ 1) (S+O(”(_V7)) 2 ﬂ)_!_ = (S+O(Ik‘m))
15! Jaa to Y

F(sitg) =
Io

This completes the proof of Claim 2.2. |
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For a family § of #,-sets and for ¢, = t,, the t,-shadow of F, denoted 32 (5F),
is defined by 82 (F) = (B:|B| = t, and B < F for some F € F}. We need the
following well-known result.

PROPOSITION 2.4 (A special case of the Kruskal-Katona theorem; see [Kr],[Ka]).
Ifti = 1, § is a family of t\-sets and |F| = () then |3(%)| = (). u

COROLLARY 2.5. Foreveryt, to<t =</ and for everys, | =s<m,

e O(llc"”))

ds L) s( 3

Proof. Define @ =(A:ACc U, |A| =t and [N(A)| = s}. By Claim 2.2,

s+ O(k™V7)
to -

@l = (

Clearly, for every t = fy, 89(@,) € @,,. The result now follows from Proposi-
tion 2.4. .

We can now complete the proof of Theorem 2.1. By the last Corollary, the sum
given in (2.3) is at most

% (s + O(Ik™7)

k=" 7<t=<l s=0

(s+ O(lk“'”))
t

t S= =V "<t

zm—s,25+ouk—‘”)

IA
M3

0

il

5

= m2mtOUk="7)
/240 (k0!
< 2(172+0¢ UL

where the last inequality follows from inequality (2.1). This completes the proof
of Theorem 2.1. |

3. General regular graphs

In this section we show how to derive Theorem 1.1 from Theorem 2.1. This is
done by applying the Lovasz Local Lemma, proved in [EL] (see also, e.g., [GRS]),
which is the following.

LEMMA 3.1 (The Lovasz Local Lemma [EL]). Let A,,A,,...,A, be events in
a probability space. Suppose that each event A; is mutually independent of all the
other events but at most d and that Pr(A)) = p foralll <=i<n. [fep(d+ 1)<
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1, where e = 2.718. . . is the basis of the natural logarithm, then with positive prob-
ability no event A; holds. B

The following simple corollary is very similar to Lemma 2.4 in [AA].

CoroLLARY 3.2. Every k-regular graph G = (V, E) where, say, k = 100, con-
tains a spanning bipartite subgraph H in which the degree of each vertex is at least
k/2 — 2Vklogk and at most k/2 + 2+vklogk.

Proor. Let f: V— {0,1} be a random function, i.e., a random two-coloring of
V obtained by choosing, for each u € V independently, a color f(u) € {0,1} ac-
cording to a uniform distribution on {0,1}. For each vertex u € ¥V, let A4, be the
event that » has more than k/2 + 2vklog k neighbors having the same color. By
the standard estimates for the probability in the tail of the binomial distribution
(see, e.g., [ES]), it is easy to check that for everyu € V

Prid)y = k>

However, each event A, is mutually independent of all the other events A4,, be-
sides those vertices v that have a common neighbor with u. Since there are at most
k(k — 1) such vertices v, Lemma 3.1 implies that with positive probability no event
A, holds. Put ¥, = f7'(0) and ¥, = f~!(1) and let H be the spanning bipartite
subgraph of G on the classes of vertices ¥ and V; whose edges are all edges of G
joining vertices from distinct classes. Clearly H satisfies the conclusion of Corol-
lary 3.2. ]

Proor oF THEOREM 1.1. Let G be a k-regular graph on n vertices. By Corol-
lary 3.2, if & is sufficiently large G has a spanning bipartite subgraph # in which
the degree of each vertex is at least k/2 — (k/2)*® and at most k/2 + (k/2)%%.
Since any independent set in G is also independent in H, I[(G) = I(H). However,
by Theorem 2.1

I(H) = 2(l/2+0(k_°"))n’
and hence

[( G) < 2(!/2+O(k"0" ))n’

completing the proof. |

4. Combinatorial group theory

Let G be a finite group. As defined in section 1, for a set S € G (which does not
contain the identity of G) and for A € G, A is called S-free if ASN A = &. Re-
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call that the Cayley graph H(G, S) of G with respect to S is the graph whose set
of vertices consists of all elements in G, in which g and g’ are adjacent if and only
if there is an s € S such that gs = g’ or g’s = g. Clearly H(G, S) is /-regular where
I'=|SUS7'|. It is also obvious that every S-free set is an independent set in
H(G,S). Therefore, one can apply Theorem 1.1 to H(G, S) and conclude that the
number of S-free subsets of G is at most

2(172+0(| 5| =096}
’

as asserted in Theorem 1.2. [ ]

To prove Corollary 1.3 we argue as follows. Let G be a group of order n. The
total number of subsets of cardinality at most, say, logn of G is

logn [ =
Z ( i ) i
It thus suffices to bound the number of sum-free subsets of G containing at least
log n elements. Let us order the elements of G arbitrarily. For each sum-free sub-
set A of G containing at least log n elements, let S = S, be the set of the first log n
elements of A, according to our chosen order. Clearly A is an S-free subset of G.
Thus, by Theorem 1.2, for each fixed S there are at most

2017240 ((logm) =% Nn — 9 (1/2+0(1)n

possible choices for A. As there are

()3
logn

possible sets S, it follows that the total number of sum-free subsets in G does not
exceed 2(1/2+e()n Thijs establishes Corollary 1.3. i

Note that the upper bound in Corollary 1.3 holds even if we define a sum-free
set to be any set A such that there are no a,,a,,a; € A satisfying a,a, = a;, where
a, belongs to the first, say, logn elements of A. It is also worth noting that an
easy modification in the last proof yields the following result, which was, in fact,
Granville’s original motivation for raising his conjecture on regular graphs.

ProrosiTiON 4.1. The number of sum-free subsets of the set of integers
(1,2,...,n) (with respect to usual addition) is at most 2("/2+o(hn, &

This result, with a somewhat worse estimate for the error term than the one that
follows from our proof, has recently been proved also by Erdés and Granville,
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and, independently, by N. Calkin [C]. This solves one of the questions raised by
Cameron in [Ca], as it easily implies that the Hausdorff dimension of the set of
all sum-free sets of positive integers is 1. Cameron (see [CE]) conjectured that
in fact the number in the Proposition does not exceed O(2"?). Our method
does not suffice to prove this stronger assertion but it yields the upper bound
272401 eyven if we define a set A to be sum-free if there are no a,,a,,a; € A
with @, + @, = a3, where a, belongs to the smallest f(n) elements of A4, for any
function f(n) that tends to infinity with n.

5. Concluding remarks and open problems

The disjoint union of n/2k complete k-regular bipartite graphs is a k-regular
graph G on n vertices satisfying

](G) = (2k+l il l)n/Zk o 2(1/2+6(I/k))n.

It seems plausible that this graph has the maximum possible number of indepen-
dent sets among all A-regular graphs on n vertices.

The number of sum-free sets in the group G = (Z,)", which has order N =
27, is at least 2MV/2+%(n) — gN/2+0(0eN)  gince for each fixed non-zero vector e =
(€1,-...,€,) € G, any set of vectors whose scalar product (modulo 2) with € is 1 is
sum-free. This shows that the o(#n) term in the exponent in Corollary 1.3 is needed.
It would be interesting to obtain a best possible version of Corollary 1.3.

An extension of Theorem 1.1 to hypergraphs may also be interesting.
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