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Suppose we have n elements from a totally ordered domain, and we are allowed to perform p 
parallel comparisons in each time unit (-- round). In this paper we determine, up to a constant factor, 
the time complexity of several approximation problems in the common parallel comparison tree 
model of Valiant, for all admissible values of n, p and e, where e is an accuracy parameter determining 
the quality of the required approximation. The problems considered include the approximate 
maximum problem, approximate sorting and approximate merging. Our results imply as special 
cases, all the known results about the time complexity for parallel sorting, parallel merging and 
parallel selection of the maximum (in the comparison model), up to a constant factor. We mention 
one very special but representative result concerning the approximate maximum problem; suppose 
we wish to find, among the given n elements, one which belongs to the biggest n/2, where in each 
round we are allowed to ask n binary comparisons. We show that log* n + O(1) rounds are both 
necessary and sufficient in the best algorithm for this problem. 

1. Introduction 

1.1 The model and previous r e s u l t s  

Parallel  compar ison a lgor i thms received a lot of a t ten t ion  during the last  decade. 
The  problems considered include sort ing ([1], [2], [5], [6], [9], [10], [13], [17], [20], 
[22], [24], [25], [26], [27], [30]), merging ([20], [23], [25], [29], [30]), selecting ([1], 
[7], [12], [27], [30]) and approx ima te  sort ing ([1], [5], [8], [14], [16]). The  common  
model  of compu ta t ion  considered in the  parallel compar ison model,  in t roduced by 
Valiant [30], where only compar isons  are counted.  In this model,  dur ing each t ime 
unit  (called a round) a set of b inary  compar isons  is performed.  The  ac tual  set of 
compar isons  asked is chosen according to the results of the compar isons  done in the 
previous rounds.  The  object ive is to solve the prob lem at  hand,  t rying to minimize 
the number  of  compar ison rounds as well as the number  of compar isons  per formed 
in each round.  Note  tha t  this model  ignores the t ime corresponding to deducing 
consequences from compar isons  performed,  as well as communica t ion  and memory  
addressing t ime. However, in some s i tua t ions ,  the compar isons  cost more  than  the 
rest of the a lgor i thm and hence this seems to be the relevant model.  Moreover,  any 
lower bound  here, applies to any compar ison based algori thm. 

Let  n denote  the  number  of elements  we have (from a to ta l ly  ordered domain) ,  
and suppose  we have p parallel  processors,  i.e., we are allowed to  per form p com- 
parisons in each round. The  (worst-case) t ime complexi ty  of the best  determinis t ic  
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algorithm for each of the basic comparison problems is known, up to a constant factor, 
for all admissible values of n and p. For sorting, this time is O(log n~ log(1 +p/n)),  as 
shown in [9], [13], [5] (and as proved in [2] the same bounds hold for the average-case 
complexity, as well). Here, and throughout the paper, the notation g(n) = O(f(n))  
means, as usual, that g(n) = O(f(n))  and f (n)  = O(g(n)). For finding the maxi- 
mum the time complexity is O(n/p + log((logn)/(log(2 + p/n))), as shown in [30], 
and. ,the results of [7] and [12] show that the same bounds hold for general selec- 
tion. Finally, the time complexity for merging two sorted lists of n elements each is 
O(n/p + log((log n)/(log(2 + p/n))), as proved in [30], [20]. 

All the above problems are special cases of the more general corresponding 
approximation problems. In these problems, one is satisfied with an approximate 
solution of the problem at hand. Thus, for example, in approximate sorting we 
wish to know all the order relations between pairs of elements but at most Cn 2, 
where 1/(2n 2) <_ c < 1/4 is a given accuracy parameter (which may depend on n). 
The problem of approximate merging and that  of finding an approximate maximum 
are defined similarly, as described in detail in the next subsection. Notice that 
approximate sorting with r = 1/(2n 2) corresponds to usual sorting, and hence a 
solution to the approximation problem contains the result for sorting as a special 
case, Similarly, each of the other approximation problems is more general than the 
corresponding problem it approximates. 

There are several known results about approximate sorting, most of which deal 
with the minimum number of comparisons p = p(n) that suffices to determine all 
order relations between pairs but at most o(n 2) in one rbund. See [16], [1], [8], [14]. 
The ~problem of finding an approximate maximum also arises naturally in various 
situations, and as we show below can be solved considerably more efficiently than 
that  :of finding the exact maximum. 

1.2 T h e  m a i n  resu l t s  
We determine, up to a constant factor, the time complexity for finding an ap- 

proximate maximum, for approximate sorting and for approximate merging for all 
admissible values of the three parameters n, p and ~. This implies, as a special 
casei all the known results about the time complexity of the corresponding com- 
parison problems. In addition, it reveals certain surprising differences between the 
time complexities of some of the problems and these of their approximation gen- 
eralizations. All our upper bounds are obtained by explicit algorithms that  apply 
several known explicit expanders, and only the constants can be somewhat improved 
by Using random graphs instead of explicit ones. We next state our results in this 
futl generality. The functions appearing in these results are somewhat complicated, 
and/hence it is not easy to see the exact implications of the theorems below. It 
is thus worth mentioning, before the statements of the theorems below, one some- 
what surprising special case which appears in [3] and answers a question raised by 
N. Pippenger and by J. Koml6s. Suppose we wish to find, among our n elements, an 
element which belongs to the biggest n/2, where in each round we allow n compar- 
isons:, We show in [3] that log* n - 4 rounds are necessary and log* n + 2 are sufficient 
for this problem. Here log*n denotes the minimum number k such that, starting 
with ~, k applications of logarithms in base 2 suffice to reach a number smaller than 
or equal to 1. 

We now turn to the general problems. 



PARALLEL COMPARISON ALGORITHMS 99 

1/2, let r(n,p, c) denote the time complexity of the best deterministic comparison 
algorithm that finds, among n elements, an element whose rank belongs to the top cn 
ranks, using p comparisons in each round. The case e = 1/2 corresponds to finding 
an element in the top n /2  ranks and hence the result stated above and proved in [3] 
is: 

P r o p o s i t i o n  1.O. log* n - 4 < r(n, n, 1 / 2 )  _< log* n + 2. 

For e - l / n ,  the problem is that  of finding the exact maximum, and the case 
p = 1 corresponds to serial algorithms. The general case is the following: 

Theorem 1.1. For all admissible n, p, c 

r ( n , p , c ) = O  + log log(2 + p /n  ) + l o g * n - l o g *  

Thus for ~1I n, p <_ 2n, c 

r(n'P'C) = O ( p  + l~176 l + 

and for ali n, p > 2n, E 

( log(l/c) - l og* (p /n ) )  
r(n,p,c) = 0 log log(p/n) + log* n 

For E = 1/n this theorem reduces to Valiant's result about finding the maximum 
[30]. For c = 1/2, p = n this reduces to our Proposition 1.0 (with a somewhat cruder 
estimate). 

( n )  and 1/(2n2) < Next we consider approximate sorting. For n _> 2, 1 _< p _< 2 ' 

c _< 1/4, let a(n, p, c) denote the time complexity of the best deterministic comparison 
algorithm, that uses p comparisons in each round and finds, given n elements, all 
the order relations between pairs but at most en 2. The results of [16], [1], [8], [14] 
deal with the minimum p for which a(n,p,c) = 1 for some e = o(1). Note that  
a precise determination of a(n,p, c) contains all the known results about the time 
complexity of deterministic comparison sorting or approximate sorting algorithms. 
The following result determines a(n, p, ~) up to a constant factor, for all possible n, 
p, c. 

Theorem 1.2. For ai1 admissible n, p, c 

(1 a(n, p, c) = O \log(1 + p/n) + log* n - log* 

Thus, for p < 2n, 

a(n ,p , e )=  o ( n l ~  log*n) ,  
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and for p > 2n, 

a(n,p,e) = O(l~ (P)) 
\log(p/n) + log* n - log* n " 

For e = 1/(2n 2) this theorem corresponds to sorting, and gives the known 

O(log n/log(1 + p/n)) 

bound (which is O((nlog n)/p) for p < 2n and is O(logn/log(p/n))  for p > 2n), (see 

[9], [13], [5]). Notice that for p = n and for any e _> 1/2 l~ a(n,n,r = O(log* n). 
By Theorem 1.1, ft(log* n) rounds are required (with p = n) even if we wish to find 
one element known to be greater than n/2 others. By the last equality, O(log* n) 
rounds are already sufficient to get almost all the order relations between pairs. 

Finally, we consider the problem of approximate merging. In this case the results 
and the methods are simpler, (the function log* does not appear in the statement 
of the result), and are similar to the methods of [30], [20]. For n, 1 <_ p < n 2 and 
1/n 2 < e < 1/2, let m(n,p,e) denote the time complexity of the best comparison 
merging algorithm, that uses p comparisons in each round and finds, given 2 sorted 
lists, each of size n, all the order relation between pairs but at most en 2. 

The results of [30], [20] deal with full merging, i.e. the case r < 1/n 2. The 
following theorem determines m(n,p, e), up to a constant factor, for all admissible 
n, p, e. 

Theorem 1.3. For all admissible n, p and l ln  < e < 1/2 

0 ( 1  . log 1/r m(n, p, e) = \Ep + log  iog(2 + r 

Thus for p _< 2/e, m(n,p, e) = O(1/(cp) + log log l /e)  and for p > 2/e, 

{ .  log 1/r 
= o t,,og lo-7-77- ) �9 

For the case ~ < 1/n, the bounds are the same as for e = 1/n (up to a constant 
factor), which are the same bounds as for exact merging: 

log n ~. 

1.3 Consequences of  the results 

As already mentioned, Theorems 1.1, 1.2 and 1.3 include, as special cases, all 
the known results for the time complexities of deterministic parallel comparison 
algorithms for sorting, merging and finding the maximum, up to a constant factor. 
However, it seems that the most interesting consequence of these theorems is the fact 
that some of the approximation problems can be solved much more efficiently than 
their precise versions. This corresponds to the log* terms that  appear in the results 
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for the approximation problems. To be specific, consider, for example, the special 
case considered in Proposition 1.0. This corresponds to the approximate maximum 
problem, i.e., the problem of finding, among n elements, an element whose rank 
belongs to the top n/2 ranks, using n comparisons in each round. It is trivial to 
show that  in the serial comparison model this problem requires n/2 comparisons: 
only a constant factor better than the problem of finding the exact maximum. It is 
therefore rather surprising that  with n comparisons in each round this problem can 
be solved much faster than that of finding the exact maximum in the same conditions. 
As shown in Proposition 1.0, log* n + O(1) rounds are both necessary and sufficient 
for finding an approximate maximum among n elements, using n comparisons in 
each round. This is considerably faster than the best algorithm for finding the 
exact maximum with n comparisons in each round, whmh requires, as shown in [30], 
log log n +  e(1) rounds. Moreover, as shown in Theorem 1.1, O(log* n) rounds suffice 

to find an element in the top n/221~ ranks, i.e., a rather good approximation for 
the maximum (and, in fact, by Theorem 1.2 that many rounds suffice for finding good 
approximation for any other rank). In several cases, the parallel comparison model 
seems to be the relevant model. An example is the test of consumer preferences 
among n items (see [28]). If we wish to find the best choice of a consumer (with n 
comparisons in each round) log log n + e(1) rounds are required. On the other hand, 
if we are satisfied with the more modest choice of an almost best candidate (say, 
finding an item in the top n/l, 000,000 ones), log*n + O(1) rounds suffice (and are 
also necessary). As our algorithm for the upper bound can be described explicitly, 
such a choice can actually be done in such a small number of rounds. 

We say that a parallel algorithm achieves optimal speed up if the product of 
its running time by the number of processors it uses is equal, up to a constant 
factor, to the running time of the best serial algorithm for the same problem. I.e., if 
T(n). p(n) -- O(Seq(n)), where p(n) is the number of processors, T(n) and Seq(n) 
are the running times of the parallel algorithm and the best serial one, respectively, 
and n is the size of the input. It is easy to see that  if T~(n) > T(n) and there 
is an optimal speed up algorithm with running time T(n), then there is also an 
optimal speed up algorithm for the same problem with running time Tl(n). The 
parallelism break point of a problem is the minimum T(n) so that there is an optimal 
speed up algorithm with running time T(n). A considerable amount of effort in the 
study of parallel algorithms is done in attempts of trying to identify the break points 
of various algorithmic problems. The break point for sorting n elements (in the 
comparison model) is O(log n), as follows from the results of [9], [5], [13]. The break 
point of merging two lists of size n is O(loglogn), (see [20], [25]), and the break 
point for selection is also O(log log n), (see [30], [7], [12]). Theorems 1.1, 1.2 and 
1.3 supply the break points of each of the approximation problems considered here. 
Notice that  as the accuracy parameter e varies so does the corresponding problem 
and its break point. Consequently, we obtain the previously known break points 
(and, in particular, for the extreme values of E, we obtain the previously known 
break points for the non-approximation problems, mentioned above). As a special 
case let us note that Theorem 1.1 shows that O(log* n) is the parallelism break point 
of the approximate maximum problem, i.e., of the problem of finding an element 
among the top n/2 ones. 
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The rest of this paper is organized as follows: Section 2 includes the proofs of the 
lower bounds in all the theorems. In Section 3 the corresponding upper bounds are 
proved. Section 4 contains some concluding remarks and results about approximate 
selection, where the exact complexity is still open. The proofs of Sections 2 and 3 are 
quite lengthy and complicated. They combine certain probabilistic arguments and 
results from Extremal Graph Theory, with various properties of random graphs (or 
explicit expanders) and several known results about selecting and sorting in rounds. 

2. T h e  Lower  B o u n d s  

In this section we prove the lower bounds for all the problems, i.e., for finding 
the approximate maximum, for approximate sorting and at the end for approximate 
merging. We split the proofs into several theorems and lemmas. 

We start (2.1-2.5) with a crucial special case for the approximate maximum 
problem; p > n and c = 1/2. Define a = p /n .  We show that  in this case 
log* n - log* a - O(1) rounds are needed. The proof here is a modified version of 
the one given in our previous paper [3], which considers the case p = n and ~ = 1/2. 
Afterwards we complete the proof of the lower bound by combining the proof for this 
case with a modification of Valiant's lower bound (2.6) and the serial lower bound 
for the maximum problem. Next we consider approximate sorting, prove a serial 
lower bound (2.7), a lower bound that deals with algorithms that end after k rounds 
(2.8) and complete the proof by combining these bounds (2.9) with the approximate 
maximum bounds. Finally we deal with approximate merging. We prove a serial 
lower bound (2.10) and a lower bound for p > 4/r (2.11) and combine them to get 
the desired lower bound. 

The case p = n and r -- 1/2 of the approximate maximum problem is considered 
in [3]. The proof of the lower bound for the case p > n is very similar, but contains 
several additional complications and is presented below. As usual we define, for 

a > 1 and k > 0, a (k) by a (0) = 1 and a ( k )  : a a(k-1) for k _ 1 and put 

log*n = min{k : 2 (k) > n}. We also define for a, a > 1 and k > 1 a (k,a) by 

a (1,a) = aa  and a (k,a) -- a a(k-l'a) for k _> 2. 
There is an obvious, useful correspondence that associates each round of any 

comparison algorithm in the parallel comparison model with a graph whose set of 
vertices is the set of elements we have. The (undirected) edges of this graph are just 
the pairs compared during the round. The answer to each comparison corresponds to 
orienting the corresponding edge from the larger element to the smaller. Thus in each 
round we get an acyclic orientation of the corresponding graph, and the transitive 
closure of the union of the r oriented graphs obtained until round r represents the 
set of all pairs of elements whose relative order is known at the end of round r. 

It is convenient to establish the lower bound by considering the following (full 
information) game, called the orientation game;  and played by two players, the 
graphs player and the order player. Let V be a fixed set of n vertices. The game 
consists of rounds. In the first round the graphs player presents an undirected graph 
G1 on V with at most a n  edges and the order player chooses an acyclic orientation 
H 1 of G1, and shows it to the graphs player, thus ending the first round. In the 
second round the graphs player chooses again, an undirected graph G2 with at most 
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an  edges on V, and the order player gives it an acyclic or ienta t ion/ /2 ,  consistent 
with H1 (i.e., the union of H1 and //2 is also acyclic), which he presents to the 
graphs player. The game continues in the same manner; in round i the graphs player 
chooses an undirected graph G i with at most an edges on V, and the order player 
gives it an acyclic orientation Hi, such that the union H1 U . . .  U Hi is also acyclic. 
The game ends when, after, say, round r, there is a vertex v in V whose outdegree 
in the transitive closure of H1 U. . .  t3 Hr is at least n/2. The objective of the graphs 
player is to end the game as early as possible, and that of the order player is to end 
it as late as possible. The following fact states the (obvious) connection between the 
orientation game and approximate maximum problem. 

Proposition 2.1. The graphs player can end the orientation game in r rounds i f  emd 
only i f  there is a comparison algorithm that finds an approximate maximum among n 
elements (i.e., an element whose rank is in the top n /2  ranks), using an  comparisons 
in each round, in r rounds. | 

In view of the last proposition, a proof of existence of a strategy for the order 
player that enables him to avoid ending the orientation game in r rounds implies 
that  r + 1 is a lower bound for the time complexity of the approximate maximum 
problem. 

The next proposition is our main tool for establishing the existence of such a 
strategy for r - log* n - log* a - 5. 

Proposition 2.2. There exists a strategy for the order player to maintain, for every 
d >_ 1, the following property P(d) of the directed acyclic graph constructed during 
the game. 

Property P(d): Let H(d) = H1 U . . .  U H d be the union of the oriented graphs 
constructed in the first d rounds. Then there is a subset VO C_ V of size at most 

n n n 
Jv01 < ~ + ~ + . . .  + 2~+--- ~ 

and a proper D = 2048(d,a)-vertex-coloring of the induced subgraph of H(d) on 
V - VO with color classes V1, V2, . . . ,  VD (some of which may be empty), such 
that for each i > j > 1 and each v E Pi, v has at most 2 i - j - 2  neighbors in Vj. 
Furthermore; for every i > j > 0 any edge of H ( d) that joins a member of Vi to a 
member of V 3. is directed from V i to Vj. 

Proof. We apply induction on d. For d = 1, the graph G1 = (V, E l )  constructed by 
the graphs player has at most na  edges. Let VOO be the set of all vertices in V whose 
degree is at least 32a. Clearly 

(2.1) IVool < n/16 

Put  U = V - Voo and let K be the induced subgraph of G1 on U. As the maximum 
degree in K is less than 32a, K has, by a standard, easy result from extremal graph 
theory (see, e.g., [15, pp.222]) a proper vertex - -  coloring by 32a colors and hence, 
certainly, a proper vertex coloring by 2048a colors. Let U1, U2, . . . ,  U2048a be the 
color classes. For every vertex u of K,  let N(u)  denote the set of all its neighbors in 
K.  For a permutation r of 1, 2, . . . ,  2048a and any vertex u of K define the r-degree 
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i - 1  

d(~r, u) of u as follows: let i satisfy u E U~(i) then d(Tr, u) = ~ IN(u)M UTr(j)l/2 i - j .  
j=l 

We claim that  the expected value of d(Tr, u) over all permutations ~r of {1 , . . . ,  2048a}, 
is at most 32/2048 = 1/64. Indeed, for a random permutation 7r the probability 
that a fixed neighbor v of u contributes 1/2 r to d(Tr, u) is at most 1/(2048a) for 
every fixed r > 0. Hence, each neighbor contributes to this expected value at most 
1/(2048a) ~ 1/2 r = 1/(2048a) and the desired result follows, since IY(u)l < 32a. 

r > 0  

Consider now the sum ~ d(~r, u). The expected value of this sum (over all 1r's) 
uEU 

is at most IUI/64, by the preceding paragraph. Hence, there is a fixed permutation 
a such that ~ d(a,u) < IUI/64. Put  V01 = {u E U I d(a,u) > 1/4}. Clearly 

uEU 

IVol[ < 4. [Ul/64 <_ Id[/16 < n/16. 

Define V0 = V00 U V01 , W -= U - W01 : V - W 0 .  The last inequality together with 
inequality (2.1) gives 

IVol _< n/8. 
Let F be the induced subgraph of G1 on W and define ~ = Ua(i) R W (1 < i < 
2048a). The V/'s clearly form a proper vertex coloring of F. Also, for every i, 
1 < i < 2048a and every v E V/ 

i-1 
IN(v) n V l/2 < 1/4 

j=l 

and hence v has at most 2 i - j - 2  neighbors in Vj for each j ,  1 <_ j < i. Let HI be any 
acyclic orientation of G1 in which all edges that  join a member of V/ to  a member of '  
Vj, where i > j _> 1, are directed from V/to Vj (the edges inside V0 can be directed in 
an arbitrary acyclic manner). Clearly H(1) = H1 satisfies the property P(1). Thus, 
the order player can orient G 1 according to H 1. This completes the proof of the case 
d = l .  

Continuing the induction, we now assume that  H(r) has property P(r) for all 
r < d, and prove that the order player can always guarantee that  H(d) will have 
property P(d). We start by proving the following simple lemma. 

Lemma 2.3. Let F be a directed acyclic graph with a proper g-vertex coloring with 
color classes W1, W2, . . . ,  Wg. Suppose that for each g >_ i > j >_ 1 and each v E Wi, 
v has at most 2 i - j -2  neighbors in Wj, and that every edge of F whose ends are in 
Wi and Wj for some i > j is directed from Wi to Wj. Then the outdegree of every 
vertex of F in the transitive closure of F is smaller than 49. 

Proof. Let v be an arbitrary vertex of F.  The outdegree of v in the transitive closure 
of F is obviously smaller than or equal to the total number of directed paths in F 
that  start from v. Suppose v E Wi. Each such directed path must be of the from v, 
vi2, vi3, . . . ,  vi~, where i > i2 > i3 > . . .  > ir ~ 1, vi2 E Wi2, . . . ,  vi r E Wir. There 
a r e 2  i-1 possibilities for choosing i2, i3, . . . ,  it. Also, as each vertex of the path 
is a neighbor of the previous one, there are at most i-i2--2 possible choices for vi2, 
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2 i2-i3-2 possible choice for vi3 (for each fixed choice of vi2), etc. Hence, the total 
number of paths is at most 2 i-1 �9 2 i - i2-2  �9 2 i2-i3-2 . . . . -  2 i r - l - i r - 2  < 2 g . 2i-ir < 4 g. 
This completes the proof of the lemma. | 

Returning to the proof of Proposition 2.2, recall that d > 2 and that by the 
induction hypothesis H ( d -  1) has property P ( d -  1). Thus, there is a subset V 0 c_ V 
satisfying 

n n n 
(2.2) Iv01 _< + + . - - +  2d+i 

and a proper D = 2048(d-l'~)-vertex-coloring of the induced subgraph of H(d  - 1) 
on V - V0 with color classes V1, V2, . . . ,  VD satisfying the conditions of property 
P(d  - 1). Put  U = V - V0, let F be the induced subgraph of H(d - 1) on U and 
let T = (U, E(T) )  be the transitive closure of F.  Let Gd = (V, Ed) be the graph 
constructed by the graphs player in round number d. Let V00 be the set of all vertices 
in U whose degree in G d is at least a �9 2 d+4 �9 4 D and define 

V00 = V00 U {u E U : 3v E V00 with (v,u) ~ E ( T ) } .  

Since G d has at most na  edges, IVool < n a / ( a 2  d+3. 4/)). Also, by Lemma 2.3, the 
outdegree of each v E VOO in T is at most 4 D - 1. Hence 

(2.3) IV001 ~ n~ 2d+3. 

Let G be the induced subgraph of G d on U - V00. Then the maximum degree in G is 

smaller than a .  2 d+4. 4 D. For each i, 1 < i < D, let ~ denote the induced subgraph 

of G on (U - V00) ;3 t~. As each ~ is a subgraph of G, it has a proper vertex coloring 

with c~2 d+4 �9 4/) colors. For each i, 1 < i < D, fix a proper ni-vertex-coloring of 
with color classes UNi+I, UNi+2, . . . ,  UNi+n~ (some of which may be empty) where 

i-1 
Ni = ~ nj and 

j= l  

(2.4) 
D 

100.22d+7 �9 16Da for each 1 < i < D and ~ ni = 2048 D > ni I 

i----1 

(Notice that  since D = 2048 (d-l,a),  d > 2, (~ < D < 2 D there is such a choice for 
the ni's). For every vertex u of G, let N(u)  denote the set of all its neighbors in G. 

Let us call a permutation ~r of 1, 2, 3, . . . ,  ~?=1 ni legal if it maps each set of the 
form (Ni  + 1 , . . . ,  Ni + ni} into itself (and only permutes the elements inside these 
sets among themselves). For any vertex u of G and any legal permutation r ,  define 
the ~r - degree d(~r, u) as follows; let k satisfy u E UTr(k ), then 

k-1 
d(Tr, u) = Z IN(u) n U=(j)I/2 k - j .  

j= l  
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D 
We claim that the expected value of d(Tr, u) over all YI hi! legal permutations, is at 

i=1 
most IN(u) l /minl<i<o ni < 1/(100.24+3"4D). Indeed, consider a fixed neighbor v of 

u. If v belongs, like u, to the same graph ~k,  then the probability that  for a random 
legal permutation 7r, v will contribute 1/2 r to d(Tr, u) is at most 1/nk, for each fixed 
r > 0. Otherwise, it is easy to check that this probability is even smaller. Hence, 
each neighbor contributes to this expected value at most (~ r>0  1 /2r ) /nk  = 1/nk, 
and the claim follows. 

Consider now the sum ~ d(:r, u), where u ranges over all vertices of G. The 
expected value of this sum (over all permutations 7r) is at most IV(G]/(100 �9 24+3 �9 
4 D) < n/(100 �9 24+3 �9 4D). Hence, there is a fixed legal permutation a such that 
~'~uEV('G) d(a, u) < n/(100.2  d+3. 40). Define V01 -- {u E V(G) : d(a, u) > 1/100} 

and V01 = Y o l U { u  E V(G) : 3v E Y01 with (v,u) E E(T)}. Clearly IYoll _< 
n/(24+3 �9 4 D) and hence, by Lemma 2.3, 

(2.5) IVoll <_ n/2 d+3. 

Put Vd = V0 u V00 U V01, W = V - V 0. By (2.2), (2.3) and (2.5) 

n n n 
IVdl _< g + + . . .  + 24+2" 

Let G be the induced subgraph of G on W and define V i' = Ua(i) M W (1 <_ 

i < 2048 D -- 2048(d,a)). The sets V" clearly form a proper vertex coloring of G. 
Moreover, as each U k is an independent set in H ( d -  1), the sets V/' actually form a 

proper vertex coloring of H(d - 1 ) ,  as well. Moreover, for every i, 1 < i < 2048 (d,a) 
every v E V" satisfies 

i-1 
Z IN(v) n  '1/2 < 1/100, 
j=l 

where N(v) is the set of all neighbors of v in G. Thus, for each fixed j ,  1 < j < i, v 
has at most 2 i - j /100 neighbors in l~'. Let H 4 be any acyclic orientation of the edges 

of G d obtained by orienting all the edges that join a member of V/' and a member of 
Vj', where i > j > 0, from V/' to ~ ' .  The edges inside Vd are oriented in an arbitrary 
acyclic order consistent with the order given on H ( d -  1). Notice that all the edges of 
H ( d -  1) that do not lie inside Vd are also oriented from V" to 1~' with i > j _> 0. In 
order to show that  H(d) = H ( d -  1) U H d has the property P(d), it remains to check 
that  for every i > j >_ 1; every v E V" has at most 2 i - j - 2  neighbors in l~ I. By the 

construction, v has at most 2i-J/lO0 neighbors in Vj' in the new graph H d. Recall 

that each V/' is a subset of one of the sets V k corresponding to the graph H(d - 1). 
Suppose V/' c_ Vk, Vj' C V I. Then k > I. If l = k or 1 -- k -  1 then, since v has at 

most [2k-/-2J = 0 neighbors in V/ in the graph H(d - 1), it follows that  in H(d) v 
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has at most 2i-J/lO0 <_ 2 i - j -2  neighbors in I~ t, as needed. If I _< k - 2, observe that 
our construction implies that 

( i - j ) > ( k - l - 1 )  min n i > ( k - l - 1 ) ' l O 0 " 2 2 d + 7 . 1 6  D > ( k - l ) . 1 0 0 _ > 2 0 0 .  
I<i<D 

Thus, in this case the total number of neighbors of v in I~ ~ is at most 2i-~/100 + 

2 k- t-2 <__ 2i-J/lO0 + 2(i-J)~ 100 <_ 2i-J -2. 
We conclude that the order player can orient Gd according to H d, and maintain 

the property P(d) of the graph H(d) = H ( d -  1) U H d. This completes the induction 
and the proof of Proposition 2.2. | 

The result stated in Theorem 2.5 below, is an easy consequence of Proposition 
2.2. and the following simple lemma. 

Theorem 2.4. For every d > 1, 2 (d+a+l~ a) > 32. 2048 (d'a). 

Proof. We apply induction on d. For d = 1 the inequality is trivial as 2 (4+l~ a) _> 
2(4)-(1og* a) _> 216.a = 32.2048 (1,a). Assuming it holds for d--l, we prove it for d > 2. By 

assumption 2 (d+2+l~ a) _> 32 �9 2048 (d-l,a). Hence 2 (d+3+l~ a) _ 22 (d+2+l~ a) _> 
232"2048(d-l'a) = (221. 211) 2048(d-l'a) = (221) 2048(a-1'~) �9 (2048) 2048(a-l'a) > 32 .  

(2048)(d,c~). | 

Theorem 2.5. The order player can avoid ending the orientation game during the 
first log*n - log*a - 5 rounds. Hence, by Proposition 2.1, the time required for 
finding an approximate maximum among n dements using an comparisons in each 
round is at least log* n - log* a - 4. 

Proof. Clearly we may assume that log*n - log*a - 5 _> 0. By Proposition 
2.2, the order player can maintain the property P(d) for each of the graphs H(d) 
constructed during the algorithm. Notice that .by Lemma 2.3, the outdegree of 
every vertex in the transitive closure of a graph that satisfies P(d) is at most 
4 9 + n / 8 + n / 1 6 + . . . + n / ( 2  d+2) < 4 9 +n /4 ,  where D = 2048 (d,a). It thus 

follows that if 42048(r'a) _< n/4 then the graphs player can keep playing for at least 
r + 1 rounds. Therefore, by Lemma 2.4, the assertion of the theorem will follow if for 

r = log* n - log* a - 5 the inequality 42(r+3+l~ a)/32 < n/4 holds. Since for r > 0 

4 �9 42(r+a+l~ c~)/32 2(r+4+log* a) < this follows immediately from the definition of 
log* n. | 

Forp>_2n, r ( n , p , e ) = f ~ ( l o g ~ ) .  Lemma 2.6. 

Proof. The proof is an easy modification of Valiant's proof for the maximum problem 
(see [30]). 

If the algorithm consists of s rounds and m denotes the number of candidates 
for the maximum after these s rounds, the adversary can ensure that m / ( m  + 2p) > 
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(n/(n + 2p)) 2". 
clearly m < en, therefore, since p > 2n 

s>logl~ (logp/m~ (log(Pln)+log(lle)) 
- log n+2~mp - fl log ~ / = fl log Iog(p/n) 

n 

( log 1/~) 
>__ ~ log l o g p / n ]  

(This follows easily from ~kir~n's Theorem, as shown in [30]). But 

Proof of the lower bound of Theorem 1.1. 
Clearly at least (1 - e)n >_ n/2 comparisons are needed, even in the serial case, 

to conclude that  an element belongs to the top en ones. Hence r(n,p, ~) >_ n/(2p) = 
log 1/c ~ 

f~(n/p), for every p >_ 1. A lower bound of f~ log logp/n] for p > 2n follows from 

Lemma 2.6 and the bound f~(loglog I / e )  for p < 2n is the lower bound from that  
lemma even for p = 2n. 

The f~(log* n - log*(1 + p/n)) term follows from Theorem 2.5 for p > n (even 
for e = 1/2). For p < n we simply take the bound of Theorem 2.5 for p = n and 

= 1/2. ] 

Theorem 2.7. Any serial algorithm that  finds a11 but at most en 2 of the order 
relations between n dements  (1/n 2 < ~ < 1/4) needs at  least f l (nlog(1/c))  rounds. 

Proof. The proof is by a simple counting argument.  For, say, ~ > 1/100 the assertion 
is trivial (since at least one element is known to be in the top 0.8n ones)�9 We thus 
assume c < 1/100�9 First, we estimate the number of orders that  fit one given output  
of the algorithm. 

If we have all the order relations but  en 2 of them, then there are at least n/2 
elements whose relative order to all but 2en elements is known. Hence, the number 
of orders consistent with these relations is at most 

C) �9 

Therefore the number of distinct outputs  of the algorithm is at least 

_ 07): ( 1 
n! n/2 > -- " ~ ! ( 2 e n  ) (2en)n/2 - (2en)n/2 \@-~e~) 

Hence the number of rounds needed is at least 

log \4----ee] -- 7 log ~ = f l (nlog(1/e))  li 

Define c(k, n, m) to be the total  number of comparisons needed to sort n elements 

inkroundsuptoatmostmunknownorderrelationsbetweenpairs, O < m < ( 2  ) . 
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rtl+l/k ) 
Theorem 2.8. For all possible n, m and k >_ 1, c(k, n, m) > k d(1 + m) 1/(2k) - n 

where d = 16v~. 

Proof. By induction. We leave the base of the induction to the end. 
The inductive assumption: Given k, n, i f k  I = k and n t < n, or k f < k and 

n I _< n then for every m t 

c(k"n"m' )  > k' ( n'l+l/k' ) 
d(1 + rn~)l/(2k') - nl 

Take any k-round algorithm for sorting a set V of n elements. The first round of 
the algorithm consists of some set E of comparisons. As usual look at them as edges 
in the graph G = (V, E). An independent set is maximal if it is not a proper subset 
of another independent set. Consider the graph of the first round of comparisons. 
Let S be a maximal independent set in this graph and denote x = ISI. Each of 
the n - x elements of S must share an edge with an element of S, otherwise S is 
not maximal. For our lower bound, we restrict our attention to linear orders on 
V, in which each element of S is greater than each element of S. For any of these 
orders it is impossible to obtain any information regarding the relation between two 
elements of S or two elements of S using comparisons between an elements of S 
and an element of S. Therefore, aside from these n - x comparisons, there must 
be at least c(k - 1, x, ml )  comparisons to almost sort S and at least c(k, n . -  x, m2) 
comparisons to S, where ml ,  m2 _> 0 are integers satisfying rn 1 + m2 _< m. This 
implies the following recursive inequality: 

c(k,n,m) >_ c ( k , n -  x, ml) + n -  x + c ( k -  1,x, m2) 

where m 1 + m2 ~ m. 
By the inductive assumption: 

c(k,n,m) > k ~ d ~  - (n  - x) -~n-x}+{k-1) x 

By opening parentheses and permuting terms we get 

k ( n -  x) l+l/k k -  1 x l+l/(k-l) 
c(k,n,m) > ~ d ( l + m l )  1/(2k) + 7 (1+m2) i / (2 (k - l ) )  + n -  k n =  

k 1+1/k [ ( l - - a )  l+l /k  ( 1 )  al+l/(k-1) 'nl/(k(k-1)) 1 d 
- d  n "~- i-- (l+rn2)1/(2(k_1)) +~.r~l/----- ~ - -kn  

where a = x/n.  
Recall the geometric mean inequality: 3b + "~c _> b~c ~ where 3 + 7 = 1, ~, % b, 

c _> 0. Applying it we conclude: 

k nl+l/k [ (1 -- a)  1+1/k a .  n 1/k2 d l/k 
c(k, n,m) > ~ ~- (1 + m2)l/(2k) "nX/k2 - kn. 



II0 N. ALON, Y. AZAR 

Since 1+ < e < d , d  1 / k > l + l / k , t h e n :  

k nl+l/k r ( 1 _  c~) l+l /k  
c(k,n,m) > a + 

~ ( 1 + 1 / k )  
(1+m2)1/(2k) 

- k n .  

But ml  + m2 _< m so ml  <_ m and m2 _< m. Hence 

k nlq_l/k [ (1 - o~) lq-1/k 
> a + 

+ 1/k) 
(l+m)l/(2k) 

- k n .  

Recall Bernoulli's inequality: (1 - a )  t >_ 1 - at for t >_ 1, a < 1. This implies 

~g 7~lq_i/k [i_--~(1 kl/k) 0~(1 "~- l/]g) I Ion -~ 
c(k, •, m) > ~ [ (1 +m) 1/(2k) q- (1 q- m) 1/(2k) 

k nl+l/k ( nl+l/k ) 
- -  k n =  k - n  . 

d (1 + re)l~(2k) d(1 + m)l/(2k) 

This completes the proof of the inductive step. 
The inductive proof must stop at one of the following base cases: 

a) n -- 1, k >__ 1 (and necessarily, m = 0). 

( ) In this case k d(1 + re)l/(2k) - n < 0 and the theorem holds trivially. 

b) k = l , m _ <  ( ~ ) .  We have to prove that c(l,n,m) > n2/(d~/l+m) - n ,  orin 

other words: an algorithm that uses p = n2/(d~/1 + m) - n comparisons in one 
round leaves more than m unknown relation (in the worst case). This is proved 
using the methods for sorting in one round (see [16] and also [1]). From the 
graph representing the comparisons omit a set VO consisting of the n/2 vertices 
of the highest degree. The remaining part contains at least n/2 vertices and the 
highest degree is smaller than 4p/n <_ 4n/(d~/1 + m) - 1. The remaining graph 
can be partitioned into t <_ 4n/(dlx/]--~--m) color classes 1/1, . . . ,  Vt, IV/I = xi, 
i=  l , . . . , t .  
We restrict the order to the case that an element from 1// is greater than an 

elements of Vj iff i > j .  By convexity of the function z 2, the number of the unknown 
relations if at least 

>t 2 =2  2t ~ - - 1  = 4  ~ - 1  =-~ -- 1 . 
i=l 

Thus, it is enough to prove that  

) 4 + m  1 > m .  
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One can easily check that  it suffices to prove the last inequality for m = ( 2 )  . For 

this case we have to show that 

o r  

but 

This completes the proof of the theorem. 

n n ( n - l i  1 > n ( n - 1 )  

d l n 2  - n + 2  
8 2 > 2 n - 1  

d v / n 2 - n + 2  ~ - ~ x /  d ( n - 1 / 2 )  = 2 n -  I. "2 = n2 - n + 2 > ~--~ 

log(1/r 
Coronary 2.9. (J) p > 2n = \ log(p/n) ] '  

(ii) forp<_2n a ( n , p , r  ~-~ j .  

( hI+Ilk ) 
Proof. (i) Using the last theorem pk >_ k d(1 + m )  1/(2k) - n 

nl/k 

d(1 + m)l/(2k) " 
Hence for m = cn 2 

so 1 + p/n >_ 

(1/2) log0/ ) - o(1) 
a(n,p,~) > k > log(1 +p/n) 

(log0/ )) 
= fl \log(p/n) ] ' 

which proves (i). 
(ii) Is a trivial consequence of 2.7. 

Proof of the lower bound of theorem 1.2. 
Immediate from the last corollary and Theorem 2.5. | 

Lemm-2.10.  m(n,p,~) = ~ ( 1 )  fore > l/n.  

Proof. It suffices to prove a serial lower bound of f}(1/c). Clearly we may assume, 
say e < 1/10. Parti t ion each of the two sorted lists A and B into t = [n/mJ blocks 
of size at least m = [4en] consecutive elements each. Denote these blocks by Ai, 
Bi, i = 1 , . . . ,  t. We restrict ourselves to orders such that each elements of A i U Bi is 
smaller than each element of Aj tA Bj if i < j .  Therefore, if less than t/2 = ~(1/E) 
comparisons were made, then there are at least t /2  pairs of Ai, Bi each that  no 
comparisons were made between any element of Ai to any element of Bi and we have 
no information about their order relations. Therefore, the number of unknown order 
relations between elements is at least (t /2) �9 m 2 > n/(4m) . m 2 = nm/4 > r as 
needed. | 
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( log 1/e~ 
Lemma 2.11. m(n,p,c) = f~ log lo-~-~j  forp >_ 4/e, e >_ 1/n. 

Proof. The proof is similar to that of [20]. Let a = p/n.  Define n (0) = m, p(0) = p, 

n(k+l) = i n(k) [ ,  p(k) = a . 8  k .n (k ) .  We prove the following proposition by / 
induction. 

Proposition. For k < (1/2)log log___.p_p, after k rounds it is possible that there are 
61ogr 

from the/~rst list and Bi consists of n (k) elements of the second list, such that each 
elements of  A i U B i is smaller than each element of Aj  U Bj  iff i < j ,  and aJl the 
merged order s of Ai and Bi are possible. 

For k = 0 the proposition is trivially true. Assume it is true for k, we prove it 
for k + 1. Let E be the set of comparisons made at the k + 1 round. There are at 
least t(k) /2 pairs (Ai ,Bi)  such that no more than IEil = 2p/t  (k) < 2p. 8kn(k) /n  = 
2a �9 8 k �9 n(k) <_ 2 �9 p(k) comparisons were made between them. We divide each 

such pair of lists into kn(k+l ) j subsets of pairs of size at least n (k+l) each. Note 

that kn(k+l)j _> [8 p ~ ( 1 - ~ ) ]  > 6 [ x / ~ ] - l .  Denote t h e m a s  Aij,  Bij ,  

j = 1,...  ,6V p ~ ]  - 1. Let Ei,r, s be the set of comparisons between Air and Bis 

3[ pv'p-~l ~ 3r v'-7~1-1 
and Eli = U Ei,r,r+ l 0 < ~ < 3 [ ~ p ( e ) ] - l .  Clearly ~ IEitl < IEil <_ 

r=l ~=0 
2p(k) I p  

2. p(k), therefore there exists an ~ such that IEitl <_ <_ (2/3) (k). We 
3 [Ip(  k)] 

restrict ourselves to orders such that any element of Ai, r (A Bi,r+ s is smaller than 

3r pv,'-y~l 
Ai,s U Bi,s+ t if r < s (1 < r, s < 3[~/p(~)]). But El, ~ = U Ei,r,r+~, therefore, 

r=l 
/ _ . _ . _ _ _  

there are at least 2[k/p( k)] different values of r such that there is no information 

between Ai,r and Bi,r+ t. Thus there are (t(k)/2) �9 2 �9 [ p ~ ]  sets of pairs of size 

n (k+l). But 

_ = ~ / ~ - ( ~ >  t(k) > 8 ~ ( k ) ~  s -~  s 8k+ln(k+l) 
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and because the left hand side is an integer we really have at least t(k+l) sets as 
needed to complete the proof of the proposition. 

We complete the proof using the previous proposition. 
pl/2 k 
- - .  For k -  0 i t  is clear. Assume it for k, we First, we prove that n (k) > 8k " 

prove it for k + 1 

n (k) V~n(k) pl/2 k+l pl /2  k+l 
n(k+l) > - -  -- _ _  > 

- 8. L (k )  8v~-a .8  k - 8 av/J--~.S k .  v ~ a . 8  k 8 k+ l  . a  
V e 

Next we note that unless t(k)(n(k)) 2 < en 2 the algorithm cannot stop, because the 
order relations between the pairs are unknown. But 

cn 2 > t(k)(n(k)) 2 > n___n___ 
_ _ 8kn(k) 

means 

o r  

SO 

n . n(k) >_ n 
. ( n ( k ) )  2 = ~ 8 -~ '  - -  

pl /2  k n2pl/2 k 

8 k �9 a p .  2 6k 

1 
2- ~ logp _< log(ep) + 6k 

logp _< 2k(6k + log(ep)) _< 2 k. 6k- log(ep) < 6- 4 k log(ep) 

1 log p 
k > ~ log 

- 6 log Ep 
This completes tile proof. 

1 log log 1/e 
-> 2 6 log ep 

, log 1 / ~  ,og ) 

Proof  of  the lower bound of  Theorem 1.3. 
Assume, first, that  1/2 > s > 1/n.  For p > 4/e this follows from Lemma 2.11. 

For p < 4/s  it follows from Lemma 2.10 and the lower bound in lemma 2.11 for 
p = 4/~. If e < 1 /n  there is nothing to prove because even the lower bound for 
e = 1In  suffices. | 

3. T h e  U p p e r  B o u n d s  

In this section we prove the upper bounds in the theorems appearing in section 
1. The section is organized as follows; we start with the rather easy proof of the 
upper bound for approximate merging. Then we consider a stronger definition Of 
approximate sorting and establish some basic lemmas. This enables us to prove 
the upper bound for approximate sorting for the case p > 2n (3.1-3.6). Next, we 
obtain the bound for p < n~ log*n and for n / l o g * n  < p _< 2n (3.7-3.8) and hence 
complete the proof of the upper bound for approximate sorting. Finally approximate 
maximum is considered. A modification of (3.6) supplies the upper bound for p > 2n 
(3.9), which is then used to obtain the bound for p < 2n (3.10). 

Remark. Throughout this section, we assume whenever it is needed, that n is 
sufficiently large. 
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Proof  of the upper bound in Theorem 1.3. 
Assume first that  e >_ 4/n. Take t = [4/eJ elements from each list such that 

the difference between the ranks of consecutive elements in each list is at most en/3 
and each list contains a member in the top en/3 and the bot tom en/3 elements 
of the corresponding set. Now merge these lists using Valiaut's algorithm [30] (see 

) also [25]). This costs O + lOg log(2 + p / t  ) = 0 7-(~ + lOg log(2 + ep~ I . 

can easily check that  the total number of unknown relations left between pairs of 
elements is at most (2t + 1) (en/3) 2 <<_ en 2 as needed. 

For e <_ 4In we simply perform a full merging. This completes the proof. | 

We next discuss the upper bound for approximate sorting. First, notice that  for 
e _< 100/n we can simply apply full sorting which costs O( log n~ log O + p/n))  time 
(see [9], [13], [5]), as needed. Hence, we may assume that e >_ 100/n. For e > 1/100 
we apply the same algorithm as for e = 1/100. It thus suffices to consider the case 
100/n < e < 1/100. It is convenient to introduce the following stronger definition of 
approximate sorting: 

Definition. An e-approximate sorting of the list N of cardinality IN[ = n is a 
sequence of elements of N : {x i : i = 1 , . . . ,  El/e J} such that there are sets Sx i and 
B x  i satisfying [Sxil > en(i - 1/5) - 1, IBxil >>_ n - en(i + 1/5) - 1 and xi is known 
to be  bigger than each member of Sxi and smaller than each member of Bxi.  In 
particular, e n ( i - 1 / 5 )  < rg(x i )  < en(i + 1/5) where rN(y ) is the rank of the element 
y in the list N. Define x0 = -oc ,  x[1/ej+ 1 = +o0, Ni = {y [ y is not known to be 

< xi or > X/+l}, i = 0 , . . . ,  [1/eJ. Clearly, if we have an e-approximate-sorting of 
N, then INil <_ (7/5)en + 1 for each i and hence the total number of unknown order 
relations is at most: 

i=0 

~-~en + __ + -J  + < en 2 10 

Hence, an c-approximate sorting supplies all order relations but at most en 2. Recall 
that  an e-approximate maximum is an element x such that rN(x) _> (1 -- e)n, i.e., 
an x and a subset S C N such that x is known to be bigger than each element of S 
and IS[ _> (1 - e ) n .  

Lerama 3.1. [27]: For every m and a, there is a graph with m vertices and at most 
(2ra 2 l ogm) /a  edges in which any two disjoint sets of a + 1 vertices are joined by an 
edge. | 

Lemma 3.2. [27]: If  m elements are compared according to the edges of a graph in 
which any two disjoint sets of a + 1 vertices are joined by an edge, then for every 
rank all but at most 6a logm + a dements from the ones with a sma//er rank will 
be known to be too small to have that rank. A symmetric statement holds/'or the 
dements with a bigger rank. | 
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Proposition 3.3. Assume we have rn elements and p = 2m 2 log m/a.  Then one can 
find in one round (using p comparisons) a 35(a/m) log m-approximate sorting and a 
(7a/m) log rn approximate maximum. 

Proof. Compare the elements according to the edges of the graph supplied by Lemma 
3.1. For each admissible i, let A i be the set of all elements y whose ranks r(y) in the 
sorted list satisfy em (i - 1/5) < r(y) < e m  (i + 1/5), where e = 35(a/rn)logm. By 
applying Lemma 3.2 twice, we conclude (since IAiI > 2. (6a(log rn + 1)), that at least 
one element xi E Ai is known to satisfy em (i - 1/5) < r(xi) < em (i + 1/5). Taking 
Sxi, Bxi  to be the sets of all elements known to be smaller (bigger, respectively) 
than xi, we obtain the desired approximate sorting. The result for the maximum is 
similar. | 

Proposition 3.4. Suppose we have a set N partitioned into rn pairwise disjoint sets Ni 
where IN[ = n, and each n i = [Nil is either [n/rn] or [n/mJ. Suppose, further, that 
for each Ni we have an e-approximate sorting. I.e., for i = 1 , . . . ,  rn, j = 1 , . . . ,  L1/e], 
n i e ( i - 1 / 5 )  <_ rNi(X}) <_ nie( i  + l /5) .  Put  x~ = -co,  X~l/e]+ 1 = +c~. Let 

[ l /el 
x -- U U. x~, IXI = t <_ m / ~  and  ~ s u m e  we have a 5-approximate-sorting 

i j : z  

for X ,  i.e., t5 (i - 1/5 ) < rx(Yi)  <_ t6 (i + 1/5) i = 1 , . . . ,  L1/5], then we have an 
e + 66 + 6rn/n approximate-sorting for N.  

Proof. Let S~ = {minj  [ x} is known to be _> Yk}. By the definition of a 6- 
m 

approximate sorting rx(Yk)  is known to satisfy rX(Yk) <_ ~ Sik < th(k + 1/5). 
i = 1  

Similarly, rN(yk) is known to satisfy 

m 

i = 1  

1 ( n ) ( ~ ) r n  
e . ~ . n + e  r n + l  5 k +  ~ - =  

- ~ - + ~ n  1 +  n k +  . 

Therefore (since k <_ 1/5) 

rN(yk) - hnk ~ n - - +  k +  <_ 
n 

n + - -  1 +  _<n + . 
n 

In the same way one can prove that 

5nk - rN(Yk) < n - -  + . 

From the elements Yk it is easy to find a subset forming a 5 

e + 65 + 6(rn/n) approximate sorting (for the whole set N). 

e + 5 6rn)  5 + - -~- -  + -g-~ = 
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Lemrna 3.5. Assume we have n elements, partitioned into m <_ n~ log6n padrwise 
disjoint sets of size ni = Ln/mJ or In~m] each. Suppose that in each set we have 

14 
an e-approximate-sorting, where e _> (n /m) l /3 .  Then one can find in one round 

using n processors an e-approximate sorting of the total list of n elements where 
c < e + c where c = 66. 

e I = e + (n/m)l /3  _ log 2 n '  

Proof. Let X be the union of all the representing elements from all the sets, put 
[2m 2 log n] 2l 2 log/ 2(m/e) 2 log n 

I Z l = l < m / e .  D e f i n e a =  | ~2-~ | .  Clearly ~ < 
- a - 2m 2 logn/(~2n) = n. 

Therefore we can use Proposition 3.3 to find a &approximate-sorting for the set X 
where 

2m 2 log n~ (e2n) �9 log n 140 log 2 n 
35(a//) logl  < 35 2. m/e  < e(n /m)  " 

However, log 2 n < (n /m)  1/3 and ( l /e)  < (n /m) l /3 .  Therefore 
- - 1 4  

<_ 140(n/m) 1/3 (n /m)  1/3 _ 10 

(n/m) 14 ( n / m ) l l  3 " 

By Proposition 3.4 one can find an el-approximate-sorting for 

60 6 c c 
e t = e +  + - -  < ~ +  < e + ~ .  l 

(him)l~3 (n /m)  (n/m)1~ 3 - log 2 n 

( log( l /e )  ) 
Theorem :1.6. F o r p  >_ 2n, a(n,p,e) = O~, Ioga + l o g * n - l o g * o r  where a = 

p/n. 

Proof. For each 1/4 > e > 1 /a  l~ n-log*a we simply apply the algorithm described 

below for e = 1 /a  l~ n-log* a, whose running time is O(log* n -  log* a). Thus we 
can restrict ourselves to the case 

/ '  1 1~ log*n-log* ~ 100 
m i n ~ , l / a  a )  > e > --n 

Let N be the given set of elements. We can assume that n is large enough (at 
each stage of the algorithm), otherwise exact sorting is done in a constant time. We 
consider two possible cases. 

2c n 
Case 1. e < Partition N into m = sets each of size ni = Ln/mJ 

-- log 2 n" c7L(1/e)6J 

or [n/m]. m < n n c 7 (l~ n/(2c)) 6 < ~ ,  and c 7 ( l /e)  6 < In~m] < 2c 7 ( l /e)  6. 

Assign to each set of cardinality hi, nic~ processors. Sort each of the sets using the 
algorithm in [5] (which is an acceleration of the AKS sorting network having Pi > ni 

( log(l/e) 6 ~ ( log( I /e )  
processors). The complexity of this sorting is O \ log(p i /n i )J  = 0 \ ~ ] .  
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c 
Take f rom each set an ( n / m ) l / 3  approx ima te  sorting. Then  use L e m m a  3.5 to 

2c approx ima te  sort ing in one more  round. But  2c < 2ce 2 
g e t  ( n / m ) l / 3  ( n / m ) i / 3  -- c - ~  < e as 

needed. 
2c 

Case 2. e > - -  Par t i t ion  N i n t o m  = In / l og  6 n j  sets of s i z e n i  = [n /mJ  or 
log 2 n" 

Fn/ml each. For each such set assign ni �9 a processors. At each set, recursively, find 

c approx ima te  sort ing e > and use the previous 
an e log 2 n log 2 n ( n / m )  1/3 

l e m m a  with one more  round and only n processors to finish. 
To complete  the proof  it suffices to establish the following facts; 

(1) The  a lgor i thm can be at  case 2 no more than  O(log* n - log* ~) before it arrives 
to case 1 with e I, p t  n ~ (at each set) a = g / n  I. 

(2) e = O(e ~) and therefore the complexi ty  of the second case with the pa rame te r  e ! 
equals up to a constant  factor to tha t  for e. 

k c 
We first establish (2). I t  is clear tha t  e < e I + ~ , where n i is the 

- -  i= l  log 2 ni 
sequence of the sizes of the sets of the different i terations.  By  the  condit ion of 

c c 
- -  < (1/2) therefore c By the definition of ni, l~ 2 ni case 2 e t > l~ 2nk log 2ni+1 

k c e! 1 
e < e ' +  E i : l  ~ -< 1 + ~7 < 3e', i.e., e = O(et).  

= 

Next  we prove (1). 
Let  ni be the max imal  set of elements  af ter  i i terat ion at  case 2. Therefore,  

n i < 21og6ni_ l  where no = n. We prove, by induct ion on i, t ha t  n i < (8log (i) n) 6. 
Indeed,  for i = 0 this is tr ivial  and assuming it for i we have 

ni+l <_ 21og6ni _< 21og6(81og (i) n) 6 _< 2[6(3 + log (i+1) n)] 6 < (8log (i+1) n) 6 , 

as needed (in the last inequali ty we use the fact tha t  n i is still not  small).  
Therefore  s ta r t ing  f rom n elements,  case 2 continues at  most  as long as e / _> 

2c 2c 2c 
But  e > e ~ > ~ > - -  or n k > (2c/e) .  By  the last claim this can 

log 2n  k - _ log2n  k - nk 

h a p p e n  a t  mos t  l o g * n -  log*(1/e)  + O(1) t imes. But  1/e  > s l~ n - log*a  > a and 
therefore log* n - log*(1/e)  + O(1) < log* n - log* a + O(1) as needed. | 

a ( n , p , e )  = 0 ( n l ~  Lemm~ 3.7. For each admissible e and  each p < log* n '  

Proof .  First ,  note  t ha t  by the upper  bound  for p _> 2n, (Theorem 3.6), for p = n, 
O(log 1/e + log* n) rounds suffice. The  a lgor i thm for p <_ n / l o g * n  consists of 
i terations.  We prove by induct ion t ha t  af ter  the  k ' t h  i tera t ion there  are 2 k sets 
Ni,  i = 1 , . . .  ,2 k ( U N  i = N )  such tha t  ~t i = INil < qk .  n for all i where q = 7/8, 
and  each element  of N i is smaller  t han  each element of N j  iff i < j .  For k = 0, 
there  is noth ing  to prove. Assuming the  above for k, we prove it for k + 1. Define 
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a = niP. Assign to Ni, Pi = processors,. Parti t ion Ni into Pi sets each 
of size at most [(ni/pi)] and using one processor~for each such set find its median 
using the serial algorithm in O (ni/pi) = O((~) rounds. If Pi > 1, then for the set Pi 
of the Pi medians, we. find a ~-approximate sorting with the Pi processors assigned 
to this set for ~ = 1/4 in O(log 1/77 + log* Pi) --- O(log* n) rounds. In this way we 

1 2 obtain for each i, an element x i such that  [~PiJ < rpi(xi) <- [~PiJ and therefore 

I~nil < rNi(Xi)< I~nil. (In case Pi = l w e  obviously have such an element.) We 
/ / / / 

next compare that  element to all the other n i - 1 elements in N i in O Pi 

rounds and split the set Ni into 2 sets N2i_l, N2i of size < ~n i each, such that  each 
element of Y2i_ 1 is smaller than each element of N2i. This completes the iteration 

in O((~ + log*n + cz) = O(~) rounds (cz > log* n). Put  k = log(8/e) After the 
- 1 o s ( 8 / 7 ) "  

kth iteration ni <_ ~n, so it is easy to find L1/e] representing elements Yi, such 

t h a t e ( i - � 8 9  n < r N ( Y i ) < e ( i + ~ ) n  (i = 1 , . . . ,  1) and the complexity of the 

algorithms is O(c~log l / e )  = O (p  log l / e ) ,  as needed. 
% 

| 

n < < 2n, Lemma 3.8. For each admissible e and ~ _ p _ 

a(n,p,~) = o ( n l ~  + log* n)  . 

Proof. If e < 1/2 l~ then we simply simulate each round of the algorithm 

of 2n processors by O ( p )  rounds with p processors. The time complexity is 

O(p( log l / e+log*n) )  = O ( p l o g l / e ) a s  needed. Thus we are left with the case 

e > 1/2 l~ n. Split the n elements in m = [cp/24] sets of size In~m] or [n/m] each. 
For each such set we assign p/m processors and find an el-approximate sorting where 

4 [ ~ ]  < elements. e I = �88 in an algorithm which we describe below. This gives ~ �9 _ p 
Since we have p processors we can, in O(log* n) rounds, find an e ' -approximate sort- 
ing for these elements with e~l _ 1 - ~ .  From this one can apply Lemma 3.4 to 

produce a 5-approximate sorting for the original set of elements, where 

E 6 6m e 6e 6ep 
5 _< ~ + 16 �9 21~ *n + n - 4 1-6 2-'~n - <  - + + < e 

as needed. It remains to explain the algorithm for n'  = i n ]  <_ 4 8 p .  1 p, = ~ ,  
gl ~. 

n / i I fp  I < lo--o~-~#, we are done (by Lemma 3.7)in 0 ( ~  log(lie')) = 0 (~ log(l/e)), 
as needed. Thus we may assume pl >_ ~ and hence e I = � 8 8  = �88 < 

log* n ~ < 1/2log * n ~. But for e I < 1/2 l~ n~ 6.  n~ we are done again as in the beginning 

of the proof, by simulation of the algorithm with n I processors by pl ones, in time 

O ( ~ ( l o g ( l l # ) + l o g * n ' ) )  = O ( p l o g ( 1 / e ) ) .  This completes the proof. | 
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Proof of the upper bound of Theorem 1.2. 
Immediate from Lemmas 3.6, 3.7, 3.8. | 

We conclude this section by considering the approximate maximum problem. 
(See also [3] for a more detailed account of a special case). 

Theorem 3.9. For each e and p >_ 2n 

r ( n , p , e ) = O  log logc~ + l o g * n -  log*c~ , 

where ~ = p / n .  

Proof. For each 1/2 >_ e ~_ 1/a  21~176 we simply apply the algorithm for 

e = 1/a  21~ n--log*c~ described below. Therefore, we can restrict ourselves to the 

case 1/2 21~ n-log* a ::> e ~> 1 The proof is very similar to that of the upper bound 5" 
for approximate sorting and differs only in the following facts: 

First we have an easy proposition that  asserts that  given a set N partitioned 
into m almost equal sets and given an e-approximate m a x i m u m  in each set and 
a 6-approximate maximum of these m representatives then we have an e + ~ + m 
approximate maximum in the whole set. Next, an analog of Lemma 3.5 obtained by 
replacing the word "sorting" by "maximum" can be prqved (and in fact a stronger 
estimate holds). 

The rest of the proof for p >_ 2n is analogous to that of Theorem 3.6. The 
only essential change is the replacement of the AKS sorting network by Valiant's 
algorithm for the maximum problem ([30]). | 

It remains to establish the upper bound for p _< 2n. 

Lemma3.1O. For p <_ 2n and all admissible e, r ( n , p , e ) = O  + l o g l o g ~  + log*n  . 

Proof. First we observe that  the upper bounds for p _> 2n gives that  for p _> n, 
O(log log 1/e § log* n) rounds su~ce. 

Assuming we have p _< n processors, partition the n dements into p sets, each 
of size at most [n/p]. In each set find the maximum using one processor in at most 
n_ rounds. Then from the p maximum elements we find an element in the top ep 
P 
elements in O(log log 1/e+log* p) = O(log log 1/e+log* n) rounds. (This can be done 

Tt by the observation above.) Clearly, this element is in the top ep .  -~ = en  elements 

is t us o +  og og + lo , 
] % 

a s  needed. The 

Proof of the upper bound of Theorem 1.1. 
This is a simple consequence of 3.9 and 3.10. | 

We have thus completed the proofs of Theorems 1.1-1.3. As already mentioned, 
Proposition 1.0 (proved in [3]) is a special case of Theorem 1.1, with a somewhat 
better estimate. Its detailed proof appears in [3]. Note that  the lower bound in this 
Proposition is a special case of Theorem 3.5. 
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4. C o n c l u d i n g  R e m a r k s  and Open P r o b l e m s  

We have determined the exact behavior, up to a constant factor, of three of the 
main comparison problems; sorting, merging and selecting the maximum, even when 
we just want to have an e-approximation for them. There is a fourth important 
comparison problem which is the general selection. We can define an ~-approximate 
selection for the rank/3n, 1 < /3 < 1, ~n < e < �89 as finding an element x in the 
set g whose rank is known tosat~sfy n(/3 -~ ~) -~ rN(x ) < n(/3 + c). Approximate 
maximum is thus the case where/3 = 1. Approximate median is the case/3 -- 1/2. It 
is known that  the algorithms for selection are harder than the algorithms for finding 
the maximum. However the complexity of parallel selection in the comparison models 

for every n and p is the same as for the maximum and is: O (p  + log log(2§176 } 

(see [7], [27], [121). 
The exact complexity of approximate parallel selection is not known. Our lower 

bound for approximate maximum holds, of course, for approximate selection as well. 
On the other hand the upper bound for ~-approximate sorting gives an upper bound 
for approximate selection. In fact, our methods enable us to prove a slightly better 
upper bound that  gives, for example, for p = n the following upper bound. 

1 ' log* n - log* 1/c + 2 + log* n )  
0 (log log /e-log(1-~g , n - -  ~'oog ~-~/e ~ 2) 

Note that this is really a better bound than the one for approximate sorting. In fact 
it is not more than log* n~ log log* n times the approximate maximum lower bound. 
It is interesting to find the exact complexity of approximate selection and to decide 
whether it is more than the complexity for approximate maximum. 
Acknowledgement. We would like to thank N. Pippenger for bringing some of the 
problems considered in this paper to our attention. 
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