COMBMTORKA COMBINATORICA 11 (2) (1991) 97-122

Akadémiai Kiad6 - Springer-Verlag

PARALLEL COMPARISON ALGORITHMS FOR APPROXIMATION
PROBLEMS

N. ALON* and Y. AZAR
Received August 22, 1988

Suppose we have n elements from a totally ordered domain, and we are allowed to perform p
parallel comparisons in each time unit (=round). In this paper we determine, up to a constant factor,
the time complexity of several approximation problems in the common parallel comparison tree
model of Valiant, for all admissible values of n, p and ¢, where ¢ is an accuracy parameter determining
the quality of the required approximation. The problems considered include the approximate
maximum problem, approximate sorting and approximate merging. Our results imply as special
cases, all the known results about the time complexity for parallel sorting, parallel merging and
parallel selection of the maximum (in the comparison model), up to a constant factor. We mention
one very special but representative result concerning the approximate maximum problem; suppose
we wish to find, among the given n elements, one which belongs to the biggest n/2, where in each
round we are allowed to ask n binary comparisons. We show that log* n + O(1) rounds are both
necessary and sufficient in the best algorithm for this problem.

1. Introduction

1.1 The model and previous results

Parallel comparison algorithms received a lot of attention during the last decade.
The problems considered include sorting ([1], [2], [5], [6], [9], [10], [13], [17], [20],
[22], [24], [25], [26], [27], [30]), merging ([20], (23], [25], [29], [30]), selecting ([1],
[7], [12], [27], [30]) and approximate sorting ([1], [5], [8], {14], [16]). The common
model of computation considered in the parallel comparison model, introduced by
Valiant [30], where only comparisons are counted. In this model, during each time
unit (called a round) a set of binary comparisons is performed. The actual set of
comparisons asked is chosen according to the results of the comparisons done in the
previous rounds. The objective is to solve the problem at hand, trying to minimize
the number of comparison rounds as well as the number of comparisons performed
in each round. Note that this model ignores the time corresponding to deducing
consequences from comparisons performed, as well as communication and memory
addressing time. However, in some situations, the comparisons cost more than the
rest of the algorithm and hence this seems to be the relevant model. Moreover, any
lower bound here, applies to any comparison based algorithm.

Let n denote the number of elements we have (from a totally ordered domain),
and suppose we have p parallel processors, i.e., we are allowed to perform p com-
parisons in each round. The (worst-case) time complexity of the best deterministic

AMS subject classification (1980): 68 E 05
*Research supported in part by Allon Fellowship, by a Bat Sheva de Rothschild grant and by
the Fund for Basic Research administered by the Israel Academy of Sciences.

98 N. ALON, Y. AZAR

algorithm for each of the basic comparison problems is known, up to a constant factor,
for all admissible values of n and p. For sorting, this time is ©(logn/ log(1+p/n)), as
shown in [9], [13], [5] (and as proved in [2] the same bounds hold for the average-case
complexity, as well). Here, and throughout the paper, the notation g(n) = 0(f(n))
means, as usual, that g(n) = O(f(n)) and f(n) = O(g(n)). For finding the maxi-
mum the time complexity is ©(n/p + log((logn)/(log(2 + p/n))), as shown in [30],
and the results of [7] and [12] show that the same bounds hold for general selec-
tion. Finally, the time complexity for merging two sorted lists of n elements each is
6(n/p + log((log n)/(1og(2 + p/n))), as proved in [30], [20].

‘All the above problems are special cases of the more general corresponding
approximation problems. In these problems, one is satisfied with an approximate
solution of the problem at hand. Thus, for example, in approximate sorting we
wish to know all the order relations between pairs of elements but at most en?,
where 1/(2n2) < e < 1/4 is a given accuracy parameter (which may depend on n).
The problem of approximate merging and that of finding an approximate maximum
are defined similarly, as described in detail in the next subsection. Notice that
approximate sorting with ¢ = 1/(2n2) corresponds to usual sorting, and hence a
solution to the approximation problem contains the result for sorting as a special
case. Similarly, each of the other approximation problems is more general than the
corresponding problem it approximates.

There are several known results about approximate sorting, most of which deal
with the minimum number of comparisons p = p(n) that suffices to determine all
order relations between pairs but at most o(n?) in one round. See [16], [1], [8], [14].
The problem of finding an approximate maximum also arises naturally in various
situations, and as we show below can be solved considerably more efficiently than
that of finding the exact maximum.

1.2 The main results

We determine, up to a constant factor, the time complexity for finding an ap-
proximate maximum, for approximate sorting and for approximate merging for all
admissible values of the three parameters 7, p and €. This implies, as a special
case; all the known results about the time complexity of the corresponding com-
parison problems. In addition, it reveals certain surprising differences between the
time complexities of some of the problems and these of their approximation gen-
eralizations. All our upper bounds are obtained by explicit algorithms that apply
several known explicit expanders, and only the constants can be somewhat improved
by using random graphs instead of explicit ones. We next state our results in this
full generality. The functions appearing in these results are somewhat complicated,
and hence it is not easy to see the exact implications of the theorems below. It
is thus worth mentioning, before the statements of the theorems below, one some-
what surprising special case which appears in [3] and answers a question raised by
N. Pippenger and by J. Komlés. Suppose we wish to find, among our n elements, an
element which belongs to the biggest n/2, where in each round we allow n compar-
isons. We show in [3] that log* n— 4 rounds are necessary and log* n+ 2 are sufficient
for this problem. Here log* n denotes the minimum number & such that, starting
with 7, k applications of logarithms in base 2 suffice to reach a number smaller than
or equal to 1.

We now turn to the general problems.

PARALLEL COMPARISON ALGORITHMS 99

For integers n > 2 and p, 1 < p < (Z), and for a real number €, 1/n < ¢ <

1/2, let r{n,p,¢) denote the time complexity of the best deterministic comparison
algorithm that finds, among n elements, an element whose rank belongs to the top en
ranks, using p comparisons in each round. The case ¢ = 1/2 corresponds to finding
an element in the top n/2 ranks and hence the result stated above and proved in 3]
is:

Proposition 1.0. log*n — 4 < r(n,n,1/2) <log*n + 2.
For ¢ = 1/n, the problem is that of finding the exact maximum, and the case
p = 1 corresponds to serial algorithms. The general case is the following:

Theorem 1.1. For all admissible n, p, €

n log(1/¢) s N n)
,p,€) =0 = +log —=—"—— +1 -1 1+-—].
r(mp-e) <p % fog(2 + p/n) s o (p)

Thus for alin, p <2n, ¢
n 1 *
r(n,p,e) =© > +loglogg +log*n

and for alln, p > 2n, ¢

log(1/e)

r(n,p,€) = @(log Tog(p/n) +log*n — log*(p/n)),

For € = 1/n this theorem reduces to Valiant’s result about finding the maximum
[30]. For € = 1/2, p = n this reduces to our Proposition 1.0 (with a somewhat cruder
estimate).

Next we consider approximate sorting. Forn > 2,1 <p < (Z)’ and 1/(2n?) <

€ < 1/4, let a(n, p, €) denote the time complexity of the best deterministic comparison
algorithm, that uses p comparisons in each round and finds, given n elements, all
the order relations between pairs but at most en?. The results of [16], [1], [8], [14]
deal with the minimum p for which a(n,p,e) = 1 for some ¢ = o(1). Note that
a precise determination of a(n,p,¢) contains all the known results about the time
complexity of deterministic comparison sorting or approximate sorting algorithms.
The following result determines a(n,p,€) up to a constant factor, for all possible n,

P, €.
Theorem 1.2. For all admissible n, p, €

_ log(1/€) K 1ok P
a(n,p,s)-@(log(1+p/n)+log n — log (1+n) .
Thus, for p < 2n,

a(n,p,e) = G(ZL%I/E) + log* n),

100 N. ALON, Y. AZAR

and for p > 2n,

a(n,p,€) = @(%(% +log* n — log* (%))

For € = 1/(2n?) this theorem corresponds to sorting, and gives the known
O(logn/log(1 + p/n))

bound (which is ©((nlogn)/p) for p < 2n and is O(logn/ log(p/n)) for p > 2n), (see
9], [13], [6]). Notice that for p = n and for any ¢ > 1/2103* " a(n,n,e) = O(log* n).
By Theorem 1.1, Q(log* n) rounds are required (with p = n) even if we wish to find
one element known to be greater than n/2 others. By the last equality, O(log* n)
rounds are already sufficient to get almost all the order relations between pairs.

Finally, we consider the problem of approximate merging. In this case the results
and the methods are simpler, (the function log* does not appear in the statement
of the result), and are similar to the methods of [30], [20]. For n, 1 < p < n? and
1/n? < e < 1/2, let m{n,p,e) denote the time complexity of the best comparison
merging algorithm, that uses p comparisons in each round and finds, given 2 sorted
lists, each of size n, all the order relation between pairs but at most en?.

The results of [30], [20] deal with full merging, i.e. the case ¢ < 1/n?. The
following theorem determines m(n,p,€), up to a constant factor, for all admissible
n, p, €.

Theorem 1.3. For all admissible n,pand1/n<e<1/2

_ 1 logl/e
m(n,p,e) = @(ep +1lo 10g(2+sp)>'

Thus for p < 2/e, m(n,p,e) = ©(1/(ep) + loglog 1/¢) and for p > 2/¢,

logl/e
m(n,p,e) = G)<log T()gg_e/zj_)

For the case ¢ < 1/n, the bounds are the same as for ¢ = 1/n (up to a constant
factor), which are the same bounds as for exact merging:

n logn)
O -+log—m——|.
(p 8 log(2 + p/n)

1.3 Consequences of the results

As already mentioned, Theorems 1.1, 1.2 and 1.3 include, as special cases, all
the known results for the time complexities of deterministic parallel comparison
algorithms for sorting, merging and finding the maximum, up to a constant factor.
However, it seems that the most interesting consequence of these theorems is the fact
that some of the approximation problems can be solved much more efficiently than
their precise versions. This corresponds to the log* terms that appear in the results

PARALLEL COMPARISON ALGORITHMS 101

for the approximation problems. To be specific, consider, for example, the special
case considered in Proposition 1.0. This corresponds to the approzimate mazimum
problem, i.e., the problem of finding, among n elements, an element whose rank
belongs to the top n/2 ranks, using n comparisons in each round. It is trivial to
show that in the serial comparison model this problem requires n/2 comparisons:
only a constant factor better than the problem of finding the exact maximum. It is
therefore rather surprising that with n comparisons in each round this problem can
be solved much faster than that of finding the exact maximum in the same conditions.
As shown in Proposition 1.0, log* n + ©(1) rounds are both necessary and sufficient
for finding an approximate maximum among n elements, using n comparisons in
each round. This is considerably faster than the best algorithm for finding the
exact maximum with n comparisons in each round, which requires, as shown in [30],
loglog n+©(1) rounds. Moreover, as shown in Theorem 1.1, O(log* n) rounds suffice

to find an element in the top n/ 22log " ranks, i.e., a rather good approximation for
the maximum (and, in fact, by Theorem 1.2 that many rounds suffice for finding good
approximation for any other rank). In several cases, the parallel comparison model
seems to be the relevant model. An example is the test of consumer preferences
among n items (see [28]). If we wish to find the best choice of a consumer (with n
comparisons in each round) loglogn + ©(1) rounds are required. On the other hand,
if we are satisfied with the more modest choice of an almost best candidate (say,
finding an item in the top n/1, 000,000 ones), log* n + ©(1) rounds suffice (and are
also necessary). As our algorithm for the upper bound can be described explicitly,
such a choice can actually be done in such a small number of rounds.

We say that a parallel algorithm achieves optimal speed up if the product of
its running time by the number of processors it uses is equal, up to a constant
factor, to the running time of the best serial algorithm for the same problem. ILe., if
T(n) - p(n) = O(Seq(n)), where p(n) is the number of processors, T'(n) and Seq(n)
are the running times of the parallel algorithm and the best serial one, respectively,
and n is the size of the input. It is easy to see that if 7/(n) > T(n) and there
is an optimal speed up algorithm with running time T'(n), then there is also an
optimal speed up algorithm for the same problem with running time T/(n). The
parallelism break point of a problem is the minimum T'(n) so that there is an optimal
speed up algorithm with running time T'(n). A considerable amount of effort in the
study of parallel algorithms is done in attempts of trying to identify the break points
of various algorithmic problems. The break point for sorting n elements (in the
comparison model) is ©(logn), as follows from the results of [9], [5], [13]. The break
point of merging two lists of size n is ©(loglogn), (see [20], [25]), and the break
point for selection is also ©(loglogn), (see [30], [7], [12]). Theorems 1.1, 1.2 and
1.3 supply the break points of each of the approximation problems considered here.
Notice that as the accuracy parameter ¢ varies so does the corresponding problem
and its break point. Consequently, we obtain the previously known break points
(and, in particular, for the extreme values of £, we obtain the previously known
break points for the non-approximation problems, mentioned above). As a special
case let us note that Theorem 1.1 shows that ©(log™* n) is the parallelism break point
of the approximate maximum problem, i.e., of the problem of finding an element
among the top n/2 ones.

102 N. ALON, Y. AZAR

The rest of this paper is organized as follows: Section 2 includes the proofs of the
lower bounds in all the theorems. In Section 3 the corresponding upper bounds are
proved. Section 4 contains some concluding remarks and results about approximate
selection, where the exact complexity is still open. The proofs of Sections 2 and 3 are
quite lengthy and complicated. They combine certain probabilistic arguments and
results from Extremal Graph Theory, with various properties of random graphs (or
explicit expanders) and several known results about selecting and sorting in rounds.

2. The Lower Bounds

In this section we prove the lower bounds for all the problems, i.e., for finding
the approximate maximum, for approximate sorting and at the end for approximate
merging. We split the proofs into several theorems and lemmas.

We start (2.1-2.5) with a crucial special case for the approximate maximum
problem; p > n and £ = 1/2. Define @ = p/n. We show that in this case
log* n — log* a — O(1) rounds are needed. The proof here is a modified version of
the one given in our previous paper [3], which considers the case p=n and e = 1/2.
Afterwards we complete the proof of the lower bound by combining the proof for this
case with a modification of Valiant’s lower bound (2.6) and the serial lower bound
for the maximum problem. Next we consider approximate sorting, prove a serial
lower bound (2.7), a lower bound that deals with algorithms that end after £ rounds
(2.8) and complete the proof by combining these bounds (2.9) with the approximate
maximum bounds. Finally we deal with approximate merging. We prove a serial
lower bound (2.10) and a lower bound for p > 4/¢ (2.11) and combine them to get
the desired lower bound.

The case p = n and € = 1/2 of the approximate maximum problem is considered
in [3]). The proof of the lower bound for the case p > n is very similar, but contains
several additional complications and is presented below. As usual we define, for

k—
a > 1and k > 0, ak) by a® = 1 and o®) = a“(b for k > 1 and put
log*n = min{k : 2(k) > n}. We also define for @, ¢ > 1 and k > 1 alk:@) by

all®) = qq and a(k®) = a““c Le) for k> 2.

There is an obvious, useful correspondence that associates each round of any
comparison algorithm in the parallel comparison model with a graph whose set of
vertices is the set of elements we have. The (undirected) edges of this graph are just
the pairs compared during the round. The answer to each comparison corresponds to
orienting the corresponding edge from the larger element to the smaller. Thus in each
round we get an acyclic orientation of the corresponding graph, and the transitive
closure of the union of the r oriented graphs obtained until round r represents the
set of all pairs of elements whose relative order is known at the end of round r.

It is convenient to establish the lower bound by considering the following (full
information) game, called the orientation game, and played by two players, the
graphs player and the order player. Let V be a fixed set of n vertices. The game
consists of rounds. In the first round the graphs player presents an undirected graph
G1 on V with at most an edges and the order player chooses an acyclic orientation
H; of G1, and shows it to the graphs player, thus ending the first round. In the
second round the graphs player chooses again, an undirected graph G with at most

PARALLEL COMPARISON ALGORITHMS 103

an edges on V, and the order player gives it an acyclic orientation Ha, consistent
with Hp (i.e., the union of H; and Hj is also acyclic), which he presents to the
graphs player. The game continues in the same manner; in round ¢ the graphs player
chooses an undirected graph G; with at most an edges on V, and the order player
gives it an acyclic orientation Hj;, such that the union H{ U ... U H; is also acyclic.
The game ends when, after, say, round r, there is a vertex v in V whose outdegree
in the transitive closure of H1 U...U Hy is at least n/2. The objective of the graphs
player is to end the game as early as possible, and that of the order player is to end
it as late as possible. The following fact states the (obvious) connection between the
orientation game and approximate maximum problem.

Proposition 2.1. The graphs player can end the orientation game in r rounds if and
only if there is a comparison algorithm that finds an approximate maximum among n
elements (i.e., an element whose rank is in the top n/2 ranks), using an comparisons
in each round, in r rounds. |

In view of the last proposition, a proof of existence of a strategy for the order
player that enables him to avoid ending the orientation game in r rounds implies
that + 1 is a lower bound for the time complexity of the approximate maximum
problem.

The next proposition is our main tool for establishing the existence of such a
strategy for r = log*n — log* a — 5.

Proposition 2.2. There exists a strategy for the order player to maintain, for every
d > 1, the following property P(d) of the directed acyclic graph constructed during
the game.

Property P(d): Let H(d) = Hy U...U Hy be the union of the oriented graphs
constructed in the first d rounds. Then there is a subset Vi C V of size at most

n n n
]VOIS§+E+'“+Q_‘11_2

and a proper D = 2048(%%) _vertex-coloring of the induced subgraph of H (d) on
V — Vp with color classes Vi, Va, ..., Vp (some of which may be empty), such
that for each i > j > 1 and each v € V;, v has at most 2°~7~2 neighbors in V;.
Furthermore; for every 1 > j > 0 any edge of H(d) that joins a member of V; to a
member of V; is directed from V; to V}.

Proof. We apply induction on d. For d = 1, the graph G; = (V, £1) constructed by
the graphs player has at most na edges. Let Vg be the set of all vertices in V whose
degree is at least 32a. Clearly

(2.1) [Vool < n/16

Put U =V — Vg and let K be the induced subgraph of G on U. As the maximum
degree in K is less than 32a, K has, by a standard, easy result from extremal graph
theory (see, e.g., [15, pp.222]) a proper vertex — coloring by 32a colors and hence,
certainly, a proper vertex coloring by 2048a colors. Let Uy, Us, ..., Usgqgq be the
color classes. For every vertex u of K, let N(u) denote the set of all its neighbors in
K. For a permutation m of 1, 2, ..., 2048 and any vertex u of K define the 7-degree

104 N. ALON, Y. AZAR

i=1
d(m,u) of u as follows: let i satisfy u € Uy ;) then d(m,u) = > |N(u) N Uyr(;)|/2°77.
j=1
We claim that the expected value of d(m, u) over all permutations 7 of {1,...,2048a},
is at most 32/2048 = 1/64. Indeed, for a random permutation 7 the probability
that a fixed neighbor v of u contributes 1/2" to d(m,u) is at most 1/(2048c) for
every fixed r > 0. Hence, each neighbor contributes to this expected value at most
1/(2048a) 5~ 1/2" = 1/(2048a) and the desired result follows, since |N(u)| < 32¢.
>0

Consider now the sum Y d(m,u). The expected value of this sum (over all 7’s)
uwelU
is at most |U|/64, by the preceding paragraph. Hence, there is a fixed permutation
o such that Y d(o,u) <|U|/64. Put Vo1 = {u € U | d(o,u) > 1/4}. Clearly
uelU

Vol < 4-(U|/64 < [U[/16 < n/16.

Define V = Voo U Vg1, W = U ~ V1 = V — V3. The last inequality together with
inequality (2.1) gives

Vo] < n/8.
Let F be the induced subgraph of G1 on W and define V; = U, ;) N W 1<i<

2048a). The V;'s clearly form a proper vertex coloring of F. Also, for every i,
1 < ¢ <2048« and every v € V;

i—1
S IN@)NV;/2 < 1/4
j=1

and hence v has at most 2¢=7~2 peighbors in Vj for each j, 1 < j < i. Let Hy be any
acyclic orientation of Gy in which all edges that join a member of V; to a member of-
V;, where ¢ > j > 1, are directed from V; to V; (the edges inside Vj can be directed in
an arbitrary acyclic manner). Clearly H(1) = Hj satisfies the property P(1). Thus,
the order player can orient G according to Hi. This completes the proof of the case
d=1.

Continuing the induction, we now assume that H(r) has property P(r) for all
r < d, and prove that the order player can always guarantee that H(d) will have
property P(d). We start by proving the following simple lemma.

Lemma 2.3. Let F be a directed acyclic graph with a proper g-vertex coloring with
color classes W1, W,, ..., W,. Suppose that for each g > i > j > 1 and eachv € W},
v_has at most 20"3=2 neighbors in W}, and that every edge of F whose ends are in
W; and W; for some ¢ > j is directed from W; to W;. Then the outdegree of every
vertex of F' in the transitive closure of F is smaller than 49.

Proof. Let v be an arbitrary vertex of F. The outdegree of v in the transitive closure
of F is obviously smaller than or equal to the total number of directed paths in F
that start from v. Suppose v € W;. Each such directed path must be of the from v,
Vigy Vigy « -+ Vi, Where i > g > 43 > ... > ir 2 1, viy € Wiy, ..., v;, € W;,. There
are 2°~1 possibilities for choosing 42, i3, ..., ir. Also, as each vertex of the path
is a neighbor of the previous one, there are at most *~*2~2 possible choices for Vigs

PARALLEL COMPARISON ALGORITHMS 105

2i2~43~2 possible choice for Vig (for each fixed choice of v;,), etc. Hence, the total
number of paths is at most 2i~l.gi~ip~2 9ig—i3—2. .9tr-1-ir=2 < 99.0i~ir £ 49,
This completes the proof of the lemma.]

Returning to the proof of Proposition 2.2, recall that d > 2 and that by the
induction hypothesis H(d — 1) has property P(d—1). Thus, there is a subset Vi C V
satisfying

n n n
2.2 Vol €< = 4+ — 4+ -+
(22) IOI—S 16 2d+1

and a proper D = 2048(4~1%)_vertex-coloring of the induced subgraph of H(d — 1)
on V — V; with color classes Vi, Vs, ..., Vp satisfying the conditions of property
P(d—-1). Put U =V — V), let F be the induced subgraph of H(d — 1) on U and
let T = (U, E(T)) be the transitive closure of F. Let G4 = (V, E;) be the graph
constructed by the graphs player in round number d. Let Vg be the set of all vertices
in U whose degree in G, is at least o - 2414 . 4D and define

Voo = Voo U{u € U : Jv € Vo with (v,u) € E(T)}.

Since G4 has at most na edges, ;V}m < na/(a24+3 . 4P). Also, by Lemma 2.3, the
outdegree of each v € Vg in T is at most 4P _ 1. Hence

(2.3) Vool < n/2913 .

Let G be the induced subgraph of G4 on U — Vy. Then the maximum degree in Gis
smaller than o294 .40, For eachi, 1 <¢ < D, let G denote the induced subgraph
of G on (U ~Vyo)NV;. As each G is a subgraph of G, it has a proper vertex coloring
with @294 . 40 colors. For each i, 1 < i < D, fix a proper n;-vertex-coloring of G

with color classes Uy, 11, Un;+2, - -+ UN;+n, (some of which may be empty) where
i—1
N; = Y, n; and
Jj=1
D
(24) n; >100-22¥7.1600 for each 1 < < Dand Y _n; = 20480
i=1

(Notice that since D = 2048(d‘1"’), d>2,a< DK< 2P there is such a choice fgr
the n;’s). For every vertex u of G, let N(u) denote the set of all its neighbors in G.

Let us call a permutation 7 of 1, 2, 3, ..., 2?__1 n; legal if it maps each set of the
form {N; +1,...,N; + n;} into itself (and only permutes the elements inside these
sets among themselves). For any vertex u of G and any legal permutation «, define
the m — degree d(m,u) as follows; let k satisfy u € Uy (y), then

k-1

d(m,u) =Y [N(u) NUy(l/2°77
j=1 '

106 N. ALON, Y. AZAR

D .
We claim that the expected value of d(r,u) over all [] n;! legal permutations, is at
i=1
most |N(u)|/ minj<;<pn; <1/ (100-24+3.4D) . Indeed, consider a fixed neighbor v of

w. If v belongs, like u, to the same graph ﬁk, then the probability that for a random
legal permutation 7, v will contribute 1/2" to d(m,u) is at most 1/ny, for each fixed
r > 0. Otherwise, it is easy to check that this probability is even smaller. Hence,
each neighbor contributes to this expected value at most (3,501/2") /ng = 1/ng,
and the claim follows.

Consider now the sum Y d(w,u), where u ranges over all vertices of G. The
expected value of this sum (over all permutations) is at most |V (G]/(100 - 243 .
4Py < n/(100 - 2943 . 4D). Hence, there is a fixed legal permutation o such that
Yuev (@) (0, v) < n/(100- 24+3 . 4D) . Define Vo = {u € V(G) : d(o,u) > 1/100}
and Vo1 = Vo U{u € V(G) : Fv € Vo with (v,u) € E(T)}. Clearly |Vg1| <
n/(2%+3 . 4P and hence, by Lemma 2.3,

(2.5) [Vo1] < n/24+3,
Put Vg =VoU VU Vp1, W=V - Vp. By (2.2), (2.3) and (2.5)

,.n N n

K=4+—=4+...4+ .

Mlsg+++uam
Let G be the induced subgraph of G on W and define V/ = Uy;) N W (1 <
i < 20480 = 2048(d"")). The sets Vi, clearly form a proper vertex coloring of G.
Moreover, as each Uy, is an independent set in H(d ~ 1), the sets V; actually form a

proper vertex coloring of H(d — 1), as well. Moreover, for every i, 1 <i < 2048(4:2)
every v € V/ satisfies

i—1

Y IN() V|27 < 1/100,

j=1
where N(v) is the set of all neighbors of v in G. Thus, for each fixed j, 1 < j < i, v
has at most 277 /100 neighbors in Vj' . Let H; be any acyclic orientation of the edges
of G4 obtained by orienting all the edges that join a member of V' and a member of
Vj’ , where ¢ > j > 0, from V] to Vj' . The edges inside V] are oriented in an arbitrary

acyclic order consistent with the order given on H(d—1). Notice that all the edges of
H(d — 1) that do not lie inside V] are also oriented from V; to V’ withi>j>0. In

order to show that H(d) = H(d—1)U Hy has the property P(d) it remains to check
that for every ¢ > j > 1; every v € V/ has at most 292 neighbors in V’ By the

construction, v has at most 2°~7 /100 neighbors in VJ in the new graph Hd Recall

that each Vi, is a subset of one of the sets Vj corresponding to the graph H(d — 1).
Suppose V/ C Vg, Vj’ CV,. Thenk >1 Ifl = korl=k—1 then, since v has at

most |28~~2] = 0 neighbors in V; in the graph H(d — 1), it follows that in H(d) v

PARALLEL COMPARISON ALGORITHMS 107

has at most 2°=7 /100 < 2*=3=2 neighbors in V!, as needed. If | < k — 2, observe that
our construction implies that

(z'—j)2(k—l—1)lg;i<xaniz(k—l~1)-100-22d+7-160>(k~l).1002200.
s

Thus, in this case the total number of neighbors of v in Vj' is at most 2:77/100 +
gk—1-2 < 22—3/100+ 2(i—j)/100 < 9i—j—2

We conclude that the order player can orient G4 according to Hy, and maintain
the property P(d) of the graph H(d) = H(d— 1)U H;. This completes the induction
and the proof of Proposition 2.2. (]

The result stated in Theorem 2.5 below, is an easy consequence of Proposition
2.2. and the following simple lemma.

Theorem 2.4. For every d > 1, 2(d+3+10g" @) > 39 9048(d@).

Proof. We apply induction on d. For d=1 the inequality is trivial as 9(4+log") >
*
2(4)-(log" @) > 916, - 39.2048(1,%) | Assuming it holds for d—1, we prove it for d>2. By
* *
assumption 2(d+2+log™ a) > 32 2048(@-1.%) Hence 9(d+3+log™ @) 22(d+2+log) >
23220480471%) _ (921 9112048119 _ 92112048041 94912048(471) o g9

(2048) (@), 1

Theorem 2.5. The order player can avoid ending the orientation game during the
first log* n — log* & — 5 rounds. Hence, by Proposition 2.1, the time required for
finding an approximate maximum among n elements using an comparisons in each
round is at least log* n — log* a — 4.

Proof. Clearly we may assume that log*n ~ log*a — 5 > 0. By Proposition
2.2, the order player can maintain the property P(d) for each of the graphs H(d)
constructed during the algorithm. Notice that by Lemma 2.3, the outdegree of
every vertex in the transitive closure of a graph that satisfies P(d) is at most

4P 4 n/8 + n/16 + ... + n/(28%2) < 4P 4+ n/4, where D = 2048(%0). It thus

follows that if 42048(m) < n/4 then the graphs player can keep playing for at least
741 rounds. Therefore, by Lemma 2.4, the assertion of the theorem will follow if for

3+log*
r = log*n — log* @ — 5 the inequality 42(r+ Hog™ @) /3 < n/4 holds. Since for r > 0

log* *
4. 420’+3+ 8") /3 < 2(r+4+log” @) this follows immediately from the definition of
log* n. 1

log 1 E)

Lemma 2.6. Forp > 2n, r(n,p,e) =% (log T

Proof. The proof is an easy modification of Valiant’s proof for the maximum problem
(see [30]).

If the algorithm consists of s rounds and m denotes the number of candidates
for the maximum after these s rounds, the adversary can ensure that m/(m + 2p) >

108 N. ALON, Y. AZAR

(n/(n+ 2p))2s. (This follows easily from Turdn’s Theorem, as shown in [30]). But
clearly m < en, therefore, since p > 2n

log 2% _ (1 logp/m\ _ (| log(p/n)+log(1/e)
nt2p ~ A\ Bogp/mn) T \% log(p/n)
log —; gp/n og(p/n

log1/e 2
logp/n

8 > log

>0 (log

Proof of the lower bound of Theorem 1.1.
Clearly at least (1 — &)n > n/2 comparisons are needed, even in the serial case,
to conclude that an element belongs to the top en ones. Hence r(n,p,e) > n/(2p) =

Q(n/p), for every p > 1. A lower bound of Q (log 1%)5;7/:’) for p > 2n follows from

Lemma 2.6 and the bound Q(loglog1/e) for p < 2n is the lower bound from that
lemma, even for p = 2n.

The Q(log* n — log*(1 + p/n)) term follows from Theorem 2.5 for p > n (even
for ¢ = 1/2). For p < n we simply take the bound of Theorem 2.5 for p = n and
e=1/2.]

Theorem 2.7. Any serial algorithm that finds all but at most en® of the order
relations between n elements (1/n? < ¢ < 1/4) needs at least Q(nlog(1/¢)) rounds.

Proof. The proof is by a simple counting argument. For, say, £ > 1/100 the assertion
is trivial (since at least one element is known to be in the top 0.8n ones).. We thus
assume € < 1/100. First, we estimate the number of orders that fit one given output
of the algorithm.

If we have all the order relations but en? of them, then there are at least nf2
elements whose relative order to all but 2¢n elements is known. Hence, the number
of orders consistent with these relations is at most

n\ /n n ! /2
(5) (3)r-aonrre = ==

Therefore the number of distinct outputs of the algorithm is at least

nl) @) _ (L)“ﬂ_

- 4ee

ey @yt > eny

Hence the number of rounds needed is at least

log (Zi—e)n/z = glog (1) = Q(nlog(1/¢)) 1

4ee

Define c(k,n, m) to be the total number of comparisons needed to sort n elements

. . n
in k rounds up to at most m unknown order relations between pairs, 0 < m < (2).

PAR