
r
Akad~mial Kiad5 - Springer-Verlag

COMBINATORICA 11 (2) (1991) 97-122

PARALLEL COMPARISON ALGORITHMS FOR APPROXIMATION
PROBLEMS

N. ALON* and Y. A Z A R

Received August 22, 1988

Suppose we have n elements from a totally ordered domain, and we are allowed to perform p
parallel comparisons in each time unit (-- round). In this paper we determine, up to a constant factor,
the time complexity of several approximation problems in the common parallel comparison tree
model of Valiant, for all admissible values of n, p and e, where e is an accuracy parameter determining
the quality of the required approximation. The problems considered include the approximate
maximum problem, approximate sorting and approximate merging. Our results imply as special
cases, all the known results about the time complexity for parallel sorting, parallel merging and
parallel selection of the maximum (in the comparison model), up to a constant factor. We mention
one very special but representative result concerning the approximate maximum problem; suppose
we wish to find, among the given n elements, one which belongs to the biggest n/2, where in each
round we are allowed to ask n binary comparisons. We show that log* n + O(1) rounds are both
necessary and sufficient in the best algorithm for this problem.

1. Introduction

1.1 The model and previous r e s u l t s

Parallel compar ison a lgor i thms received a lot of a t ten t ion during the last decade.
The problems considered include sort ing ([1], [2], [5], [6], [9], [10], [13], [17], [20],
[22], [24], [25], [26], [27], [30]), merging ([20], [23], [25], [29], [30]), selecting ([1],
[7], [12], [27], [30]) and approx ima te sort ing ([1], [5], [8], [14], [16]). The common
model of compu ta t ion considered in the parallel compar ison model, in t roduced by
Valiant [30], where only compar isons are counted. In this model, dur ing each t ime
unit (called a round) a set of b inary compar isons is performed. The ac tual set of
compar isons asked is chosen according to the results of the compar isons done in the
previous rounds. The object ive is to solve the prob lem at hand, t rying to minimize
the number of compar ison rounds as well as the number of compar isons per formed
in each round. Note tha t this model ignores the t ime corresponding to deducing
consequences from compar isons performed, as well as communica t ion and memory
addressing t ime. However, in some s i tua t ions , the compar isons cost more than the
rest of the a lgor i thm and hence this seems to be the relevant model. Moreover, any
lower bound here, applies to any compar ison based algori thm.

Let n denote the number of elements we have (from a to ta l ly ordered domain) ,
and suppose we have p parallel processors, i.e., we are allowed to per form p com-
parisons in each round. The (worst-case) t ime complexi ty of the best determinis t ic

AMS subject classification (1980): 68 E 05
*Research supported in part by Allon Fellowship, by a Bat Sheva de Rothschild grant and by

the Fund for Basic Research administered by the Israel Academy of Sciences.

98 N. ALON, Y. AZAR

algorithm for each of the basic comparison problems is known, up to a constant factor,
for all admissible values of n and p. For sorting, this time is O(log n~ log(1 +p/n)), as
shown in [9], [13], [5] (and as proved in [2] the same bounds hold for the average-case
complexity, as well). Here, and throughout the paper, the notation g(n) = O(f(n))
means, as usual, that g(n) = O(f(n)) and f (n) = O(g(n)). For finding the maxi-
mum the time complexity is O(n/p + log((logn)/(log(2 + p/n))), as shown in [30],
and. ,the results of [7] and [12] show that the same bounds hold for general selec-
tion. Finally, the time complexity for merging two sorted lists of n elements each is
O(n/p + log((log n)/(log(2 + p/n))), as proved in [30], [20].

All the above problems are special cases of the more general corresponding
approximation problems. In these problems, one is satisfied with an approximate
solution of the problem at hand. Thus, for example, in approximate sorting we
wish to know all the order relations between pairs of elements but at most Cn 2,
where 1/(2n 2) <_ c < 1/4 is a given accuracy parameter (which may depend on n).
The problem of approximate merging and that of finding an approximate maximum
are defined similarly, as described in detail in the next subsection. Notice that
approximate sorting with r = 1/(2n 2) corresponds to usual sorting, and hence a
solution to the approximation problem contains the result for sorting as a special
case, Similarly, each of the other approximation problems is more general than the
corresponding problem it approximates.

There are several known results about approximate sorting, most of which deal
with the minimum number of comparisons p = p(n) that suffices to determine all
order relations between pairs but at most o(n 2) in one rbund. See [16], [1], [8], [14].
The ~problem of finding an approximate maximum also arises naturally in various
situations, and as we show below can be solved considerably more efficiently than
that :of finding the exact maximum.

1.2 T h e m a i n resu l t s
We determine, up to a constant factor, the time complexity for finding an ap-

proximate maximum, for approximate sorting and for approximate merging for all
admissible values of the three parameters n, p and ~. This implies, as a special
casei all the known results about the time complexity of the corresponding com-
parison problems. In addition, it reveals certain surprising differences between the
time complexities of some of the problems and these of their approximation gen-
eralizations. All our upper bounds are obtained by explicit algorithms that apply
several known explicit expanders, and only the constants can be somewhat improved
by Using random graphs instead of explicit ones. We next state our results in this
futl generality. The functions appearing in these results are somewhat complicated,
and/hence it is not easy to see the exact implications of the theorems below. It
is thus worth mentioning, before the statements of the theorems below, one some-
what surprising special case which appears in [3] and answers a question raised by
N. Pippenger and by J. Koml6s. Suppose we wish to find, among our n elements, an
element which belongs to the biggest n/2, where in each round we allow n compar-
isons:, We show in [3] that log* n - 4 rounds are necessary and log* n + 2 are sufficient
for this problem. Here log*n denotes the minimum number k such that, starting
with ~, k applications of logarithms in base 2 suffice to reach a number smaller than
or equal to 1.

We now turn to the general problems.

PARALLEL COMPARISON ALGORITHMS 99

1/2, let r(n,p, c) denote the time complexity of the best deterministic comparison
algorithm that finds, among n elements, an element whose rank belongs to the top cn
ranks, using p comparisons in each round. The case e = 1/2 corresponds to finding
an element in the top n /2 ranks and hence the result stated above and proved in [3]
is:

P r o p o s i t i o n 1.O. log* n - 4 < r(n, n, 1 / 2) _< log* n + 2.

For e - l / n , the problem is that of finding the exact maximum, and the case
p = 1 corresponds to serial algorithms. The general case is the following:

Theorem 1.1. For all admissible n, p, c

r (n , p , c) = O + log log(2 + p /n) + l o g * n - l o g *

Thus for ~1I n, p <_ 2n, c

r(n'P'C) = O (p + l~176 l +

and for ali n, p > 2n, E

(log(l/c) - l og* (p /n))
r(n,p,c) = 0 log log(p/n) + log* n

For E = 1/n this theorem reduces to Valiant's result about finding the maximum
[30]. For c = 1/2, p = n this reduces to our Proposition 1.0 (with a somewhat cruder
estimate).

(n) and 1/(2n2) < Next we consider approximate sorting. For n _> 2, 1 _< p _< 2 '

c _< 1/4, let a(n, p, c) denote the time complexity of the best deterministic comparison
algorithm, that uses p comparisons in each round and finds, given n elements, all
the order relations between pairs but at most en 2. The results of [16], [1], [8], [14]
deal with the minimum p for which a(n,p,c) = 1 for some e = o(1). Note that
a precise determination of a(n,p, c) contains all the known results about the time
complexity of deterministic comparison sorting or approximate sorting algorithms.
The following result determines a(n, p, ~) up to a constant factor, for all possible n,
p, c.

Theorem 1.2. For ai1 admissible n, p, c

(1 a(n, p, c) = O \log(1 + p/n) + log* n - log*

Thus, for p < 2n,

a(n ,p , e)= o (n l ~ log*n) ,

100 N. ALON, Y, AZAR

and for p > 2n,

a(n,p,e) = O(l~ (P))
\log(p/n) + log* n - log* n "

For e = 1/(2n 2) this theorem corresponds to sorting, and gives the known

O(log n/log(1 + p/n))

bound (which is O((nlog n)/p) for p < 2n and is O(logn/log(p/n)) for p > 2n), (see

[9], [13], [5]). Notice that for p = n and for any e _> 1/2 l~ a(n,n,r = O(log* n).
By Theorem 1.1, ft(log* n) rounds are required (with p = n) even if we wish to find
one element known to be greater than n/2 others. By the last equality, O(log* n)
rounds are already sufficient to get almost all the order relations between pairs.

Finally, we consider the problem of approximate merging. In this case the results
and the methods are simpler, (the function log* does not appear in the statement
of the result), and are similar to the methods of [30], [20]. For n, 1 <_ p < n 2 and
1/n 2 < e < 1/2, let m(n,p,e) denote the time complexity of the best comparison
merging algorithm, that uses p comparisons in each round and finds, given 2 sorted
lists, each of size n, all the order relation between pairs but at most en 2.

The results of [30], [20] deal with full merging, i.e. the case r < 1/n 2. The
following theorem determines m(n,p, e), up to a constant factor, for all admissible
n, p, e.

Theorem 1.3. For all admissible n, p and l ln < e < 1/2

0 (1 . log 1/r m(n, p, e) = \Ep + log iog(2 + r

Thus for p _< 2/e, m(n,p, e) = O(1/(cp) + log log l /e) and for p > 2/e,

{ . log 1/r
= o t,,og lo-7-77-) �9

For the case ~ < 1/n, the bounds are the same as for e = 1/n (up to a constant
factor), which are the same bounds as for exact merging:

log n ~.

1.3 Consequences of the results

As already mentioned, Theorems 1.1, 1.2 and 1.3 include, as special cases, all
the known results for the time complexities of deterministic parallel comparison
algorithms for sorting, merging and finding the maximum, up to a constant factor.
However, it seems that the most interesting consequence of these theorems is the fact
that some of the approximation problems can be solved much more efficiently than
their precise versions. This corresponds to the log* terms that appear in the results

PARALLEL COMPARISON ALGORITHMS 101

for the approximation problems. To be specific, consider, for example, the special
case considered in Proposition 1.0. This corresponds to the approximate maximum
problem, i.e., the problem of finding, among n elements, an element whose rank
belongs to the top n/2 ranks, using n comparisons in each round. It is trivial to
show that in the serial comparison model this problem requires n/2 comparisons:
only a constant factor better than the problem of finding the exact maximum. It is
therefore rather surprising that with n comparisons in each round this problem can
be solved much faster than that of finding the exact maximum in the same conditions.
As shown in Proposition 1.0, log* n + O(1) rounds are both necessary and sufficient
for finding an approximate maximum among n elements, using n comparisons in
each round. This is considerably faster than the best algorithm for finding the
exact maximum with n comparisons in each round, whmh requires, as shown in [30],
log log n + e(1) rounds. Moreover, as shown in Theorem 1.1, O(log* n) rounds suffice

to find an element in the top n/221~ ranks, i.e., a rather good approximation for
the maximum (and, in fact, by Theorem 1.2 that many rounds suffice for finding good
approximation for any other rank). In several cases, the parallel comparison model
seems to be the relevant model. An example is the test of consumer preferences
among n items (see [28]). If we wish to find the best choice of a consumer (with n
comparisons in each round) log log n + e(1) rounds are required. On the other hand,
if we are satisfied with the more modest choice of an almost best candidate (say,
finding an item in the top n/l, 000,000 ones), log*n + O(1) rounds suffice (and are
also necessary). As our algorithm for the upper bound can be described explicitly,
such a choice can actually be done in such a small number of rounds.

We say that a parallel algorithm achieves optimal speed up if the product of
its running time by the number of processors it uses is equal, up to a constant
factor, to the running time of the best serial algorithm for the same problem. I.e., if
T(n). p(n) -- O(Seq(n)), where p(n) is the number of processors, T(n) and Seq(n)
are the running times of the parallel algorithm and the best serial one, respectively,
and n is the size of the input. It is easy to see that if T~(n) > T(n) and there
is an optimal speed up algorithm with running time T(n), then there is also an
optimal speed up algorithm for the same problem with running time Tl(n). The
parallelism break point of a problem is the minimum T(n) so that there is an optimal
speed up algorithm with running time T(n). A considerable amount of effort in the
study of parallel algorithms is done in attempts of trying to identify the break points
of various algorithmic problems. The break point for sorting n elements (in the
comparison model) is O(log n), as follows from the results of [9], [5], [13]. The break
point of merging two lists of size n is O(loglogn), (see [20], [25]), and the break
point for selection is also O(log log n), (see [30], [7], [12]). Theorems 1.1, 1.2 and
1.3 supply the break points of each of the approximation problems considered here.
Notice that as the accuracy parameter e varies so does the corresponding problem
and its break point. Consequently, we obtain the previously known break points
(and, in particular, for the extreme values of E, we obtain the previously known
break points for the non-approximation problems, mentioned above). As a special
case let us note that Theorem 1.1 shows that O(log* n) is the parallelism break point
of the approximate maximum problem, i.e., of the problem of finding an element
among the top n/2 ones.

102 N. ALON, Y. AZAR

The rest of this paper is organized as follows: Section 2 includes the proofs of the
lower bounds in all the theorems. In Section 3 the corresponding upper bounds are
proved. Section 4 contains some concluding remarks and results about approximate
selection, where the exact complexity is still open. The proofs of Sections 2 and 3 are
quite lengthy and complicated. They combine certain probabilistic arguments and
results from Extremal Graph Theory, with various properties of random graphs (or
explicit expanders) and several known results about selecting and sorting in rounds.

2. T h e Lower B o u n d s

In this section we prove the lower bounds for all the problems, i.e., for finding
the approximate maximum, for approximate sorting and at the end for approximate
merging. We split the proofs into several theorems and lemmas.

We start (2.1-2.5) with a crucial special case for the approximate maximum
problem; p > n and c = 1/2. Define a = p /n . We show that in this case
log* n - log* a - O(1) rounds are needed. The proof here is a modified version of
the one given in our previous paper [3], which considers the case p = n and ~ = 1/2.
Afterwards we complete the proof of the lower bound by combining the proof for this
case with a modification of Valiant's lower bound (2.6) and the serial lower bound
for the maximum problem. Next we consider approximate sorting, prove a serial
lower bound (2.7), a lower bound that deals with algorithms that end after k rounds
(2.8) and complete the proof by combining these bounds (2.9) with the approximate
maximum bounds. Finally we deal with approximate merging. We prove a serial
lower bound (2.10) and a lower bound for p > 4/r (2.11) and combine them to get
the desired lower bound.

The case p = n and r -- 1/2 of the approximate maximum problem is considered
in [3]. The proof of the lower bound for the case p > n is very similar, but contains
several additional complications and is presented below. As usual we define, for

a > 1 and k > 0, a (k) by a (0) = 1 and a (k) : a a(k-1) for k _ 1 and put

log*n = min{k : 2 (k) > n}. We also define for a, a > 1 and k > 1 a (k,a) by

a (1,a) = aa and a (k,a) -- a a(k-l'a) for k _> 2.
There is an obvious, useful correspondence that associates each round of any

comparison algorithm in the parallel comparison model with a graph whose set of
vertices is the set of elements we have. The (undirected) edges of this graph are just
the pairs compared during the round. The answer to each comparison corresponds to
orienting the corresponding edge from the larger element to the smaller. Thus in each
round we get an acyclic orientation of the corresponding graph, and the transitive
closure of the union of the r oriented graphs obtained until round r represents the
set of all pairs of elements whose relative order is known at the end of round r.

It is convenient to establish the lower bound by considering the following (full
information) game, called the orientation game; and played by two players, the
graphs player and the order player. Let V be a fixed set of n vertices. The game
consists of rounds. In the first round the graphs player presents an undirected graph
G1 on V with at most a n edges and the order player chooses an acyclic orientation
H 1 of G1, and shows it to the graphs player, thus ending the first round. In the
second round the graphs player chooses again, an undirected graph G2 with at most

PARALLEL COMPARISON ALGORITHMS 103

an edges on V, and the order player gives it an acyclic or ienta t ion/ /2 , consistent
with H1 (i.e., the union of H1 and //2 is also acyclic), which he presents to the
graphs player. The game continues in the same manner; in round i the graphs player
chooses an undirected graph G i with at most an edges on V, and the order player
gives it an acyclic orientation Hi, such that the union H1 U . . . U Hi is also acyclic.
The game ends when, after, say, round r, there is a vertex v in V whose outdegree
in the transitive closure of H1 U. . . t3 Hr is at least n/2. The objective of the graphs
player is to end the game as early as possible, and that of the order player is to end
it as late as possible. The following fact states the (obvious) connection between the
orientation game and approximate maximum problem.

Proposition 2.1. The graphs player can end the orientation game in r rounds i f emd
only i f there is a comparison algorithm that finds an approximate maximum among n
elements (i.e., an element whose rank is in the top n /2 ranks), using an comparisons
in each round, in r rounds. |

In view of the last proposition, a proof of existence of a strategy for the order
player that enables him to avoid ending the orientation game in r rounds implies
that r + 1 is a lower bound for the time complexity of the approximate maximum
problem.

The next proposition is our main tool for establishing the existence of such a
strategy for r - log* n - log* a - 5.

Proposition 2.2. There exists a strategy for the order player to maintain, for every
d >_ 1, the following property P(d) of the directed acyclic graph constructed during
the game.

Property P(d): Let H(d) = H1 U . . . U H d be the union of the oriented graphs
constructed in the first d rounds. Then there is a subset VO C_ V of size at most

n n n
Jv01 < ~ + ~ + . . . + 2~+--- ~

and a proper D = 2048(d,a)-vertex-coloring of the induced subgraph of H(d) on
V - VO with color classes V1, V2, . . . , VD (some of which may be empty), such
that for each i > j > 1 and each v E Pi, v has at most 2 i - j - 2 neighbors in Vj.
Furthermore; for every i > j > 0 any edge of H (d) that joins a member of Vi to a
member of V 3. is directed from V i to Vj.

Proof. We apply induction on d. For d = 1, the graph G1 = (V, E l) constructed by
the graphs player has at most na edges. Let VOO be the set of all vertices in V whose
degree is at least 32a. Clearly

(2.1) IVool < n/16

Put U = V - Voo and let K be the induced subgraph of G1 on U. As the maximum
degree in K is less than 32a, K has, by a standard, easy result from extremal graph
theory (see, e.g., [15, pp.222]) a proper vertex - - coloring by 32a colors and hence,
certainly, a proper vertex coloring by 2048a colors. Let U1, U2, . . . , U2048a be the
color classes. For every vertex u of K, let N(u) denote the set of all its neighbors in
K. For a permutation r of 1, 2, . . . , 2048a and any vertex u of K define the r-degree

104 N. ALON, Y. AZAR

i - 1

d(~r, u) of u as follows: let i satisfy u E U~(i) then d(Tr, u) = ~ IN(u)M UTr(j)l/2 i - j .
j=l

We claim that the expected value of d(Tr, u) over all permutations ~r of {1 , . . . , 2048a},
is at most 32/2048 = 1/64. Indeed, for a random permutation 7r the probability
that a fixed neighbor v of u contributes 1/2 r to d(Tr, u) is at most 1/(2048a) for
every fixed r > 0. Hence, each neighbor contributes to this expected value at most
1/(2048a) ~ 1/2 r = 1/(2048a) and the desired result follows, since IY(u)l < 32a.

r > 0

Consider now the sum ~ d(~r, u). The expected value of this sum (over all 1r's)
uEU

is at most IUI/64, by the preceding paragraph. Hence, there is a fixed permutation
a such that ~ d(a,u) < IUI/64. Put V01 = {u E U I d(a,u) > 1/4}. Clearly

uEU

IVol[< 4. [Ul/64 <_ Id[/16 < n/16.

Define V0 = V00 U V01 , W -= U - W01 : V - W 0 . The last inequality together with
inequality (2.1) gives

IVol _< n/8.
Let F be the induced subgraph of G1 on W and define ~ = Ua(i) R W (1 < i <
2048a). The V/'s clearly form a proper vertex coloring of F. Also, for every i,
1 < i < 2048a and every v E V/

i-1
IN(v) n V l/2 < 1/4

j=l

and hence v has at most 2 i - j - 2 neighbors in Vj for each j , 1 <_ j < i. Let HI be any
acyclic orientation of G1 in which all edges that join a member of V/ to a member of '
Vj, where i > j _> 1, are directed from V/to Vj (the edges inside V0 can be directed in
an arbitrary acyclic manner). Clearly H(1) = H1 satisfies the property P(1). Thus,
the order player can orient G 1 according to H 1. This completes the proof of the case
d = l .

Continuing the induction, we now assume that H(r) has property P(r) for all
r < d, and prove that the order player can always guarantee that H(d) will have
property P(d). We start by proving the following simple lemma.

Lemma 2.3. Let F be a directed acyclic graph with a proper g-vertex coloring with
color classes W1, W2, . . . , Wg. Suppose that for each g >_ i > j >_ 1 and each v E Wi,
v has at most 2 i - j -2 neighbors in Wj, and that every edge of F whose ends are in
Wi and Wj for some i > j is directed from Wi to Wj. Then the outdegree of every
vertex of F in the transitive closure of F is smaller than 49.

Proof. Let v be an arbitrary vertex of F. The outdegree of v in the transitive closure
of F is obviously smaller than or equal to the total number of directed paths in F
that start from v. Suppose v E Wi. Each such directed path must be of the from v,
vi2, vi3, . . . , vi~, where i > i2 > i3 > . . . > ir ~ 1, vi2 E Wi2, . . . , vi r E Wir. There
a r e 2 i-1 possibilities for choosing i2, i3, . . . , it. Also, as each vertex of the path
is a neighbor of the previous one, there are at most i-i2--2 possible choices for vi2,

PARALLEL COMPARISON ALGORITHMS 105

2 i2-i3-2 possible choice for vi3 (for each fixed choice of vi2), etc. Hence, the total
number of paths is at most 2 i-1 �9 2 i - i2-2 �9 2 i2-i3-2 - 2 i r - l - i r - 2 < 2 g . 2i-ir < 4 g.
This completes the proof of the lemma. |

Returning to the proof of Proposition 2.2, recall that d > 2 and that by the
induction hypothesis H (d - 1) has property P (d - 1). Thus, there is a subset V 0 c_ V
satisfying

n n n
(2.2) Iv01 _< + + . - - + 2d+i

and a proper D = 2048(d-l'~)-vertex-coloring of the induced subgraph of H(d - 1)
on V - V0 with color classes V1, V2, . . . , VD satisfying the conditions of property
P(d - 1). Put U = V - V0, let F be the induced subgraph of H(d - 1) on U and
let T = (U, E(T)) be the transitive closure of F. Let Gd = (V, Ed) be the graph
constructed by the graphs player in round number d. Let V00 be the set of all vertices
in U whose degree in G d is at least a �9 2 d+4 �9 4 D and define

V00 = V00 U {u E U : 3v E V00 with (v,u) ~ E (T) } .

Since G d has at most na edges, IVool < n a / (a 2 d+3. 4/)). Also, by Lemma 2.3, the
outdegree of each v E VOO in T is at most 4 D - 1. Hence

(2.3) IV001 ~ n~ 2d+3.

Let G be the induced subgraph of G d on U - V00. Then the maximum degree in G is

smaller than a . 2 d+4. 4 D. For each i, 1 < i < D, let ~ denote the induced subgraph

of G on (U - V00) ;3 t~. As each ~ is a subgraph of G, it has a proper vertex coloring

with c~2 d+4 �9 4/) colors. For each i, 1 < i < D, fix a proper ni-vertex-coloring of
with color classes UNi+I, UNi+2, . . . , UNi+n~ (some of which may be empty) where

i-1
Ni = ~ nj and

j= l

(2.4)
D

100.22d+7 �9 16Da for each 1 < i < D and ~ ni = 2048 D > ni I

i----1

(Notice that since D = 2048 (d-l,a), d > 2, (~ < D < 2 D there is such a choice for
the ni's). For every vertex u of G, let N(u) denote the set of all its neighbors in G.

Let us call a permutation ~r of 1, 2, 3, . . . , ~?=1 ni legal if it maps each set of the
form (Ni + 1 , . . . , Ni + ni} into itself (and only permutes the elements inside these
sets among themselves). For any vertex u of G and any legal permutation r , define
the ~r - degree d(~r, u) as follows; let k satisfy u E UTr(k), then

k-1
d(Tr, u) = Z IN(u) n U=(j)I/2 k - j .

j= l

106 N. ALON, Y. AZAR

D
We claim that the expected value of d(Tr, u) over all YI hi! legal permutations, is at

i=1
most IN(u) l /minl<i<o ni < 1/(100.24+3"4D). Indeed, consider a fixed neighbor v of

u. If v belongs, like u, to the same graph ~k, then the probability that for a random
legal permutation 7r, v will contribute 1/2 r to d(Tr, u) is at most 1/nk, for each fixed
r > 0. Otherwise, it is easy to check that this probability is even smaller. Hence,
each neighbor contributes to this expected value at most (~ r>0 1 /2r) /nk = 1/nk,
and the claim follows.

Consider now the sum ~ d(:r, u), where u ranges over all vertices of G. The
expected value of this sum (over all permutations 7r) is at most IV(G]/(100 �9 24+3 �9
4 D) < n/(100 �9 24+3 �9 4D). Hence, there is a fixed legal permutation a such that
~'~uEV('G) d(a, u) < n/(100.2 d+3. 40). Define V01 -- {u E V(G) : d(a, u) > 1/100}

and V01 = Y o l U { u E V(G) : 3v E Y01 with (v,u) E E(T)}. Clearly IYoll _<
n/(24+3 �9 4 D) and hence, by Lemma 2.3,

(2.5) IVoll <_ n/2 d+3.

Put Vd = V0 u V00 U V01, W = V - V 0. By (2.2), (2.3) and (2.5)

n n n
IVdl _< g + + . . . + 24+2"

Let G be the induced subgraph of G on W and define V i' = Ua(i) M W (1 <_

i < 2048 D -- 2048(d,a)). The sets V" clearly form a proper vertex coloring of G.
Moreover, as each U k is an independent set in H (d - 1), the sets V/' actually form a

proper vertex coloring of H(d - 1) , as well. Moreover, for every i, 1 < i < 2048 (d,a)
every v E V" satisfies

i-1
Z IN(v) n '1/2 < 1/100,
j=l

where N(v) is the set of all neighbors of v in G. Thus, for each fixed j , 1 < j < i, v
has at most 2 i - j /100 neighbors in l~'. Let H 4 be any acyclic orientation of the edges

of G d obtained by orienting all the edges that join a member of V/' and a member of
Vj', where i > j > 0, from V/' to ~ ' . The edges inside Vd are oriented in an arbitrary
acyclic order consistent with the order given on H (d - 1). Notice that all the edges of
H (d - 1) that do not lie inside Vd are also oriented from V" to 1~' with i > j _> 0. In
order to show that H(d) = H (d - 1) U H d has the property P(d), it remains to check
that for every i > j >_ 1; every v E V" has at most 2 i - j - 2 neighbors in l~ I. By the

construction, v has at most 2i-J/lO0 neighbors in Vj' in the new graph H d. Recall

that each V/' is a subset of one of the sets V k corresponding to the graph H(d - 1).
Suppose V/' c_ Vk, Vj' C V I. Then k > I. If l = k or 1 -- k - 1 then, since v has at

most [2k-/-2J = 0 neighbors in V/ in the graph H(d - 1), it follows that in H(d) v

PARALLEL COMPARISON ALGORITHMS 107

has at most 2i-J/lO0 <_ 2 i - j -2 neighbors in I~ t, as needed. If I _< k - 2, observe that
our construction implies that

(i - j) > (k - l - 1) min n i > (k - l - 1) ' l O 0 " 2 2 d + 7 . 1 6 D > (k - l) . 1 0 0 _ > 2 0 0 .
I<i<D

Thus, in this case the total number of neighbors of v in I~ ~ is at most 2i-~/100 +

2 k- t-2 <__ 2i-J/lO0 + 2(i-J)~ 100 <_ 2i-J -2.
We conclude that the order player can orient Gd according to H d, and maintain

the property P(d) of the graph H(d) = H (d - 1) U H d. This completes the induction
and the proof of Proposition 2.2. |

The result stated in Theorem 2.5 below, is an easy consequence of Proposition
2.2. and the following simple lemma.

Theorem 2.4. For every d > 1, 2 (d+a+l~ a) > 32. 2048 (d'a).

Proof. We apply induction on d. For d = 1 the inequality is trivial as 2 (4+l~ a) _>
2(4)-(1og* a) _> 216.a = 32.2048 (1,a). Assuming it holds for d--l, we prove it for d > 2. By

assumption 2 (d+2+l~ a) _> 32 �9 2048 (d-l,a). Hence 2 (d+3+l~ a) _ 22 (d+2+l~ a) _>
232"2048(d-l'a) = (221. 211) 2048(d-l'a) = (221) 2048(a-1'~) �9 (2048) 2048(a-l'a) > 32 .

(2048)(d,c~). |

Theorem 2.5. The order player can avoid ending the orientation game during the
first log*n - log*a - 5 rounds. Hence, by Proposition 2.1, the time required for
finding an approximate maximum among n dements using an comparisons in each
round is at least log* n - log* a - 4.

Proof. Clearly we may assume that log*n - log*a - 5 _> 0. By Proposition
2.2, the order player can maintain the property P(d) for each of the graphs H(d)
constructed during the algorithm. Notice that .by Lemma 2.3, the outdegree of
every vertex in the transitive closure of a graph that satisfies P(d) is at most
4 9 + n / 8 + n / 1 6 + . . . + n / (2 d+2) < 4 9 +n /4 , where D = 2048 (d,a). It thus

follows that if 42048(r'a) _< n/4 then the graphs player can keep playing for at least
r + 1 rounds. Therefore, by Lemma 2.4, the assertion of the theorem will follow if for

r = log* n - log* a - 5 the inequality 42(r+3+l~ a)/32 < n/4 holds. Since for r > 0

4 �9 42(r+a+l~ c~)/32 2(r+4+log* a) < this follows immediately from the definition of
log* n. |

Forp>_2n, r (n , p , e) = f ~ (l o g ~) . Lemma 2.6.

Proof. The proof is an easy modification of Valiant's proof for the maximum problem
(see [30]).

If the algorithm consists of s rounds and m denotes the number of candidates
for the maximum after these s rounds, the adversary can ensure that m / (m + 2p) >

108 N. ALON, Y. AZAR

(n/(n + 2p)) 2".
clearly m < en, therefore, since p > 2n

s>logl~ (logp/m~ (log(Pln)+log(lle))
- log n+2~mp - fl log ~ / = fl log Iog(p/n)

n

(log 1/~)
>__ ~ log l o g p / n]

(This follows easily from ~kir~n's Theorem, as shown in [30]). But

Proof of the lower bound of Theorem 1.1.
Clearly at least (1 - e)n >_ n/2 comparisons are needed, even in the serial case,

to conclude that an element belongs to the top en ones. Hence r(n,p, ~) >_ n/(2p) =
log 1/c ~

f~(n/p), for every p >_ 1. A lower bound of f~ log logp/n] for p > 2n follows from

Lemma 2.6 and the bound f~(loglog I / e) for p < 2n is the lower bound from that
lemma even for p = 2n.

The f~(log* n - log*(1 + p/n)) term follows from Theorem 2.5 for p > n (even
for e = 1/2). For p < n we simply take the bound of Theorem 2.5 for p = n and

= 1/2.]

Theorem 2.7. Any serial algorithm that finds a11 but at most en 2 of the order
relations between n dements (1/n 2 < ~ < 1/4) needs at least f l (nlog(1/c)) rounds.

Proof. The proof is by a simple counting argument. For, say, ~ > 1/100 the assertion
is trivial (since at least one element is known to be in the top 0.8n ones)�9 We thus
assume c < 1/100�9 First, we estimate the number of orders that fit one given output
of the algorithm.

If we have all the order relations but en 2 of them, then there are at least n/2
elements whose relative order to all but 2en elements is known. Hence, the number
of orders consistent with these relations is at most

C) �9

Therefore the number of distinct outputs of the algorithm is at least

_ 07): (1
n! n/2 > -- " ~ ! (2 e n) (2en)n/2 - (2en)n/2 \@-~e~)

Hence the number of rounds needed is at least

log \4----ee] -- 7 log ~ = f l (nlog(1/e)) li

Define c(k, n, m) to be the total number of comparisons needed to sort n elements

inkroundsuptoatmostmunknownorderrelationsbetweenpairs, O < m < (2) .

PARALLEL COMPARISON ALGORITHMS 109

rtl+l/k)
Theorem 2.8. For all possible n, m and k >_ 1, c(k, n, m) > k d(1 + m) 1/(2k) - n

where d = 16v~.

Proof. By induction. We leave the base of the induction to the end.
The inductive assumption: Given k, n, i f k I = k and n t < n, or k f < k and

n I _< n then for every m t

c(k"n"m') > k' (n'l+l/k')
d(1 + rn~)l/(2k') - nl

Take any k-round algorithm for sorting a set V of n elements. The first round of
the algorithm consists of some set E of comparisons. As usual look at them as edges
in the graph G = (V, E). An independent set is maximal if it is not a proper subset
of another independent set. Consider the graph of the first round of comparisons.
Let S be a maximal independent set in this graph and denote x = ISI. Each of
the n - x elements of S must share an edge with an element of S, otherwise S is
not maximal. For our lower bound, we restrict our attention to linear orders on
V, in which each element of S is greater than each element of S. For any of these
orders it is impossible to obtain any information regarding the relation between two
elements of S or two elements of S using comparisons between an elements of S
and an element of S. Therefore, aside from these n - x comparisons, there must
be at least c(k - 1, x, ml) comparisons to almost sort S and at least c(k, n . - x, m2)
comparisons to S, where ml , m2 _> 0 are integers satisfying rn 1 + m2 _< m. This
implies the following recursive inequality:

c(k,n,m) >_ c (k , n - x, ml) + n - x + c (k - 1,x, m2)

where m 1 + m2 ~ m.
By the inductive assumption:

c(k,n,m) > k ~ d ~ - (n - x) -~n-x}+{k-1) x

By opening parentheses and permuting terms we get

k (n - x) l+l/k k - 1 x l+l/(k-l)
c(k,n,m) > ~ d (l + m l) 1/(2k) + 7 (1+m2) i / (2 (k - l)) + n - k n =

k 1+1/k [(l - - a) l+l /k (1) al+l/(k-1) 'nl/(k(k-1)) 1 d
- d n "~- i-- (l+rn2)1/(2(k_1)) +~.r~l/----- ~ - -kn

where a = x/n.
Recall the geometric mean inequality: 3b + "~c _> b~c ~ where 3 + 7 = 1, ~, % b,

c _> 0. Applying it we conclude:

k nl+l/k [(1 -- a) 1+1/k a . n 1/k2 d l/k
c(k, n,m) > ~ ~- (1 + m2)l/(2k) "nX/k2 - kn.

II0 N. ALON, Y. AZAR

Since 1+ < e < d , d 1 / k > l + l / k , t h e n :

k nl+l/k r (1 _ c~) l+l /k
c(k,n,m) > a +

~ (1 + 1 / k)
(1+m2)1/(2k)

- k n .

But ml + m2 _< m so ml <_ m and m2 _< m. Hence

k nlq_l/k [(1 - o~) lq-1/k
> a +

+ 1/k)
(l+m)l/(2k)

- k n .

Recall Bernoulli's inequality: (1 - a) t >_ 1 - at for t >_ 1, a < 1. This implies

~g 7~lq_i/k [i_--~(1 kl/k) 0~(1 "~- l/]g) I Ion -~
c(k, •, m) > ~ [(1 +m) 1/(2k) q- (1 q- m) 1/(2k)

k nl+l/k (nl+l/k)
- - k n = k - n .

d (1 + re)l~(2k) d(1 + m)l/(2k)

This completes the proof of the inductive step.
The inductive proof must stop at one of the following base cases:

a) n -- 1, k >__ 1 (and necessarily, m = 0).

() In this case k d(1 + re)l/(2k) - n < 0 and the theorem holds trivially.

b) k = l , m _ < (~) . We have to prove that c(l,n,m) > n2/(d~/l+m) - n , orin

other words: an algorithm that uses p = n2/(d~/1 + m) - n comparisons in one
round leaves more than m unknown relation (in the worst case). This is proved
using the methods for sorting in one round (see [16] and also [1]). From the
graph representing the comparisons omit a set VO consisting of the n/2 vertices
of the highest degree. The remaining part contains at least n/2 vertices and the
highest degree is smaller than 4p/n <_ 4n/(d~/1 + m) - 1. The remaining graph
can be partitioned into t <_ 4n/(dlx/]--~--m) color classes 1/1, . . . , Vt, IV/I = xi,
i= l , . . . , t .
We restrict the order to the case that an element from 1// is greater than an

elements of Vj iff i > j . By convexity of the function z 2, the number of the unknown
relations if at least

>t 2 =2 2t ~ - - 1 = 4 ~ - 1 =-~ -- 1 .
i=l

Thus, it is enough to prove that

) 4 + m 1 > m .

PARALLEL COMPARISON ALGORITHMS 111

One can easily check that it suffices to prove the last inequality for m = (2) . For

this case we have to show that

o r

but

This completes the proof of the theorem.

n n (n - l i 1 > n (n - 1)

d l n 2 - n + 2
8 2 > 2 n - 1

d v / n 2 - n + 2 ~ - ~ x / d (n - 1 / 2) = 2 n - I. "2 = n2 - n + 2 > ~--~

log(1/r
Coronary 2.9. (J) p > 2n = \ log(p/n)] '

(ii) forp<_2n a (n , p , r ~-~ j .

(hI+Ilk)
Proof. (i) Using the last theorem pk >_ k d(1 + m) 1/(2k) - n

nl/k

d(1 + m)l/(2k) "
Hence for m = cn 2

so 1 + p/n >_

(1/2) log0/) - o(1)
a(n,p,~) > k > log(1 +p/n)

(log0/))
= fl \log(p/n)] '

which proves (i).
(ii) Is a trivial consequence of 2.7.

Proof of the lower bound of theorem 1.2.
Immediate from the last corollary and Theorem 2.5. |

Lemm-2.10. m(n,p,~) = ~ (1) fore > l/n.

Proof. It suffices to prove a serial lower bound of f}(1/c). Clearly we may assume,
say e < 1/10. Parti t ion each of the two sorted lists A and B into t = [n/mJ blocks
of size at least m = [4en] consecutive elements each. Denote these blocks by Ai,
Bi, i = 1 , . . . , t. We restrict ourselves to orders such that each elements of A i U Bi is
smaller than each element of Aj tA Bj if i < j . Therefore, if less than t/2 = ~(1/E)
comparisons were made, then there are at least t /2 pairs of Ai, Bi each that no
comparisons were made between any element of Ai to any element of Bi and we have
no information about their order relations. Therefore, the number of unknown order
relations between elements is at least (t /2) �9 m 2 > n/(4m) . m 2 = nm/4 > r as
needed. |

112 N. ALON, Y. AZAR

(log 1/e~
Lemma 2.11. m(n,p,c) = f~ log lo-~-~j forp >_ 4/e, e >_ 1/n.

Proof. The proof is similar to that of [20]. Let a = p/n. Define n (0) = m, p(0) = p,

n(k+l) = i n(k) [, p(k) = a . 8 k .n (k) . We prove the following proposition by /
induction.

Proposition. For k < (1/2)log log___.p_p, after k rounds it is possible that there are
61ogr

from the/~rst list and Bi consists of n (k) elements of the second list, such that each
elements of A i U B i is smaller than each element of Aj U Bj iff i < j , and aJl the
merged order s of Ai and Bi are possible.

For k = 0 the proposition is trivially true. Assume it is true for k, we prove it
for k + 1. Let E be the set of comparisons made at the k + 1 round. There are at
least t(k) /2 pairs (Ai ,Bi) such that no more than IEil = 2p/t (k) < 2p. 8kn(k) /n =
2a �9 8 k �9 n(k) <_ 2 �9 p(k) comparisons were made between them. We divide each

such pair of lists into kn(k+l) j subsets of pairs of size at least n (k+l) each. Note

that kn(k+l)j _> [8 p ~ (1 - ~)] > 6 [x / ~] - l . Denote t h e m a s Aij, Bij ,

j = 1,... ,6V p ~] - 1. Let Ei,r, s be the set of comparisons between Air and Bis

3[pv'p-~l ~ 3r v'-7~1-1
and Eli = U Ei,r,r+ l 0 < ~ < 3 [~ p (e)] - l . Clearly ~ IEitl < IEil <_

r=l ~=0
2p(k) I p

2. p(k), therefore there exists an ~ such that IEitl <_ <_ (2/3) (k). We
3 [Ip(k)]

restrict ourselves to orders such that any element of Ai, r (A Bi,r+ s is smaller than

3r pv,'-y~l
Ai,s U Bi,s+ t if r < s (1 < r, s < 3[~/p(~)]). But El, ~ = U Ei,r,r+~, therefore,

r=l
/ _ . _ . _ _ _

there are at least 2[k/p(k)] different values of r such that there is no information

between Ai,r and Bi,r+ t. Thus there are (t(k)/2) �9 2 �9 [p ~] sets of pairs of size

n (k+l). But

_ = ~ / ~ - (~ > t(k) > 8 ~ (k) ~ s -~ s 8k+ln(k+l)

PARALLEL COMPARISON ALGORITHMS 113

and because the left hand side is an integer we really have at least t(k+l) sets as
needed to complete the proof of the proposition.

We complete the proof using the previous proposition.
pl/2 k
- - . For k - 0 i t is clear. Assume it for k, we First, we prove that n (k) > 8k "

prove it for k + 1

n (k) V~n(k) pl/2 k+l pl /2 k+l
n(k+l) > - - -- _ _ >

- 8. L (k) 8v~-a .8 k - 8 av/J--~.S k . v ~ a . 8 k 8 k+ l . a
V e

Next we note that unless t(k)(n(k)) 2 < en 2 the algorithm cannot stop, because the
order relations between the pairs are unknown. But

cn 2 > t(k)(n(k)) 2 > n___n___
_ _ 8kn(k)

means

o r

SO

n . n(k) >_ n
. (n (k)) 2 = ~ 8 -~ ' - -

pl /2 k n2pl/2 k

8 k �9 a p . 2 6k

1
2- ~ logp _< log(ep) + 6k

logp _< 2k(6k + log(ep)) _< 2 k. 6k- log(ep) < 6- 4 k log(ep)

1 log p
k > ~ log

- 6 log Ep
This completes tile proof.

1 log log 1/e
-> 2 6 log ep

, log 1 / ~ ,og)

Proof of the lower bound of Theorem 1.3.
Assume, first, that 1/2 > s > 1/n. For p > 4/e this follows from Lemma 2.11.

For p < 4/s it follows from Lemma 2.10 and the lower bound in lemma 2.11 for
p = 4/~. If e < 1 /n there is nothing to prove because even the lower bound for
e = 1In suffices. |

3. T h e U p p e r B o u n d s

In this section we prove the upper bounds in the theorems appearing in section
1. The section is organized as follows; we start with the rather easy proof of the
upper bound for approximate merging. Then we consider a stronger definition Of
approximate sorting and establish some basic lemmas. This enables us to prove
the upper bound for approximate sorting for the case p > 2n (3.1-3.6). Next, we
obtain the bound for p < n~ log*n and for n / l o g * n < p _< 2n (3.7-3.8) and hence
complete the proof of the upper bound for approximate sorting. Finally approximate
maximum is considered. A modification of (3.6) supplies the upper bound for p > 2n
(3.9), which is then used to obtain the bound for p < 2n (3.10).

Remark. Throughout this section, we assume whenever it is needed, that n is
sufficiently large.

114 N. ALON, Y. AZAR

Proof of the upper bound in Theorem 1.3.
Assume first that e >_ 4/n. Take t = [4/eJ elements from each list such that

the difference between the ranks of consecutive elements in each list is at most en/3
and each list contains a member in the top en/3 and the bot tom en/3 elements
of the corresponding set. Now merge these lists using Valiaut's algorithm [30] (see

) also [25]). This costs O + lOg log(2 + p / t) = 0 7-(~ + lOg log(2 + ep~ I .

can easily check that the total number of unknown relations left between pairs of
elements is at most (2t + 1) (en/3) 2 <<_ en 2 as needed.

For e <_ 4In we simply perform a full merging. This completes the proof. |

We next discuss the upper bound for approximate sorting. First, notice that for
e _< 100/n we can simply apply full sorting which costs O(log n~ log O + p/n)) time
(see [9], [13], [5]), as needed. Hence, we may assume that e >_ 100/n. For e > 1/100
we apply the same algorithm as for e = 1/100. It thus suffices to consider the case
100/n < e < 1/100. It is convenient to introduce the following stronger definition of
approximate sorting:

Definition. An e-approximate sorting of the list N of cardinality IN[= n is a
sequence of elements of N : {x i : i = 1 , . . . , El/e J} such that there are sets Sx i and
B x i satisfying [Sxil > en(i - 1/5) - 1, IBxil >>_ n - en(i + 1/5) - 1 and xi is known
to be bigger than each member of Sxi and smaller than each member of Bxi. In
particular, e n (i - 1 / 5) < rg(x i) < en(i + 1/5) where rN(y) is the rank of the element
y in the list N. Define x0 = -oc , x[1/ej+ 1 = +o0, Ni = {y [y is not known to be

< xi or > X/+l}, i = 0 , . . . , [1/eJ. Clearly, if we have an e-approximate-sorting of
N, then INil <_ (7/5)en + 1 for each i and hence the total number of unknown order
relations is at most:

i=0

~-~en + __ + -J + < en 2 10

Hence, an c-approximate sorting supplies all order relations but at most en 2. Recall
that an e-approximate maximum is an element x such that rN(x) _> (1 -- e)n, i.e.,
an x and a subset S C N such that x is known to be bigger than each element of S
and IS[_> (1 - e) n .

Lerama 3.1. [27]: For every m and a, there is a graph with m vertices and at most
(2ra 2 l ogm) /a edges in which any two disjoint sets of a + 1 vertices are joined by an
edge. |

Lemma 3.2. [27]: If m elements are compared according to the edges of a graph in
which any two disjoint sets of a + 1 vertices are joined by an edge, then for every
rank all but at most 6a logm + a dements from the ones with a sma//er rank will
be known to be too small to have that rank. A symmetric statement holds/'or the
dements with a bigger rank. |

PARALLEL COMPARISON ALGORITHMS 115

Proposition 3.3. Assume we have rn elements and p = 2m 2 log m/a. Then one can
find in one round (using p comparisons) a 35(a/m) log m-approximate sorting and a
(7a/m) log rn approximate maximum.

Proof. Compare the elements according to the edges of the graph supplied by Lemma
3.1. For each admissible i, let A i be the set of all elements y whose ranks r(y) in the
sorted list satisfy em (i - 1/5) < r(y) < e m (i + 1/5), where e = 35(a/rn)logm. By
applying Lemma 3.2 twice, we conclude (since IAiI > 2. (6a(log rn + 1)), that at least
one element xi E Ai is known to satisfy em (i - 1/5) < r(xi) < em (i + 1/5). Taking
Sxi, Bxi to be the sets of all elements known to be smaller (bigger, respectively)
than xi, we obtain the desired approximate sorting. The result for the maximum is
similar. |

Proposition 3.4. Suppose we have a set N partitioned into rn pairwise disjoint sets Ni
where IN[= n, and each n i = [Nil is either [n/rn] or [n/mJ. Suppose, further, that
for each Ni we have an e-approximate sorting. I.e., for i = 1 , . . . , rn, j = 1 , . . . , L1/e],
n i e (i - 1 / 5) <_ rNi(X}) <_ nie(i + l /5) . Put x~ = -co, X~l/e]+ 1 = +c~. Let

[l /el
x -- U U. x~, IXI = t <_ m / ~ and ~ s u m e we have a 5-approximate-sorting

i j : z

for X , i.e., t5 (i - 1/5) < rx(Yi) <_ t6 (i + 1/5) i = 1 , . . . , L1/5], then we have an
e + 66 + 6rn/n approximate-sorting for N.

Proof. Let S~ = {minj [x} is known to be _> Yk}. By the definition of a 6-
m

approximate sorting rx(Yk) is known to satisfy rX(Yk) <_ ~ Sik < th(k + 1/5).
i = 1

Similarly, rN(yk) is known to satisfy

m

i = 1

1 (n) (~) r n
e . ~ . n + e r n + l 5 k + ~ - =

- ~ - + ~ n 1 + n k + .

Therefore (since k <_ 1/5)

rN(yk) - hnk ~ n - - + k + <_
n

n + - - 1 + _<n + .
n

In the same way one can prove that

5nk - rN(Yk) < n - - + .

From the elements Yk it is easy to find a subset forming a 5

e + 65 + 6(rn/n) approximate sorting (for the whole set N).

e + 5 6rn) 5 + - -~- - + -g-~ =

116 N. ALON, Y. AZAR

Lemrna 3.5. Assume we have n elements, partitioned into m <_ n~ log6n padrwise
disjoint sets of size ni = Ln/mJ or In~m] each. Suppose that in each set we have

14
an e-approximate-sorting, where e _> (n /m) l /3 . Then one can find in one round

using n processors an e-approximate sorting of the total list of n elements where
c < e + c where c = 66.

e I = e + (n/m)l /3 _ log 2 n '

Proof. Let X be the union of all the representing elements from all the sets, put
[2m 2 log n] 2l 2 log/ 2(m/e) 2 log n

I Z l = l < m / e . D e f i n e a = | ~2-~ | . Clearly ~ <
- a - 2m 2 logn/(~2n) = n.

Therefore we can use Proposition 3.3 to find a &approximate-sorting for the set X
where

2m 2 log n~ (e2n) �9 log n 140 log 2 n
35(a//) logl < 35 2. m/e < e(n /m) "

However, log 2 n < (n /m) 1/3 and (l /e) < (n /m) l /3 . Therefore
- - 1 4

<_ 140(n/m) 1/3 (n /m) 1/3 _ 10

(n/m) 14 (n / m) l l 3 "

By Proposition 3.4 one can find an el-approximate-sorting for

60 6 c c
e t = e + + - - < ~ + < e + ~ . l

(him)l~3 (n /m) (n/m)1~ 3 - log 2 n

(log(l /e))
Theorem :1.6. F o r p >_ 2n, a(n,p,e) = O~, Ioga + l o g * n - l o g * o r where a =

p/n.

Proof. For each 1/4 > e > 1 /a l~ n-log*a we simply apply the algorithm described

below for e = 1 /a l~ n-log* a, whose running time is O(log* n - log* a). Thus we
can restrict ourselves to the case

/ ' 1 1~ log*n-log* ~ 100
m i n ~ , l / a a) > e > --n

Let N be the given set of elements. We can assume that n is large enough (at
each stage of the algorithm), otherwise exact sorting is done in a constant time. We
consider two possible cases.

2c n
Case 1. e < Partition N into m = sets each of size ni = Ln/mJ

-- log 2 n" c7L(1/e)6J

or [n/m]. m < n n c 7 (l~ n/(2c)) 6 < ~ , and c 7 (l /e) 6 < In~m] < 2c 7 (l /e) 6.

Assign to each set of cardinality hi, nic~ processors. Sort each of the sets using the
algorithm in [5] (which is an acceleration of the AKS sorting network having Pi > ni

(log(l/e) 6 ~ (log(I /e)
processors). The complexity of this sorting is O \ log(p i /n i)J = 0 \ ~] .

PARALLEL COMPARISON ALGORITHMS 117

c
Take f rom each set an (n / m) l / 3 approx ima te sorting. Then use L e m m a 3.5 to

2c approx ima te sort ing in one more round. But 2c < 2ce 2
g e t (n / m) l / 3 (n / m) i / 3 -- c - ~ < e as

needed.
2c

Case 2. e > - - Par t i t ion N i n t o m = In / l og 6 n j sets of s i z e n i = [n /mJ or
log 2 n"

Fn/ml each. For each such set assign ni �9 a processors. At each set, recursively, find

c approx ima te sort ing e > and use the previous
an e log 2 n log 2 n (n / m) 1/3

l e m m a with one more round and only n processors to finish.
To complete the proof it suffices to establish the following facts;

(1) The a lgor i thm can be at case 2 no more than O(log* n - log* ~) before it arrives
to case 1 with e I, p t n ~ (at each set) a = g / n I.

(2) e = O(e ~) and therefore the complexi ty of the second case with the pa rame te r e !
equals up to a constant factor to tha t for e.

k c
We first establish (2). I t is clear tha t e < e I + ~ , where n i is the

- - i= l log 2 ni
sequence of the sizes of the sets of the different i terations. By the condit ion of

c c
- - < (1/2) therefore c By the definition of ni, l~ 2 ni case 2 e t > l~ 2nk log 2ni+1

k c e! 1
e < e ' + E i : l ~ -< 1 + ~7 < 3e', i.e., e = O(et).

=

Next we prove (1).
Let ni be the max imal set of elements af ter i i terat ion at case 2. Therefore,

n i < 21og6ni_ l where no = n. We prove, by induct ion on i, t ha t n i < (8log (i) n) 6.
Indeed, for i = 0 this is tr ivial and assuming it for i we have

ni+l <_ 21og6ni _< 21og6(81og (i) n) 6 _< 2[6(3 + log (i+1) n)] 6 < (8log (i+1) n) 6 ,

as needed (in the last inequali ty we use the fact tha t n i is still not small).
Therefore s ta r t ing f rom n elements, case 2 continues at most as long as e / _>

2c 2c 2c
But e > e ~ > ~ > - - or n k > (2c/e) . By the last claim this can

log 2n k - _ log2n k - nk

h a p p e n a t mos t l o g * n - log*(1/e) + O(1) t imes. But 1/e > s l~ n - log*a > a and
therefore log* n - log*(1/e) + O(1) < log* n - log* a + O(1) as needed. |

a (n , p , e) = 0 (n l ~ Lemm~ 3.7. For each admissible e and each p < log* n '

Proof . First , note t ha t by the upper bound for p _> 2n, (Theorem 3.6), for p = n,
O(log 1/e + log* n) rounds suffice. The a lgor i thm for p <_ n / l o g * n consists of
i terations. We prove by induct ion t ha t af ter the k ' t h i tera t ion there are 2 k sets
Ni, i = 1 , . . . ,2 k (U N i = N) such tha t ~t i = INil < qk . n for all i where q = 7/8,
and each element of N i is smaller t han each element of N j iff i < j . For k = 0,
there is noth ing to prove. Assuming the above for k, we prove it for k + 1. Define

118 N. ALON, Y. AZAR

a = niP. Assign to Ni, Pi = processors,. Parti t ion Ni into Pi sets each
of size at most [(ni/pi)] and using one processor~for each such set find its median
using the serial algorithm in O (ni/pi) = O((~) rounds. If Pi > 1, then for the set Pi
of the Pi medians, we. find a ~-approximate sorting with the Pi processors assigned
to this set for ~ = 1/4 in O(log 1/77 + log* Pi) --- O(log* n) rounds. In this way we

1 2 obtain for each i, an element x i such that [~PiJ < rpi(xi) <- [~PiJ and therefore

I~nil < rNi(Xi)< I~nil. (In case Pi = l w e obviously have such an element.) We
/ / / /

next compare that element to all the other n i - 1 elements in N i in O Pi

rounds and split the set Ni into 2 sets N2i_l, N2i of size < ~n i each, such that each
element of Y2i_ 1 is smaller than each element of N2i. This completes the iteration

in O((~ + log*n + cz) = O(~) rounds (cz > log* n). Put k = log(8/e) After the
- 1 o s (8 / 7) "

kth iteration ni <_ ~n, so it is easy to find L1/e] representing elements Yi, such

t h a t e (i - � 8 9 n < r N (Y i) < e (i + ~) n (i = 1 , . . . , 1) and the complexity of the

algorithms is O(c~log l / e) = O (p log l / e) , as needed.
%

|

n < < 2n, Lemma 3.8. For each admissible e and ~ _ p _

a(n,p,~) = o (n l ~ + log* n) .

Proof. If e < 1/2 l~ then we simply simulate each round of the algorithm

of 2n processors by O (p) rounds with p processors. The time complexity is

O(p(log l / e+log*n)) = O (p l o g l / e) a s needed. Thus we are left with the case

e > 1/2 l~ n. Split the n elements in m = [cp/24] sets of size In~m] or [n/m] each.
For each such set we assign p/m processors and find an el-approximate sorting where

4 [~] < elements. e I = �88 in an algorithm which we describe below. This gives ~ �9 _ p
Since we have p processors we can, in O(log* n) rounds, find an e ' -approximate sort-
ing for these elements with e~l _ 1 - ~ . From this one can apply Lemma 3.4 to

produce a 5-approximate sorting for the original set of elements, where

E 6 6m e 6e 6ep
5 _< ~ + 16 �9 21~ *n + n - 4 1-6 2-'~n - < - + + < e

as needed. It remains to explain the algorithm for n' = i n] <_ 4 8 p . 1 p, = ~ ,
gl ~.

n / i I fp I < lo--o~-~#, we are done (by Lemma 3.7)in 0 (~ log(lie')) = 0 (~ log(l/e)),
as needed. Thus we may assume pl >_ ~ and hence e I = � 8 8 = �88 <

log* n ~ < 1/2log * n ~. But for e I < 1/2 l~ n~ 6. n~ we are done again as in the beginning

of the proof, by simulation of the algorithm with n I processors by pl ones, in time

O (~ (l o g (l l #) + l o g * n ')) = O (p l o g (1 / e)) . This completes the proof. |

PARALLEL COMPARISON ALGORITHMS 119

Proof of the upper bound of Theorem 1.2.
Immediate from Lemmas 3.6, 3.7, 3.8. |

We conclude this section by considering the approximate maximum problem.
(See also [3] for a more detailed account of a special case).

Theorem 3.9. For each e and p >_ 2n

r (n , p , e) = O log logc~ + l o g * n - log*c~ ,

where ~ = p / n .

Proof. For each 1/2 >_ e ~_ 1/a 21~176 we simply apply the algorithm for

e = 1/a 21~ n--log*c~ described below. Therefore, we can restrict ourselves to the

case 1/2 21~ n-log* a ::> e ~> 1 The proof is very similar to that of the upper bound 5"
for approximate sorting and differs only in the following facts:

First we have an easy proposition that asserts that given a set N partitioned
into m almost equal sets and given an e-approximate m a x i m u m in each set and
a 6-approximate maximum of these m representatives then we have an e + ~ + m
approximate maximum in the whole set. Next, an analog of Lemma 3.5 obtained by
replacing the word "sorting" by "maximum" can be prqved (and in fact a stronger
estimate holds).

The rest of the proof for p >_ 2n is analogous to that of Theorem 3.6. The
only essential change is the replacement of the AKS sorting network by Valiant's
algorithm for the maximum problem ([30]). |

It remains to establish the upper bound for p _< 2n.

Lemma3.1O. For p <_ 2n and all admissible e, r (n , p , e) = O + l o g l o g ~ + log*n .

Proof. First we observe that the upper bounds for p _> 2n gives that for p _> n,
O(log log 1/e § log* n) rounds su~ce.

Assuming we have p _< n processors, partition the n dements into p sets, each
of size at most [n/p]. In each set find the maximum using one processor in at most
n_ rounds. Then from the p maximum elements we find an element in the top ep
P
elements in O(log log 1/e+log* p) = O(log log 1/e+log* n) rounds. (This can be done

Tt by the observation above.) Clearly, this element is in the top ep . -~ = en elements

is t us o + og og + lo ,
] %

a s needed. The

Proof of the upper bound of Theorem 1.1.
This is a simple consequence of 3.9 and 3.10. |

We have thus completed the proofs of Theorems 1.1-1.3. As already mentioned,
Proposition 1.0 (proved in [3]) is a special case of Theorem 1.1, with a somewhat
better estimate. Its detailed proof appears in [3]. Note that the lower bound in this
Proposition is a special case of Theorem 3.5.

120 N. ALON, Y. AZAR

4. C o n c l u d i n g R e m a r k s and Open P r o b l e m s

We have determined the exact behavior, up to a constant factor, of three of the
main comparison problems; sorting, merging and selecting the maximum, even when
we just want to have an e-approximation for them. There is a fourth important
comparison problem which is the general selection. We can define an ~-approximate
selection for the rank/3n, 1 < /3 < 1, ~n < e < �89 as finding an element x in the
set g whose rank is known tosat~sfy n(/3 -~ ~) -~ rN(x) < n(/3 + c). Approximate
maximum is thus the case where/3 = 1. Approximate median is the case/3 -- 1/2. It
is known that the algorithms for selection are harder than the algorithms for finding
the maximum. However the complexity of parallel selection in the comparison models

for every n and p is the same as for the maximum and is: O (p + log log(2§176 }

(see [7], [27], [121).
The exact complexity of approximate parallel selection is not known. Our lower

bound for approximate maximum holds, of course, for approximate selection as well.
On the other hand the upper bound for ~-approximate sorting gives an upper bound
for approximate selection. In fact, our methods enable us to prove a slightly better
upper bound that gives, for example, for p = n the following upper bound.

1 ' log* n - log* 1/c + 2 + log* n)
0 (log log /e-log(1-~g , n - - ~'oog ~-~/e ~ 2)

Note that this is really a better bound than the one for approximate sorting. In fact
it is not more than log* n~ log log* n times the approximate maximum lower bound.
It is interesting to find the exact complexity of approximate selection and to decide
whether it is more than the complexity for approximate maximum.
Acknowledgement. We would like to thank N. Pippenger for bringing some of the
problems considered in this paper to our attention.

References

[1] N. ALON, and Y. AZAR: Sorting, approximate sorting and searching in rounds, SIAM
J. Discrete Math. 1 (1988), 269-280.

[2] N. ALON, and Y. AZhl~: The average complexity of deterministic and randomized
parallel comparison sorting algorithms, Proc. 28th IEEE FOCS, Los Angeles, CA
1987, IEEE Press, 489-498; Also: SIAM J. Comput. 17 (1988), 1178-1192.

[3] N. ALON, and Y. AZAR: Finding an approximate maximum, SIAM J. Comput. 18
(1989), 258-267.

[4] N. ALON, and Y. AZAR: Parallel comparison algorithms for approximation problems,
Proc 29th IEEE FOCS, Yorktown Heights, NY 1988, IEEE Press, 194-203.

[5] N. ALON, Y. AZAR, and U. VISHKIN: Tight complexity bounds for parallel comparison
sorting, Proc. 27th IEEE FOCS, Toronto, 1986, 502-510.

[6] S. AKL: Parallel Sorting Algorithm, Academic Press, 1985.
[7] M. AJTAI, J. KOMLOS, W.L. STEIGER, and E. SZEMEREDI: Deterministic selection

in O(log log n) parallel time, Proc. 18th ACM STOC, Berkeley, California, 1986,
188-195.

PARALLEL COMPARISON ALGORITHMS 121

[8] M. AJTAI, J. KOMLOS, W.L. STEIGER, and E. SZEMERI~.DI: Almost sorting in one
round, Advances in Computing Research, to appear.

[9] M. AJTAI, J. KOMLOS, and E. SZEMERI~.DI: An O(nlogn) sorting network, Proc.
15th ACM STOC (1983), 1-9; Also, M. AJTAI, J. KOMLOS, and E. SZEMEREDI:
Sorting in clog n parallel steps, Combinatorica 3 (1983), 1-19.

[10] N. ALON: Expanders, sorting in rounds and superconcentrators of limited depth, Proc.
17th ACM STOC (1985), 98-102.

[11] N. ALON: Eigenvalues, geometric expanders, sorting in rounds and Ramsey Theory,
Combinatorica 6 (1986), 207-219.

[12] Y. AZAR, and N. PIPPENGER: Parallel selection, Discrete Applied Math. 27 (1990),
49-58.

[13] Y. AZAR, and U. VISHKIN: Tight comparison bounds on the complexity of parallel
sorting, SIAM J. Comput. 3 (1987), 458-464.

[14] B. BOLLOB]tS, and G. BRIGHTWELL: Graphs whose every transitive orientation con-
tains almost every relation, Israel J. Math., 59 (1987), 112-128.

[15] B. BOLLOB~,S: Extremal Graph Theory, Academic Press, London and New York, 1978.
[16] B. BOLLOBAS, and M. ROSENFELD: Sorting in one round, Israel J. Math. 38 (1981),

154-160.
[17] B. BOLLOBAS, and A. THOMASON: Parallel sorting, Discrete Applied Math. 6 (1983),

1-11.
[18] B. BOLLOBAS, and P. HELL: Sorting and Graphs, in Graphs and Orders, I. Rival ed.,

D. Reidel (1985), 169-184.
[19] B. BOLLOB.~S: Random Graphs, Academic Press (1986), Chapter 15 (Sorting algo-

rithms).
[20] A. BORODIN, and J.E. HOPCROFT: Routing, merging and sorting on parallel models

of computation, J. Comput. System Sci. 30 (1985), 130-145. Also: Proc. 14th
ACM STOC (1982), 338-344.

[21] R. H~,GGKVIST, and P. HELL: Graphs and parallel comparison algorithms, Congr.
Num. 29 (1980), 497-509.

[22] R. H.~GGKVIST, and P. HELL: Parallel sorting with constant time for comparisons,
SIAM J. Comput. 10 (1981), 465-472.

[23] R. H~,GGKVIST, and P. HELL: Sorting and merging in rounds, SIAM J. Algeb. and
Disc. Math. 3 (1982), 465 473.

[24] D.E. KNUTH: The Art of Computer Programming, 3 Sorting and Searching, Addison
Wesley 1973.

[25] C.P. KRUSKAL: Searching, merging and sorting in parallel computation, IEEE Trans.
Comput. 32 (1983), 942-946.

[26] F.T. LEIGHTON: Tight bounds on the complexity of parallel sorting, Proc. 16th ACM
STOC (1984), 71-80.

[27] N. PIPPENGER: Sorting and selecting in rounds, SIAM J. Comput. 6 (1986), 1032-1038.
[28] S. SCHEELE: Final report to office of environmental education, Dept, of Health, Edu-

cation and Welfare, Social Engineering Technology, Los Angeles, CA, 1977.
[29] Y. SHILOACH, and U. VISHKIN: Finding the maximum, merging and sorting in a

parallel model of computation, J. Algorithms 2 (1981), 88-102.

122 N. ALON, Y. AZAR : PARALLEL COMPARISON ALGORITHMS

[30] L.G. VALIANT: Parallelism in comparison problems, SIAM J. Comp. 4 (1975), 348-
355.

N. Alon

The Raymond and Beverly Sackler
Faculty of Exact Sciences
Tel Aviv University
Tel Aviv, Israel
NOGA@MATH. TAU. AC. IL

Y. Aza,r

The Raymond and Beverly Sackler
Faculty of Exact Sciences
Tel Aviv University
Tel Aviv, Israel
AZAR@TAWtJZ. STANFORD. EDU

