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Abstract. The worst case number of compansons needed for sorting or selecting it

s are obtained

nofied & 2 20 e YYlog 1)) comparnisens are required o sort a1 clements in A rounds
us known hounds by a factor

The

(a) For
(O(n'""*log m) are known 10 be sufficient.) This improves the pre
(log a)" *. which separates deterministic algorithms from randomized ones. as there are randomized algor
whose expected number of comparisons is {a' * ')

(b) Forevery fixed k & 2, n' " “Yiog ny ) comparisons ¢ requered 10 select the median from
n elements in & rounds. (Xa'* = Milag ny ~ ¥ = 1) are known 10 be sufficient.) This improses the previous
known bounds by a factor of (log /"™ " and separates the problem of finding the median from that of finding
the minimum, as (X ") comparisons suffice for inding the minimum.

(¢} We show that “approximate sorting™ in one round requires asymptotically more than ¢ n log # com-
pansons. for every constant ¢. and can be done in O(n log n log log n) comparsons. This settles a problem
raised bs Rabin
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1. Introduction. Sorting and selecting are two of the principal problems in computer
science. As mentioned in [Kn73], existing computers devote approximately one quarier
of their time to sorting. The advent of parallel computers stimulated intensive research
of sorting and selecting with respect to various models of parallel computation. Extensive
lists of references that recorded this activity are given in [Ak85] and [BHe85].

Most of the fastest serial and parallel sorting or selecting algorithms are based on
binary compansons. In these algorithms the number of companisons is typically the
primary measure of time complexity. Any lower bound on the number of comparisons
required for a problem. clearly implies a time lower bound for such algorithms. In the
present paper. we restricl our attention to a parallel companson model, introduced by
Valiant [Va73] (see also [BHoR2]). where only comparisons are counted. In measuring
ume complexity within this model, we do not count steps in which communication
among the processors, movement of data, and memory addressing are performed. We
also avoid counting steps in which consequences are deduced from comparisons that
were performed. Note that our lower bounds apply to all companson-based algorithms
in any model.

In a senal decision tree mode!, we wish to minimize the number of comparisons.
The goal of an algorithm in a parallel comparison model is 10 minimize the number of
comparison rounds as well as the total number of compansons performed.

We consider three prablems: sorting. “approximate sortng.” and selecting,

1.1. Sorting in rounds. Let k stand for the number of comparnison rounds (time) of
an algonthm in the parallel comparison model. Let c(k, n) denote the mnimuem iotal
number of compansons required to sort any n elements in & rounds (over all possible
algonthms).
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270 N, ALON AND Y. AZAR

Clearly ¢(1. m) = (%). This is since any sorting algorithm that works in one round
must perform all comparisons. Otherwise, suppose that a dispensed comparison is between
two successive elements in the sorted order: the algorithm will clearly fail to distinguish
their order. On the other hand, performing all comparisons simultaneously vields a one
round algorithm with that many comparisons.

In general. 1t is known that for every fixed k

Q' "y Selk, S Ot T log n).

ﬁg.m upper bound mm. due to Bollobas and Hell [BHe85] (see also [Pi87]). The lower
bound is due to Haggkvist and Hell [HH81) (see also [AV87]. [AAVE6] for the case of
not necessarily constant k).

.msus the first nontrivial case, that of sorting n elements in two rounds, received
considerable attention. Higgkvist and Hell [HHS8 1] showed that

1 s
mxw,. “o = c(2,n)=O(n*" log n).

Bollobas and Thomason [BT83] improved it and showed that
o sc(2,m =0 log n)

forany ¢, < Y2/3.if n > nicy).
. Explicit algorithms for sorting in two rounds with o{n*) comparisons are given in
[Pi85], [Al185]. and [Pi87].
Here we (slightly} improve both bounds and prove Theorem 1.1.
THEOREM 1.1.

A Viog n) = ¢(2,n) = O 2 i_nukn
Sam log n

We also prove the following theorem.
THEGREM 1.2, For every fixed k = 2

ok, n) = Qn' * logn)'t).

This improves on Héggkvist and Hell's lower bound mentioned above. Notice that
.En only difference between our improved lower bound and the previously known one.
is an extra factor of (log m)*/*. Nevertheless. this is precisely the factor that separates the
asymptotic behavior of the best randomized algorithm (which is ©(n' * V%), see [AART]
[AAVE6]) from that of the best deterministic one. 4

2 ...www:./m:_m_m sorting in one round. An algorithm that approximately sorts »
elements in one round with p comparisons is a set of p pairs of efement., (g,. b ’ y from
the set _ of n elements we have to sort. such that for each possible set of answers for the
P questions “is a, < b, the relative order of all but o{#°) ol the pairs of clements of 17
will be known.

Note that Z:.,J an algorithm is simply the first round of a 1wo rounds sorting algorithm
Mwmwcﬁﬂa.ﬂou:_% A n.::._?_:m:_d the mnnc:a round. Let a(n) denote the minimum p
§ 141 an approximate sorting algorithm in one round with p comparisons exists.
wo:ovwm and Rosenfeld studied these algonthms in [BR81] (also see [Dile8S]) and their
results imply that for every fixed e > 0. w(n) = A{n"" i

M. Rabin (cf. [BHe85)) asked whethe = i : q
W s i ed whether a(n) ({n log m). The next proposiion
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THEOREM 1.3. (i) lim,—. a(m/n log n — . Mure precisely, for every ¢ > 0, any
Iwo rownds sorting algorithm that uses at most en’ comparisons in the second round must
wse QU1 /e log n) comparisons in the first rowund.

(i) aln) = O(n log n log log n).

More precisely, there is a two rounds sorting algorithm that uses

{n log n log log n)

comparisons in the first round and O{/log log log ) = o{n*) comparison in the sec-
ond round.

Ajtai et al. [AKSS86b] have recently proved. independently of our work, a slightiv
weaker result than Theorem 1.3. Their bounds are:

Q(n log n) = a(n) S XAn log nlog log nwin))

where wi(n) is any function that tends to infinity as n tends to infinity. (Note that this
lower bound does not suffice to setile Rabin’s problem.) More recently. Bollobas and
Brightwell [BBR7) improved the upper bound and showed that

aln) = O(n log n log log n-w(n)/log log log n},
where w(n) is as above.

1.3. Selecting in a fixed number of rounds. Higgkvist and Hell [HHE0] showed
that @¢n' = "' = Y) comparisons are necessary for selection in & rounds and tha
O(n' ~ " - ) comparisons are sufficient for finding the minimum (or selecting any
element of a fixed rank) among n elements in k rounds. Pippenger {Pi87] proved that
Otn' * M = Njog my? ~ ¥ - My suffice for selecting the median (or any clement ofa
given rank) in k rounds. A natural problem that arises here is whether the median can
be found as efficiently as the minimum. Solving this m:oa_na we prove that finding the
median in & rounds requires 2(n' * " ~ (log m** ~ ') comparisons. This separates
the asymptotic number of comparisons needed for selecting the median from that needed
for selecting the minimum. We also slightly improve the best known upper bounds for
selection, which are given in [Pi87]. Let s(k, n) denote the minimum total worst case
number of comparisons needed to select the median of n elements in k rounds. Qur
result is the following theorem.

THEOREN 1.4, For every fixed k = 2

ot T T Mlog Y T M) = slken

QT.Z - 1 - :CDm xwu - 203 ~ :\QOW log ‘.:_ -zt - .J.

A

All our results are proved by combining probabilistic arguments with various results
from extremal graph theory. The paper is organized as follows. In § 2 we first prove a
lemma about proper vertex colorings of graphs and then deduce from it the lower bownds
of Theorems 1.1. 1.2, 1.3. and 1.4. In § 3 we combine certain probabilistic arguments
with some of the ideas of [AKSS86a), [BT83], and [Pi87] 10 obtain all the upper bounds.

2. The lower bounds.

2.1. The parallel computation model. Let I be a set of n elements taken from 2
totally ordered domain. The paratlel comparison model of computarion allows algonthms
that work as fallows, The algorithm consists of timesteps catled rounds. In cach roand
binary comparisons are performed sim altancously. The input for each comparison are
two elements of 1. The output of cach comparison is one of the following two! < o >,
v between two elements of 1. This can be done mth-

Note that we do not allow equ
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out loss of generality, since we define the order between two equal input elements to be
the order of their indices. Each itern may take part in several comparisons during the
same round.

Our discussion uses the following correspondence between each round and a graph.
The elements are the vertices. Each comparison to be performed is an undirected edge
that connects its input elements. Each computation results in orienting this edge from
the largest element to the smallest. Thus in each round we gel an acyclic orientation of
the corresponding graph. and the transitive closure of the union of the r oriented graphs
obtained until round r represents the set of all pairs of elements whose relative order is
known at the end of round r.

Suppose we performed r rounds where r > 0 is some integer. Consider any function
of 1" that can be computed using the comparisons performed in these r rounds without
any further comparisons of elements in 1. Our model defines such a function to be
compuitable following round r. Note that this definition suppresses all computational steps
that do not involve comparisons of elements in I Which comparisons to perform at
round r + | and the input for each such comparison should be functions which are
computable following round r. We are interested in algorithms that son the elements of
I or select an element of a given rank from 1",

2.2. A graph theoretic lemma. The following lemma is crucial in all our lower
bound proofs.

LEMMA 2.1. Every graph with n vertices and ar most dn edges. d 2 | integer, contains
an induced subgraph with [nf4) vertices and maximum degree < 4d, which has a 4d
proper vertex coloring with color classes V,, Vs, -+ Vigsuch that foreach | £ i, j = 4d
and each v € V,, v has at most 2" 7/' "1 neighbors in V.

Proof. Let G = (¥, E) be a graph with n vertices and at most dn edges. Omit
successively the highest degree vertex [n/2] times. We are left with an induced subgraph
K on a set L of (/21 vertices and maximum degree < 4d (otherwise, we omitted at least
in/2)-4d = nd edges) and with at most {nd edges (we omitted at least half of the edges).
By a standard result from extremal graph theorv, K has a proper 4d vertex coloring. Let
Ly, -+ -, Uiy be the color classes. For every vertex 1 of K, let N(1t) denote the set of all
neighbors of u in K. For a permutation = of I, 2, -+ - , 4d and any vertex u of K, define
the w-degree d(x, 1) of v as follows. Let i satishv w« € U,y then

a4
dix, W)= T 1NN Uyplf2 !

|
Now consider the sum 2, ¢ (- d(=, 1). We claim that the expected value of this sum over
all the permutations = of { 1. - - - , 4d | is at most | L']. Indeed for a random permutation
m, the probability that a fixed edge |w. v} in [ contributes 2-1/2'. r > 0, 10 the sum
(172710 d{x. iy and 1/2" to (=, v)) is at most (dd — A £ 1/2d for all ¥ > 0. But there
are at most {nd edges and therefore this sum is at most {nd- 1/2d Z, . 5 2/2" S n/2 =
| U]. Hence. there is a fixed permutation o such that %, . o dlo, 1) = (U], It follows
that d{o, 1) = 2 for at least |L'|/2 = n/4 vertices of K. Let H be a set of (#1741 of these
vertices. Let /7 be the induced subgraph of (¢ on 1, and define V, = U,,, N {1 =1 =
4d). Clearly for every 1 = 1.7 < 4d and everv v e |, H“._; y [y P 240 2 2 and
thus v has at most 2" neighbors in 1. This completes the prool. O
h _.r.n._:::r. In the last lemma we can replage 2V 7' by OS]t = J]) for every
function fsuch that X, . , 1//(i) < » . For our purpose here the function 2' suftices

2.3. Lower bounds for sorting. In this scction we prove the fower bounds in Theo-
rems 11, 1.2, and 1.3.
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LEMMA 2.2, Every graph G = (V. E) with n vertices and at most n-d edges. where
d = oln) and d = log n). has an acyelic orientation whose transitive closure has at most
(3) — (' /d) log (nfd)) edges.

Proof. By Lemmma 2.1 there is a subset W’ of cardinality |n/4) of }"and a proper 4d
vertex coloring of the induced subgraph of G on W with color classes 1, - Pag
satisfying the conclusions of the lemma. Put Ve = ¥ — W and orient each edge (1, v) of
Gwithue ¥, veV,and0 S i< j S 4d from u to v. The other edges of ' (that jein two
members of Fg) will be oriented in an arbitrary acyelic order. Let T be the transitive
closure of this oriented graph. For € V. let Nr(r) denote the sel of neighbors of vin T.
Suppose Y € b, | i< i+ j=4d Weclaim that the number of directed paths in our
oriented (G that start a1 v and end at some member of U’ ., V., isat most 2", Indeed,
each such path must be of the form v, v,,, v, ~ " 0, where

i<ih<ihy< - <i,Sit}] By & e L E b

There are 2 possibilities for choosing iy, ia, ***, 1,, and since each veriex of the
path is a neighbor of the previous one, there are at most 20 - '+ choices for v,
2~ 4 =1 choices for v, ele. Hence the total number of paths is smaller than 2% and
thus if v € V, then

4
Nwn| U o, V < 2%,
r=1

Put r =} logs (7/4d)). and panition the set of blocks ¥y, b2, -+~ . }aginto s =
[4d/r1 blocks W, --- . I, of consecutive V, — s, each containing at most r blocks. By
the preceding paragraph, the total number of edges of T in each block 1V, is not big-

ger than | W, -2% = | W} Yn/4d. Thus there are at Jeast

£ (Y _nfa R
2\ 2 JTa\ad

t=1

pairs of elements that are not adjacent in T. By the convexity of the function

g() = ()
,w. :_.H_VNA:EJHDA% _of:}:v
..\l‘ 5 == b d

and thus T does not contain at least

e aX . an aE T
Sﬁﬂ _:mav LALLV Qﬁt. _Gm&v
edges. This completes the proof. a

We can now prove the lower bounds in Theorems 1.1, 1.2, and 1.3.

To prove the lower bound in Theorem 1 I, consider any two rounds algorithm that
sorts o set b of 2 elements. The first round of the algerithm consists of some set £ of
comparisons. Define o by o = [ E1/n] Clearly we may assume that of = o(n” yand o =
O Y. By Lemma 2.2 the graph ¢ = (3, £) has an acychc orientation whose transitive
closure ::....2 O((n* /) log n) edges. If the answers in the first round correspond 10 this
ortentation then clearly in the second round the algorithm has o compare all these
QU d) log ) pairs. Thus, by the trivial mequality a + b = Weh

"
Lu_.:...::.,wzﬁ log :u

o

= O (log m)'"Y).  as needed

s
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The proof of Theorem 1.3(i) is analogous. If a two rounds sorting algorithm uses

n.:._om n comparisons in the first round, then by Lemma 2.2, it must use M.zzu\; com-
pansons in the second round.
; Theorem 1.2 is derived from the lower bound of Theorem 1.1 proved above by
induction on 4, starting with k = 2. For k = 2, the result is just the statement of Theorem
1.1. Suppose. by induction, that c(k, 7) 2 cn' * "log n)'*, where ¢, > 0 is a constant,
depending only on k. Consider an algorithm for sorting a set ¥ of n ¢lements in kK + |
rounds. Let £ be the set of comparisons between pairs of elements of 1 made in the first
round. As before, E corresponds to a set of edges of a graph G = (V. E). Define o by
Mm..,_. = d'n. By a standard result from extremal graph theory (that follows. e.g.. from the
‘:._Em_ part of Lemma 2.1), any graph with 1 vertices and average degree . contains an
:.aawa:ana set of size Q(m/(1 + f)). By a repeated application of this, we conclude that
G contains Q(1 + ) pairwise disjoint independent sets, each of size (n/{1 + d)). Denote
these .mQu by Fy, -«+ . ¥, (s = Q1 + o)) and define V, = ¥ — U,., V.. Restrict our
attention now only to finear orders on V for which each v; € I, is smaller than each v, €
V. forall0 i< j= s Clearly. if0 < iS5 and u, v € ¥, we do not have any _.:moﬂwu:h_us
onE. §.m relative order of ¢ and v from the results of the first _.o_._sn_..u:a such an
information can be obtained only from comparisons between elements of V,. Thus, in
the next & rounds. all the sets 17, - - - . ¥, have to be sorted. By the induction hypothesis
the number of comparisons for this task is at least .

5

T al V1 Hog wz o+ a)- n _._;. e n vk
e 1+4d | +d
The total number of comparisons is thus at least
n [FL3
nd+Qf n' *VE _owu+& (1+d)*

We can easily check that this number is ZQ(x' * "** V. (log n)'™* * "M (Indeed. at least

one of the two summands must be that big.) This completes the induction and Theorem
1.2 follows. 5]

2.4. Lower bounds for selecting. In this section we prove the lower bound in Theo-
rem 1.4,

' _..m./_Z...J 2.3, A.r.“.:. algorithm for b.:.a.__..E the median i byo rouneds thal uses at most
nd comparisons in the first round where glogn < d = o Y4 ) ase
ot log” (n/d)/d?) comparisons in the :M::Ww :w:__:M A . i

Proof. As usual we look at the elements as vertices and the comparisons as cdgces.
Then we look at & = (1. E). which is the first round graph. By Lemma 2.1 there i
n._._vm...ﬁ W1 = Tn/410f I7and a proper 4d vertex coloring of the induced subgraph ¢
w:\ W™ with n:_:”‘ classes 17, - Iye. satisfying the conclusions of the lemma. Let
V= L= g logs (nitdd )y = of. We claim that there s a 0. 0 £ ¢ £ dd — rand r

successive classes 1. . Lo such that £ - XUUT 0 v T ar/20d. The cla
lows from

fol-

Wl
L o e R o I [ i

1 ]

_w:v::m sum there are [4a/r) + 1 clements; therelore there must be ¢ and £ such that /
) = A..._.‘_EV\T:.&:, f 1) 2 nef(3d + 0y 2 nrf(4-5d) - nrf20d as clinmed

Take an arbitrary set of vertices of size L2 ISR R ) | ) I B

ol TN ‘ and
define it as 15, (This is possible since [ 1] < (/2] < (34 171 D
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1" — 1,. Now oricnt each edge (1. 1) of GwithuweV,.vel for0=1<)= Ad + 1
from u to v (i.e.. 1 is smaller than v).

The other edges of ¥ (that join two members of 1, or two elements of P, ) will
be oriented in an arbitrary acvclic order. Put

1 (or st
A=U . =1 wn og= W w
=0 r=sel rmper+

st - n—1
4=} =} Bl=L [|Cl=|—

We now let the algorithm know for free the total order of A and C and that for every
L €A, L€ B €C Vg < Up < Upe

We now prove that for each 1 € B there are less than //4 elements of B that are
known 1o be smaller than i and less than //4 elements of B that are known to be greater
than . To this end let T be the transitive closure of the above oriented graph. For
v € V, let Ny(v) denote the set of neighbors of vin 7. Suppose thatve ¥ 1+ 1 Si <
i+ j=t+r. Weclaim that the number of directed paths in our oriented G that start at
v and end at some member of U’ ., V. is at most 232_Indeed, each such path must be
of the form v, -+, v, where v, € Vi -+, 1, € . There are 2 possibilities for
choosing iy, i1, - -+, {; and since each vertex of the path is a neighbor of the previous
one there are at most 2~ f* ! choices for v, etc. Hence the total number of paths is
smaller than 23/ and thus if v € ¥, then |No(v) N (U5, Viu )l < M Ast+H 1 Si<i
+ j =1+ r,j < rwe conclude that the number of elements of B known 10 be less than
b is less than 2% = 201/ estnidh = Vnjad < inrj20d = i1 (In the last inequality we
assume that # is large enough, and that d = o(n).) The number of elements of B known
10 be greater than v can be bounded analogously. Note that the condition for two un-
compared elements to possibly be a median and an element next 10 the median is that
together they have less than n/2 elements known to be less than at least one of them,
and less than n/2 elements known to be greater than at least one of them. Therefore, we
must compare each pair of such elements in the second round, since. otherwise, even
knowing all the order apart from the relative order of these two might still leave each of
them a possible candidate for the median. Suppose i, v € B. There are less than 2-114 =
/2 elements of B and |A| elements of A (which sum up to be less than 2+ il =nf
3 elements) that are known to be smaller than at least one of 1 on v. Similarly there are
less than #/2 elements that are known 1o be greater than at least one of them. If w and
v are not adjacent in 7, they satisfy the previous condition and therefore must be compared
in the second round.

For each element v € B. there are at least / — 2-1/4 = 12 elements of B that are not
adjacent to it in T. Altogether. there are [ elements in B, therefore there are at least 1-4- 1/
2 = {%/4 comparisons we must perform in the second round, which means Qn’r’fd?) =
O log® (nfd)/d®). This completes the prool. U

We now prove the lower bound of Theorem 1.4 fork = 2.

PROPOSITION 2.4, s(2. m = (™ log™" m

Proof. Consider any two rounds algorithm that finds the median of a set Vol n
clements. The first round consists of some set £ of comparisons. |

[ ] = O og™ n).

there is nothing to prove. Fherefore [ F] G Mog? m. Deline o = [1E]nL By
the previous lemma  we  need Qn? log? (nfed)fd™y = Qe et aftn! oty =

QU log™t m) comparisons in the second round. which completes prool’ rl
2 I
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. Next we prove the lower bound in Theorem 1.4 by induction on k. For k = 2 this
is just the previous proposition. Consider an algonthm for finding the median of a set I”
omz elements in k + | rounds. Let £ be the set of comparisons between pairs of elements
of V" made in the first round. As before, F corresponds 1o a set of edges of a graph & =
:H.. £). Define d = | E|/nl. By a standard result from extremal graph theory. any graph
with n vertices and average degree = 24 contains an independent set |7 of size | =
Qn/(1 + 2d)). Now we restrict our attention 10 lincar orders on ¥ for which the set of
ranks of I is [{# ~ [)/2. (n + /)/2]. and all the other clements are known 1o be greater
or smaller than each element of 1. Clearly we cannot get any information on the order
in " and the median by comparisons including elements out of ", In ™" all the orders
are possible and we should find the median there in the next & rounds. Therefore by the
induction hypothesis.

Stk+1.mZnld— 1)+ sth )= nlef — 1)+ (' 143 1 gt -0y

(IES R )

i L . 5~
=(d— D+ Q| ——— el B

(1+2d) log vy
Wmcw_ B ot Y _OWH:H.. L _.:v

::a.ana, at least one of the last two summands must be at least that big.) This completes
the induction and the proof. |}

3. The upper bounds. In this section we prove the upper bounds in Theorems 1.1
and _.w.. The proof of the upper bounds in Theorem 1.4 is similar, and is omitted. In
some of Gn probabilistic lemmas proven below we can simplify 1the computations a fittle
by applying Chernoff’s inequality (cf., e.g.. [ES74]). As this simplification is not essential
we prefer 1o use only the direct estimate (§) = (ea/b)”. We start with a few lemmas. The
m_.m.” one {which is not essential but somewhat simplifics the proof) is the following result,
which is proved in [AKSS86a] (see also [Pi87)).

LEMMA 3.1, Let G be a graph in which any two disfoine sets of vertices are joined
_,E.az edge. Then for every set X comtaining at least Sa vertices. there exisIy a set Y disjoint
Jrom X and containing ar most a vertices such that every set 2 disjoint from X C.w of
I = a vertices has at least 2z neighbory in \. 0 ;

OE. next lemma deals with random graphs. Let ¢ = (17 £) be 2 random graph on
# vertices in which each edge is independentls present with probability g ,,,wr.?, id
(100 _o.m n)fa and & > 100 log n will be chosen later. In what follows ;c.h_?,:f.w assume
that n is sufficiently large. and when we say that ¢ has a propenty P “almost _,..:E_,,.. we
mean that the probability that ¢ does not satisty 2 tends to zero as w1 tends to _:m.::«.

LEMMA 3.20 G sanisfies the following alost surely: .

) The mumber of edges of G ix at wrose 2000° log a1/

iy There are no owo disjornt sere 18 < 1 ::.:rﬂ_ i [ Bl = a sothat each b«

B has Jess thest Tog 0 nerehbors i 1.

V There are no two disjormt seis XY © VL wirth Ry S afer M aned | Y
Ly log™™ wf such thar cach v e X has ai feasr low o nerghbors i Y.

Proof. Part i) is tniviad and follows, e |
that the met

4

m Chebashev's meguarling I the
: 1 the vamance of the number of edpes e Goare (M < Y007 low sifa and
Gl ~ py < 100" log nfu. vespectively. (It ¥
estimates of binomial distributions.) To prose |
and let b € 4 be a vertex, et Fode

losws, of course, from the standard

ce ol

L hxoasubset o ol cardin
¢ the event that A has tess than log  neighbors in

¥
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A Clearly Prob (&) = X4, . Pla. 1o py where Ma, 1 py = (Dip't] = p» ' We can
easily cheek that for all 0 = ¢ < log . Ma. i + | p) > 2ba. i, p). and hence

A cd w_ia 100 log n\'™=" 100 log :g; o

A

———— i — PR s BRI, e

Prob (E,) S 2h{a.(log ny.p) S 2

log n a o

A

2 100e) 1. g 100 Iog 7 + 100 50"

where the last inequality holds for all sufficiently large », taking into account the fact

that 2 > 100 log n. It follows that the probability that there are 4, 8 < i with |4]| =
|Bi = asothat each b € B has less than log » neighbors in . is at most

n n

a “

This completes the proof of {i1).
The probability that G contains two sets .\ and Y as in part (iii} is al most

" n v xlog'* ny 100 log ']
1/2 Y
n

Xf\xlog' log n a

Indeed the first two binomial coetficients bound the number of possible sets XY and Y.
respectively, and the last factor bounds the probability that each v € .U has at least log #
neighbors in Y. This probability is bounded by

100e log n\ *'#"

ﬂ._on\.
Uoo*om: < y2xlogn >
s AT

u e
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as n tends to infinity, This completes the proof of the lemma. (]

The next lemma is similar though somewhat more complicated than the key lemma
in [Pi87).

LEMMA 3.3. If n elements are compared according to the edges of a graph G
that satisfies all the assertions of Lemma 3.2 then, for every rank ., all but at most
(Ka log nf(log log m) elements will be known to be too small or too lurge to have
this rank.

Proof. Put b = :ﬂ,.ml: log> ¢land ¢ = [4 log nflog log nl. We show that after all the
compansons all but at most (1 + 6b + 2¢) = Oa log #flog log n) of the elements with
rank greater than s will be known 10 have rank greater than m. Combining this with an
analogous argument for the elements with rank less than nr we get the desired result.

If »2 > n— a(l + 6b + 2¢) there is nothing to prove. Otherwise, let ¢, contain the
smallest m elements, let ¢, contain the next 6a- b elements, let C; comtain the next 2a-¢
clements, and let € contain the remaining elemenis. Since |, U (5] = 6ab + Zacnt
sutfices 10 prove that C; contains at most & elements whose rank is not known 10 be
greater than m. Let ¢y = €, U (s -+ - U Cy i be a partition of Cy into b pairwise disjoint
sets of 6a consecutive elements each. where €, is the set of smallest 6a elements of ().
2 the pext 6a elements of ¢, ete. Similarly, et & = G U --- U (s, be a partinon
of s ¢ “, vise disjoint sets of 2a consecutive elements cach. where Cyy 18 the set
of smaltest 2a clements of Cy, s 2 the next 2« clements of Cy, ete. We now classity the
clements in € U ¢S as “good™ or “bad™ as follows, All the elements of € are good
Suppose 1 =1 < band all the elements of O, have already been cliassiticd. and that there
are at feast Se good clements in . To classily the clements of ¢, . apply Lemma
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3.1 with X being the set of good elements in €, ,. (Notice that by Lemma 3.2(n). ¢ satisfics
the assumptions of Lemma 3.1.) Classify as bad those elements of ., that belong 1o
the resulting set ¥, whose size is a1 most a. The other elements of €, . ;. whose number
is at least 5a, are good. This completes the classification of elements in €. Now put
Cyp = Cy - Suppose 0 5 | < ¢ and suppose all elements of Cy, have already been classificd
and that there are at least a good elements in Ca,. An element of Ci.y is good if 1t has
at least log n good neighbors in Cs,. Otherwise, it is bad. Since ¢ satisfies all the assertions
of Lemma 3.2 we conclude. by (ii). that there are at least a good elements in Cs,. .
Moreover. by Lemma 3.2(iii). any set X of x S a/e*'*" good elements in (s, , , has at
least v log'* 7 good neighbors in Cy,. Similarly, by Lemma 3.1. any set Z of = = u good
clements in Cy, ., has at least 2z good neighbors in C, .

Since in G there is an edge between any two disjoint sets of size «. and since there
are at least a good elements in C,, it follows that all but at most a clements in C; have
at least one good neighbor in C, .. Let v € C; be such an element. and let ¢ # X be the
set of its good neighbors in Cy,. Clearly. v is known 1o be larger than all members of X,
IFIX] < afe~'"*" it has at least [X| -log"™* n good neighbors in Cs_ ;. and by transitivity,
v is known 10 be larger than these elements as well. Continuing in this manner. we
conclude that v is known 10 be larger than at least a/e~'"*" good elements of Ca = € 4.
Let Z be the set of these elements. If | Z| < g, Z has at least 2| Z| good neighbors in
C)5-,. Continuing in this manner. we conclude that v is known to be larger than at least
a elements in C, |, and hence it is known to be larger than all but a1 most a elements in
Co. Consequently, the rank of v is known to be greater than m2. This discussion was true
for all but at most 4 elements of C;. Hence, there are at most @ + | €, U | elements
whose rank is greater than m, that are nat known 1o have rank greater than m. This
completes the proof of the lemma. O

COROLLARY 3.4. If n elements are compared according to the edges of a graph G
as in Lemma 3.2, then for every interval [i, j} of Oa log nflog log n) successive ranks
there are only (Xa log njlog log n) elements whose ranks can possibly belong 1o this

interval. Hence, we can form O(n log log nfa log n) (not necessarily disjoint) subsers of

elements of size O{a log nflog log n) each, so that the total ordering will be known by
sorting each of these seis separately.

Proof. By the previous lemma. all but Oa log n/log log n) of the elements with
ranks less than 7 are known to have ranks less than /. and all but O{« log nflog log n)
of the elements with ranks more than j are known to have ranks more than J. As
only Ofa log nflog log n) elements have ranks in the interval [t. 1] there are only
Ofa log nflog log n) candidates for the interval. By partitioning all ranks into ¢ =
On log log n/a log n) contiguous intervals of size O(a log n/log log ) cach we split the
sorting problem into ¢ smaller subproblems. as needed O

Proof of the Upper Bound of Theorem 1.1, Let G be a graph as in Lemma 3.2 with
a = n"(log log #)'”|. In the first round of the algorithm compare the elements according
10 (7. This gives O(n° log n/a) comparions. By the last corollary. the number of com-
pansons fefi for the second round is at most O(n log log nfa log n-(a log nflog log n)y)
Alogether we get

c(2.ny = O log n/a + nalog nflog log m) = O log njtlog log n)' ). 0

Ihe proot of ..?,.2.2: 1300 s ssmdar 1o that of Theoremy 11 Instemd of
nma 3.2 we need a simalar lemma for random graphs. Deline a = |n/log njand p
0 log nlog log nfm. Let ¢/ = (). Fyiear dom graph on o vertices in which cach
edge is independentls present with probability po Agan, we alwavs assome that # s
suliciently large.
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LEMMA 3.5.  sarisfies the following almost surely:
(1) The number of vdges of G is at most 200n log n log log n.

(ii) There are no two disjoint sets A, B€ V. with | 4] = | Bl = a. so that cach he
B has less than log log n neighbers in A. . " :
(iii} There are no mwo disjoint sets X. ¥ € V. with |X| = x = a/r = a/log” n and

| Y| = Lx(log log n)'"*) stech that each v € X has ai least log log n :E.m:?:.., inY,

Proof. Part (i) is trivial and follows, e.g.. from Chcbyshev's inequality. To prove
(ii). ix 4 € V. |4] = a. and b € ¥\ A and let E, denote the event that b has less than
log log n neighbors in A. Clearly Prob (Ey) = oz <iogionn .h_x:. i. p) where Bla. i, p) =
(4p(1 — p)*~". Since Ba. i + 1. p) > 2Wa, i, p). forall 0 S i < log log n.

loglogn
€a n, = g = ¥ o
Prob (E») S 2b{(a.|log log n}, p) S 2- v phoslenn(y _ gy =lepionn ¢ grionionn,

log log n

Therefore. the probability that there are A, B € ¥ as in (ii) is a1 most

z hm .m-x_ax.._s..mﬁm_Om:mu;.ss..i_a,_lvo
af\a
as n — . This establishes (ii). )

The probability that G contains two sets .X and ¥ as in (iii) can be bounded by

142 T
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».x.ﬂ.:ow tog m)'"? tog log 1

Here the first two binomial coefficients bound the number of possible mmﬁ Xand Y.
respectively, and the last factor bounds the probability that cach v € X has at least
log log n neighbors in Y. This probability is at most

A erlogn \miestoem'ricgn en 100 log n log log n

(log log n)'”* "\ 7 log n(log log m'” n

which tends 1o zero as # tends 1o infinity, since r > log” #. This completes :ﬁ proof. a

The proof of the next lemma is analogous to that of Lemma 3.3 (simply replace
Lemma 3.2 by Lemma 3.5, replace b by &' = [loga log” #l. and ¢ by

v nlog log nfr log n

¢ =[2lognlogloglognl).

We omit the details. ' ‘

LEMMA 3.6, If n elements are compared according 1o the edges of a graph G
that satisfies ali the assertions of Lemma 3.5 then, for every rank m. all but ai most
a log n/log log log n) = O(n/log log log n) elements will he known to be too small or
oo large to have the rank.

._..:r.cﬂn_.: 1.3¢i1) follows from the last lemma. As in Corollary 3.4 we observe _.._E_
il n elements are compared according to the O log n log log n1) cr_mﬁ. of a graph G as
in Lemma 3.5, then for every interval of O(n/log log log n) suceessive E:rm there are
only O(n/log log log n) possible candidates. It then follows, as in Corollary 3.4, that at
E:wﬂ O Jlog log log 1) = ofn’) pairs can possibly remain unknown.
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