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U N I F O R M  D I L A T I O N S  

N. ALON AND Y. PERES 

A b s t r a c t  

Every sufficiently large finite set X in [0,1) has a dilation nX rood 1 with 
small maximal gap and even small discrepancy. We establish a sharp 
quantitative version of this principle, which puts into a broader perspec- 
tive some classical results on the distribution of power residues. The proof 
is based on a second-moment argument which reduces the problem to an 
estimate on the number of edges in a certain graph. Cycles in this graph 
correspond to solutions of a simple Diophantine equation: The growth 
asymptotics of these solutions, which can be determined from properties 
of lattices in Euclidean space, yield the required estimate. 

1. I n t r o d u c t i o n  

Let T = R/Z denote the one dimensional torus, i.e., the set of real numbers 

modulo 1. A subset X of T is called c-dense if it intersects every interval of 

length c in T. A dilation of X is a subset n X  -- { n x  : x E X }  where n is an 

integer (and each number n x  is reduced, of course, modulo 1). S. Glasner 

proved in [G] that  for every infinite subset X of T and for each c > 0 there 

exists an c-dense dilation n X  of X. Motivated by this result, Berend and 

Peres [BP] defined k(c) as the minimal integer k such tha t  for any set X C T 

of cardinality at least k, some dilation n X  is c-dense. They proved that  
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and raised the problem of determining the correct order of magnitude of 
k(c). Here we prove the following result, which determines this order of 
magnitude almost precisely. 

THEOREM 1.1. For any 7 > 0 there exists a positive c0 = ~0(7) such that 
for e < e0, every set X C Y of cardinality at least 1 has an e-dense 
dilation n X ,  

1) 
in other words f~ <_ k(c) < - ~  . 

Our first proof of Theorem 1.1, which is based on a second-moment 
probabilistic argument, actually yields a stronger result. For a finite se- 
quence X = { x l , . . . ,  xk} in T and any subinterval of T, write 

k 

disc(X, I) = [1 ~ l I ( X j ) -  length ( I ) [ .  
j= l  

Note that here X is a sequence rather than a set, i.e., it may contain repeated 
elements. Recall from [KN] that the discrepancy of X is defined by 

disc(X) -- sup disc(X, I) 
g 

where the supremum is over all intervals in T. Observe that if disc(X) < r 
then X is c-dense. Thus the following result extends theorem 1.1. (Ex- 
tending the theorem in this direction was originally suggested by D. Berend 
[unpublished], who obtained less precise bolmds by different methods prior 
to our work). 

THEOREM 1.2. For any 7 > 0 there exists an integer k0 = k0(7), such 
that for every k > ko and every sequence X consisting of  k distinct points 
in T, there is a dilation n X  satisfying 

disc(nX) _< k ~-1/2 . 

This estimate is, o f  course, sharp up to the 7 error-term, by the lower bound 

in(l). 
The proof of theorem 1.1 goes through particularly smoothly when the 

set X to be dilated consists of rationals with the same prime denominator 
(see the next section). In the general case, the proof hinges on the following 
proposition. 
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PROPOSITION 1.3. Let { X l , . . .  , Xk} be an arbitrary set of k distinct num- 
bers in the unit interval [0, 1). Denote by hm the number of  pairs ( i , j )  with 
1 < i < j <_ k, such that rn(xi - xj) is an integer. For each oe > O, i f  k is 
sufficiently large then for any k points { x l , . . . ,  xk} in [0, 1) and for every 

m > 1, the partial sum Hm = E T = l  he satisfies 

n m  <_ (k in )  �9 

The trivial upper bound for ttm defined above is km 2. Simple examples 
show that the bound above is sharp, up to the a error-term in the exponent. 

Actually, in section 5 a slightly tighter upper bound is established 
(corollary 5.2) and this allows an improvement of the est imate in theo- 
rem 1.1 (see proposition 6.1 in section 6). The rest of the paper is organized 
as follows. In the next section we consider the case in which the set X to 
be dilated consists of rationals with the same prime denominator  p. This 
case puts into a broader context some classical results and conjectures con- 
cerning the distribution of quadratic residues modulo p. A dilation of a set 
modulo p is its image under a linear function; in section 3 we show that  
a smaller maximal  gap (modp)  may  be obtained by considering images of 
a given set X under polynomials of higher degree. Section 4 contains the 
proofs of theorems 1.1 and 1.2. In section 5 we establish proposition 1.3, 
using a simple combinatorial argument which reduces it to an est imate on 
the growth of solutions of a certain Diophantine equation. In section 6 

we present an alternative proof of theorem 1.1 which uses some classical 
harmonic analysis. 

While this approach does not yield the bounds on discrepancy obtained 
via the probabilistic approach, it seems bet ter  suited for obtaining exten- 
sions of theorem 1.1 in which restrictions are placed on the multiplier n. 

For instance, we show that  under the hypotheses of theorem 1.1, there 
actually exists a prime n for which n X  is v-dense (this answers a question 
suggested by R.L. Graham [private communication]). 

If the hypotheses of that  theorem are s trengthened and we assume the 
cardinality of X is at least (~)4+~, then we show that  an G-dense dilation 

of the form n2X (for some integer n) exists. 

The final section 7 contains a few additional applications of the tech- 
niques. 
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2. Dilating Subsets of Zp 

1 For p prime and ~ < c < 1, let k(c,p) be the minimal integer k such that 
for any set X of k distinct rationals in T with the same denominator p, 
there exists an e-dense dilation nX.  Obviously in this definition we may 
assume that cp E Z And reformulate it as follows: k(e,p) is the minimal k, 
such that for every subset X of cardinality k of the cyclic group Zp, there 
is a E Zp such that a X  intersects every interval of ep consecutive elements 
of Zp. In [BP] it is shown, using a simple probabilistic argument, that 

1 1 prime} > log . sup{k(c,p) ]p > ~, p - 7 

As observed by the first author of the present paper (cf. [BP]), this lower 
bound may be slightly improved to ~ log(l/c)  log log log(l/c)  by considering 
the set 

X = { j2 /p (modl ) :  j E Z} (2) 

where p _= 3 mod4, and invoking the recent result of Graham and Ringrose 
[GR] which asserts that for infinitely many primes p, the smallest quadratic 
nonresidue modulo p exceeds clogplog log logp (this result holds for primes 
p -- 3 rood4 as well). Note that the quadratic-residue construction shows 
that  /f the inequality k(e,p) <_ (1/~) 4/3 holds for large primes p, it would 
imply that the length of the maximum gap between consecutive quadratic 
residues modulo a prime p congruent to 3mod4  does not exceed pl/4 
and would improve the best known upper estimate of O(191/4 logp), due 
to Burgess [Bu2], for this quantity. Similarly, if k(e,p) < 0 ( ( l /e)  1+~) for 
every 7 > 0, this would imply the Vinogradov conjecture concerning the 
smallest quadratic nonresidue modulo such primes. Unfortunately, we are 
unable to obtain such an upper bound for k(c,p), but we present a very 
simple proof of the following. 

PROPOSITION 2.1. For every prime p and every e > 0 for which el> is an 
in teger 

k ( E , p )  < 2 . 

Proof: We actually prove the following 



Vol.2, 1992 UNIFORM DILATIONS 5 

R e f o r m u l a t i o n .  Let p be prime and let X = {Xl , . . . ,  xk} C 7p be a set 
of cardinality k. If ~p is an integer and k~ 2 > 1, then there is an element 
a E Zp such that the set a X  = { a x l , . . . , a x k }  intersects each interval of 
length 2 @ -  1 in ?'p. 

(Note that the proposition follows by applying this reformulation with 
the largest 5 for which 2 @ -  1 <_ ~p). 

Let a and b be two random elements of Zp, chosen independently and 
uniformly according to a uniform distribution on Zp. Fix an interval I of 
length @ in Zp, and define random variables Y~ , . . . ,  Yk t by letting Y] = 1 

if axj -Jr b E I, and Y] 0 otherwise. Denote y r  k = = ~ , j = I Y j .  Obviously 
the expectation of y1  is 

k 

E ( Y ' )  = k+.  
j=l  

The crucial (and simple) fact is that the random variables axl  + b , . . . ,  axk+b 

are pairwise independent and therefore the same holds for the variables 
Y1/,..., Y/ .  Consequently, the variance of yX is precisely 

k 

V a r ( Y ' )  = V a r ( 5 ' )  = k5(1 - 5 )  
j=l  

By Chebyshev's inequality we conclude that 

Var(Y I) 1 - 
P r o b [ Y I = 0 ] _ <  - - -  

E ( y t )  2 k6 

Let ~" be a family of [1/5] intervals (of length @ each) in Zp that  cover Zp. 
By the above inequality and our hypothesis, 

5?  1 Prob[?I  e 2": y t  = 0] _< [1/5] < ~ _< 1 . 

Hence there exists a choice of a and b such that  for each I E 9 c, we have 
y l  > 0. Fix such a, b. This implies that  every interval of 2@ - 1 elements 
of Zp, contains an element axj  +b for some 1 _< j _< k. Therefore every such 
interval contains at least one element axj, completing the proof. = 

The probabilistic argument above is easily extended to cover simulta- 
neous dilation of several sets. This yields the following generalization of 
proposition 2.1, whose proof is analogous. 
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PROPOSITION 2.2. Let p be a prime, and let X 1 , . . . ,  X~ be subsets of the 
cyclic group Zp with [Xi[ = ki. If  ~p E Z and 

~ 1  1 t~ 2 V ,  <- , 

then there is an element a E lp such that each of the sets aXi intersects 
each interval of length 26p - 1 in Ip. 

If G is a subgroup of index r of the multiplicative group Z;, then the 
last proposition implies that  every interval of length 3 r v ~  in Zv intersects 
all the cosets of G (since a dilation modp  merely interchanges the cosets). 
Actually, for cosets better bounds are available using more sophisticated 
methods (el. [BU1]) but nothing near the truth has been established. 

The method described above can be used to obtain dilations with small 
discrepancy. 

THEOREM 2.3. For every set X of k distinct rationals in T with the same 
prime denominator p, there exists a dilation n X  satisfying disc(nX) = 
O (k-1/2(log k)3/2). (Note that here thinking o f n X  as a sequence or a set 
makes no difference, since no repeated elements will occur in any dilation 
n X  for which n ~ 0 modp). 

This estimate is sharp, up to the logarithmic factor. This is because 
by applying it to the quadratic residue construction (2), it implies that for 
every prime p, the number of quadratic residues in any interval of length 
e does not deviate from e/2 by more than O(v/fi (logp)3/2)). However, an 
easy argument of Schur (el. [D]) shows that there are intervals in which this 
deviation is at least f/(x/P)" Of course the Polya-Vinogradov inequality (cf. 
[D]) implies that the number of quadratic residues mod p in any interval 
of length e does not deviate from f/2 by more than O(vffilogp). This 
estimate is better than our estimate above, but the latter holds for dilations 
of arbitrary subsets of cardinality p/2 of Zp, and not only when a group 
structure is present. 

For a subset V = {vz , . . . ,  vk} of Zp and an interval I of cardinality II[ 
in Zp, define 

d i s c ( V ' I ) = l k ~ _ ~ l ' ( v J ) -  

and disc(V) = maxr disc(V, I) taken over all intervals I in Zp. The following 
proposition implies theorem 2.3. 
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PROPOSITION 2.4. Let p be a p r i m e  and let X = { X l , . . . ,  Xk} C ]?p be a 
set of caxdinality k. If  m E Z and k >_ m2 2m+l then there exists a E Zp 
such that disc(aX) _< (m + 2)21-m 

Proof: Let s be the smallest integer such that  2 ~ > p. For each 1 < i < m, 
parti t ion the interval of integers {0, 1, 2 , . . . ,  2 ~ - 1} into disjoint intervals 
of length 2 ~-i each, and denote by (~i the family of 2 i intervals so obtained, 

m after all numbers  are reduced modulo  p. Define ~ = Ui=l Oi. Let a,b 
be r andom elements of Zp, chosen independent ly  according to a uniform 
distribution on Zp. Consider the r andom set aX + b = {axl + b,..  ., axk + b} 
in Z v. Our  objective is to show tha t  with positive probability, 

V I E  (~ disc(aX + b, I )  < 2 - m  (3) 

To do so, fix an i n t e r v a l I  E ~ .  For e a c h j  E { 1 , 2 , . . . , k }  let yjI = 1 if 
axj -}- b E I and yjI = 0 otherwise. 

Define y I =  ~ = 1  yjI. 

Obviously E(YX) = k ~ = k 2s-'p and by pairwise independence Var(YI) = 

( kelp z 1 -  < p . 

Therefore, by Chebyshev's  inequality: 

Prob  [disc(aX + b, I)  _> 2 -m] = Prob [I Y - E(Y)  I> k2 -m] < 

Va r (y  r) 2 s-i 22m+1-i 

-< 2-2mk 2 < p2-2mk <- k 

where the  last step uses the  fact t ha t  2 s < 2p. 
Since there are 2 i intervals in ~i ,  we find that  

Prob[3I  E (b: disc[aX + b, I )  _> 2 -m] < 

m z 22m+1-i rrt22m+ 1 

< Z 2 "  k - k 
i = 1  

< 1  

as asserted in (3). 
It follows tha t  there are a, b E Zp for which (3) holds. 
We claim tha t  for these a and b, (which we now fix) 

d isc(aX + b) _< (m + 2 ) 2 1 - m  . (4) 
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To see this it clearly suffices to verify that disc(aX + b, J)  _< (m + 2)2 -m 
for every initial interval J, i.e., an interval of the form {0, 1 , . . . ,  g}. Now 
for each initial interval J there are two initial intervals J1 and J2 such that 
J1 C J C J2 and the right endpoints of J1 and J2 are ( t -  1)2 s-m and 
t2 s-m, respectively, for some 0 < t < 2 m. Since J1 and J2 are both disjoint 
unions of at most m intervals in ~, it follows from (3) that 

disc(aX + b, J~) < m2 -m 

for p = 1,2. This together with the fact that ~]J\Jl[ and ~[J2\J[ are at 

12s-m < 21-m each, implies that most ~ 

disc(aX + b, J) < (m + 2)2 -m 

establishing the claim (4). Since discrepancy is not changed by a cyclic 
shift, 

disc(aX) _< (m + 2)21-m 

completing the proof. D 

Remark: The last proposition can be obviously extended to the case of 
several sets, in the same way that proposition 2.2 generalizes proposition 
2.1. 

3. D i spe r s i ng  Subse t s  of  Zp by A p p l y i n g  P o l y n o m i a l s  

The palrwise independence of the random variables axj q- b employed in 
the proofs of propositions 2.1 and 2.4, has been used in [ABI] for deran- 
domizing several parallel algorithms. Next, using similar ideas, we prove an 
extension of theorem 2.1 which shows that the maximal gap between con- 
secutive elements of a set in Zp can be further decreased if we consider its 
images under polynomials of higher degree. Somewhat surprisingly, there is 
no discrepancy analogue; this is explained at the end of the section. 

T R E O R E M  3.1. Let p be prime and let X = {Xl , . . . , xk}  C "lp. I f  d > 2 is 
even, then there is a polynomial f of degree less than d over Zp, such that 
the image f ( X )  intersects every interval of length 

c(d)pk -d/(a+2) in Zp ,  

(here c(d) > 0 depends only on d). 
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Proof: Let a0 , . . . ,  ad-1  be d random elements of lv ,  chosen independently 
and uniformly in l v. Construct the random polynomial f ( t )  = ~,~_~ air i 
and note that  for any d distinct elements { u l , . . . ,  Ud} in Iv, the d random 
variables f ( u l ) , . . . ,  f(ud) are independent (this is just the invertibility of a 
van-tier-Monde matrix). 

Take 6 > 1/k to be specified later, and fix an interval I of length 6p. 
For 1 < j < k, define WI,j = 1 - 6 if f ( x j )  E I and WI,j = - 6  otherwise 

k and let WI = ~,j=l Wr,j. Clearly E(WI)  = 0; when computing the d'th 
moment of WI using the multinomial expansion and d-wise independence, 
the dominant contribution comes from products of d/2 second moments, 
since k6 > 1. Thus E(Wff) <_ Co(d)[k Var(Wl,1)] d/2 <_ Co(d)(k6) d/2. Now 
it follows that  

erob[Wx = -k6] <_ E(Wtd)/(k6) d <_ Co(d)(k6) -a/2 . 

Letting 5 r be a collection of 2/6 intervals of length 6p whose union covers 
Zv, we get 

Prob[3I E U :  WI = -k6] < Cl(d)k-d/26-1-d/2 . 

If the right-hand side is less than 1, i.e., if 6 > C2(d)k -all(d+2), then for some 
choice of the polynomial f ,  the set f ( X )  intersects every interval I E .T. 
This completes the proof, u 

Remark: There is no discrepancy analogue of the last proposition , in the 
sense that  the exponent - 1 / 2  which occurs in theorem 2.3 cannot be im- 
proved upon by taking polynomial images f ( X )  instead of dilations. More 
precisely, let u 0 , . . . ,  up-1 be independent random variables taking values 
0, 1 with equal probabilities and consider the random subset 

X = { i l O < _ i < p ,  u i = l }  of Z v .  

Then there exists A > 0 such that for every d > 2, with probability tending 
to 1 as p --. ~ ;  

(i) All polynomials f of degree less than d over l v satisfy 

disc(f  ( X ) ) >  [Adplogp] -a/2 . 

and 

(ii) lXl > p/3. 
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We sketch one way to check (i), since (ii) is clear. It is a well known 
fact that  the probability that  a simple random walk on the integers stays in 
an interval of size L < V~ for p consecutive steps decays like exp[-cp/L2],  [ ]1/2 

__.2___ here, for some constant  c > O, as p --, oc. Inserting L = Adlogp 

yields a probabili ty smaller than p-d  for large A. The relevance of this 
to discrepancy becomes apparent by considering initial intervals. The pd 
random sets obtained by applying polynomials of degree less than  d to X, 
are not all distributed like X,  but sufficiently close so that  the argument 
applies. 

4. Un i form Di lat ions  in $: Proofs  

In this section we prove theorems 1.1 and 1.2. Basically, we proceed as 

in section 2, but the pairwise independence used there is no longer available. 
Instead, we need to est imate covariances and it is here that  proposition 1.3 
is useful ( that  proposition is established in the next section). 

Proof of Theorem 1.1: Given a set of k points X = { x l , . . . ,  xk} in T, our 
objective is to obtain a sufficiently dense dilation of X.  To this end, we 
choose a large integer A (whose size depends on the actual numbers  x/), 
pick an integer a, chosen randomly in the interval {1, 2 , . . . ,  A} according 
to a uniform distribution, and pick a real b chosen uniformly in the interval 
[0,1). 

Define zi = axi + b ( m o d l )  and a X +  b = { z l , . . . , z k } .  The main step 
in the proof is the estimate of the eXpeCtation and variance of the number 
of elements of a X  + b tha t  lie in a fixed interval. Fix an interval I of length 

1 in T. Let Yj = Y /  be the indicator random variable which is 1 if 

zj 6 I and 0 otherwise. Define Y y r  k = = ~-~j=l YJ" Obviously E ( Y )  = ke, 
but the computat ion of the variance is more complicated. Moreover, the 
variance depends on the actual choice of A, and we shall concentrate on 
est imating its value when A ~ oe. Clearly 

k 

Va (y) = + 2 Cov(5, ) _< + 2 Cov(Y,, ) 
j ---1 l<_i<j<_k l<_i<j<_k 

(5) 
where 

Cov(l~, Yj) = E(YiY j )  - E(Y i )E(Y j )  = ProD[z/6 I and zj E I ] - e  ~ . 
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The quanti ty Prob[zi E I and zj E I] can be est imated in terms of the 
difference xi - x j  (and A). Indeed, by conditioning on the value of a we see 
that 

A 
1 

e r o b [ z i E I ,  z j E I l : - ~ E e r o b [ z i E I ,  z j E I l a = n ]  
n = l  

A ( 6 )  
1 = nxj) 

n---=l 

where r = max{c - Itl, 0} for It[ < 1/2 and r is continued with period 
1 to N. Now we consider three possible cases. 

Case 1. xi - x j  is irrational. In this case Weyl's equidistribution lemma 
(cf. [KN]) and (6) give 

lim Prob[zi E I, zj E I] = r  = e 2 
A ~ c ~  e 

so that l i m A _ ~  Cov(Y/, Yj) = 0. 

Case 2. xi - x j  = c /d ,  where c /d  is a reduced fraction and 1 /d  >_ ~. In 
this case r vanishes at all multiples of xi - x j  which are not integers, so 
that 

lim Cov(Y/ ,Yj )=  r  d "  
A---* oo 

_Case 3. xi  - -  X j  - ~  c/d,  where c /d  is a reduced fraction and l i d  < e. Here 

lim E(Y/I~) = c 2 ~ ( n )  2 + 2  c - 2  
r t = l  

1( 
2s [edJd + 1 )  [edJ .  

Put [edJ = ed - t, where 0 _< t < 1. Then 

lim E ( Y ~ Y j ) = ~  1 ( c d + l - t )  ( e d - t )  

= E 2 + t ( 1 - t )  < c 2 +  1 
d e - 4de"  

Hence, in this case 
1 

lim Cov(Y/,Yj) < 
A ~  -- 4de " 
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As in proposition 1.3, denote by hd the number of pairs ( i , j )  where 1 _< i < 
j < k such that d(xi - xj) is an integer. Combining the results in cases 1,2 
and 3 with equation (5) we obtain 

1 hd 
lim Var(Y) < k e + 2  E hddq-- ~ E d"V" 

A...+ ~ 
d<l/e d>llr 

d Define Ha -= ~-,~,=1 h~, (in particular, H,  = 0) and let d' = L1/eJ. 
Using summation by parts we get 

1 1 ) e 
lira V a r ( Y ) < k e + 2  Z Hag d d + l + 2Hw--::__ a, 

A---*c~ 
d<_l/~ 

1 ( 1  1 ) 
+ 2  E Hd d~ ( d + l )  2 

d>l/e 

e e 1 
< ks + 2 E Hd-~ + 2Hd,-~ + E Hd--fi.  

d~_~ d>lle 

(r) 

Substituting the estimates given in proposition 1.3 into the inequality (7) 
we obtain 

COROLLARY 4.1. For every a > 0 there exists ko = ko(a) such that if 
k > ko then the followingholds. Given a set X = { x l , . . . ,  xk} o f k  elements 
in T and a large integer A, construct the random set a X  + b (rood 1) where a 
is a random integer in {1, 2 , . . . ,  A} and b is a random real in T, independent 
of  a. Then for a t~xed interval I C T of  length e, the random variable 
y = yZ  giving the cardinality of (aX + b) N I satisfies E ( Y  I) = ke and 
limA--,~ Var(Y/) _< k1+~r 1-~ 

To complete the proof of theorem 1.1, consider a set of [1/el intervals 
of measure s each, whose union covers T. By corollary 4.1 and Chebyshev's 
inequality, given a > 0, if s is sufficiently small, A is sufficiently large and 

k l + c ~ g l - a  

B i d  k2e2 < 1 

then with positive probability a X  + b (and hence also aX)  intersects each 
interval of the family and hence each interval of length 2e in T. 
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The extra factor of 2 is un impor tan t ,  so this concludes the proof  of the 
upper bound  on k(e) in theorem 1.1. The lower bound  was noted  in [BP], 
where it was observed tha t  if X is the Farey sequence 

x m  = { j / e  I 1 <_ j < f < m ,  gcd(j, f) = 1} 

then no dilation of Xm intersects the interval (0, 1 )  and ]Xml _> a ( m  2) (in 
"1"" 3 m 2 o~). [] fact, as is well known, Ixml = (1 + o L )) ~--i as m - .  

Proof of Theorem 1.2: We argue as in the proof  of proposi t ion 2.4. Let 
m _> 1. For each i E {1, 2 , . . . ,  rn}, denote by )ci the family of 2 i disjoint 
intervals 

.,T" i = { [ ( / J -  1)2 - i ,  u2 -i)  : 1 _< u < 2/} 

and define ~" = uim__l 5ci. By combining Chebychev's  inequali ty with corol- 
lary 4.1, we obtain the following. For every a > 0, if k and A are sufficiently 
large and 

~-~ 2ikl+a(2-i) 1-a 
i=1 (k2_m) 2 < 1 ,  (8) 

then with positive probabil i ty 

V I e  5 c disc(aX H- b, I )  _< 2 -m , (9) 

(here a E {1, 2 , . . . ,  A} and b E T are chosen randomly  as in corollary 4.1). 
The reasoning used in the proof  of Proposi t ion 2.4 shows tha t  if an integer 
a and an element b of T satisfy (9), then 

disc(aX) = disc(aX + b) S 2(m + 1)2 - m  . ( I0) 

Now the left-hand-side of (8) is at mos t  

c(cOk~-12 (2+")~ . (11) 

Therefore, by choosing a sufficiently small, and then  using the largest m for 
which (11) is less than  1, (10) implies the assertion of the theorem, o 
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Remark: Theorem 1.2 can be improved in (at least) two directions. These 
improvements may be combined, but we describe them separately. 

First, the theorem extends to simultaneous dilations of several se- 
quences, in the spirit of proposition 2.2. 

Second, by its very nature, the probabilistic method, when exhibiting 
a dilation with small discrepancy, necessarily exhibits many such dilations. 
To state this in a sharp form, recall that the upper Banach density BD* (S) 
of a set of integers S is defined by 

1 
B D * ( S ) =  lim sup ]S N {L + l,  L + 2 , . . . , L + A } [ .  

A---~.oo A LEZ 

COROLLARY 4.2. Let 3' > ~ > O. I f  k is sufficiently large, then for every 
sequence X = { x l , . . . ,  xk} of k distinct points in T: 

BD*{n E Z [ disc(nX) > k " t - l / 2}  _< k -$  . (12) 

Proof: The statement corresponding to (12) but involving ordinary upper 
density is essentially contained in the previous proof. Indeed, if k ~-1/2 > 

2(m + 1)2 -m then 

~ ]{n: 1 _< n _< A, disc(nX) _> ]g~,--1/2}[ 

is bounded above by the quantity in (11) for large k. To obtain (12) with 
upper Banach density, repeat the argument leading to the proof of theorem 
1.3, with the integer a chosen randomly in intervals of the form [L + 1, L + A] 
rather than [1, A]. [] 

5. Counting Differences with Small  Denominators  

Proposition 1.3, which we prove in this section, may be naturally viewed as 
an upper bound on the number of edges in a certain graph F. To obtain 
such a bound, we introduce an auxiliary parameter r and count the number 
of closed walks of length r in F. For this purpose we first require an estimate 
on the number of solutions of a certain Diophantine equation. 

LEMMA 5.1. Let r, m > 1 be integers. Denote by A~(m) the number of 
solutions of the equation 

a l  a2 ar  
K + + +  K =o (13) 

in which ai, bi are integers satisfying 0 <[ai[ < bi <_ m. Then 

A (m) < (3m) (r log m) 
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Proof: For any two positive integers s, m denote by Q~(s, m) the number  
of integer solutions of (13) satisfying la~l < s and 0 < b~ < m. We first 
obtain an upper bound for Q~(s, m) assuming s is large and then derive 
the required bound for A~(m). Let b l , . . . ,  b~ be r fixed positive integers 
which do not exceed m, and let L = lcm(bl , . . . ,  b~) be their least common 
multiple. Define 

v = (L/bl , . . . ,L /b~)  

and denote by v • the (r - 1)-dimensional lattice consisting of all vectors in 
Z ~ which are orthogonal to v. The number  of solutions of (13) with these 
fixed denominators bi and with integers a l , . . . ,  a~ where lail < s is precisely 
the number of points in the lattice v • which lie inside the cube [ - s ,  s] ~. By 
lemma I in [S] and the corollary that  follows, the determinant  of this lattice 
is equal to the Euclidean norm of v, i.e., to 

L 2 b 2 > L / m  

(Note that  the greatest common divisor of the coordinates of v is 1, and 
hence the 1-dimensional lattice consisting of all integral multiples of v is 
primitive, as required in [S]). 

For large s we can bound the number  of points of v • inside the cube by 
estimating volumes. The ( r -  1) volume of the intersection of the hyperplane 
spanned by v • with the cube I -s ,  s]" is 

u < v (2sV -1 , 

by the result of Ball [Ba] (actually, any trivial est imate of the form c(r)s ~-1 
suffices here). Therefore the number  of points in v z N [ - s ,  s] ~ is at most 

(1 + o(1))Um/L < 2 (2s ) ' - lm /L  

as s ---, co. Summing over all possible choices of 1 < bi < m we get 

Q~(s,m) <_ 2~s~-Im ~ ~.cm(bl,...,bv) -1 . (14) 
l ~b~ .... ,br ~_m 

Denoting by d(L) = ~-,hlL 1 the number of divisors of L, (14) implies that  

mr d(L)~ (15) 
Q ~ ( s ' m ) < - 2 ~ s ~ - l m ~  L ' 

L = I  
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since every L �9 [1, m~] is the 1.c.m. of at most d(L)~ vectors (b l , . . . ,  b~). An 
elementary inductive argument (given in detail in section 6.5 of [H]) shows 
that for M > 4, 

M d(L) ~ 
E ~ < (log M) 2~ . 
L----1 

Substituting this into (15) gives that for all m > 2 and all s > so(m), 

Q,.(s, rn) < 2~ s~-am(r logrn) 2~ . (16) 

provided so(m) is sufficiently large. Next, we claim that for all s, m 

A~(m)Q~(s, 1) < Qr(3ms + m, m ) .  (17) 

To see this, map every pair of solutions: {(ai, bi)}'i=l contributing to A~(m) 
and {(ci, 1))I= 1 contributing to Q,.(s, 1), to the solution {(ai + 3cbi, bi)}~=l 
of (13) in which 

[ai + 3cibil  <_ m + 3 m s  . 

This mapping is obviously one to one, implying (17). Finally, since the 
(r - 1)-dimensional sublattice of i[ ~ consisting of vectors orthogonal to 
(1, 1 , . . . ,  1) has determinant g/7, and any hyperplane through the center 
of the cube [-s ,  s] ~ intersects that cube in a set of (r - 1)-volume of at least 
(2s) ~ (cf. [Ba D we have 

Qr(s, 1) _> 1 + o(1) (2s) 

(actually, the elementary lower bound Q~(s, 1) _> (~)r-1 would suffice). In 
conjunction with (16) and (17) this yields, for large s, 

2r(3ms + m ) r - i m ,  
At(m) _< (2s)r_ir_i/2 ~rlogm) 2~ _< (3m)r(rlogm) 2~+1 

as claimed, o 
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Proof of Proposition 1.3: Let { x l , . . . ,  xk} be an arbi t rary set of k distinct 
numbers in [0, 1). Construct  a labeled graph P on the  vertex set { x l , . . . ,  xk} 
as follows. For each i , j  such tha t  1 < i < j < k, put  an edge labeled by 
(a, b) between xi and xj iff b is an integer, 1 < b < m, and b(xi - xj) = a is 
an integer. (Note that  we allow mult iple edges in F). 

The number  of edges in P is precisely the number  Hm defined in the 
s ta tement  of the proposition. Define D = {H,n. Clearly the average degree 
in F is 2D. Let P' be the graph obtained from F by repeatedly delet ing from 
P vertices of degree less than  D, if there are any such vertices. Since this 
process increases the average degree, it mus t  te rminate  in a nonempty  graph 
in which every degree is at least D. Let r > 2 be an even integer. Choose 
arbitrarily a fixed vertex w0 of F' and consider walks of length r/2 in P' 
which s tar t  at w0: A walk is de te rmined  by a sequence of (not necessarily 
distinct) adjacent  edges in P'. 

Any two such walks which end at the same vertex of F', may  be com- 
bined to form a closed walk of length r in P', s tar t ing and ending at w0. If 
the edges along this closed walk are labeled successively by 

(al, bl), (a2, b2) , . . . ,  (a~, b~) 

a r = 0. Thus  we have a one to one mapp ing  from then necessarily ~ + . -  �9 + 
closed walks of length r (starting at w0) to solutions of (13) which satisfy 
0 < lail < bi <_ m (these are the solutions counted by At(m)) .  For each 
1 < i < k, denote  by Ti the number  of walks of length r/2 in F' which start  
at w0 and end at  xi (if xi r P'  we set Ti = 0). Clearly E/k=l Ti ~ D r/2. 
By the considerations above, the number  of closed walks of length r in P' 
which start  at wo is at least 

/ = 1  i = 1  

Consequently 
1 

A,.(m) _> ~ D  . 

Using l emma 5.1, this implies 

D < 3kl/rm(r log m)2~+, 

and therefore 

Hm = kD < 3kl+l/rm(r log m) 

Taking r > 1/a completes  the proof. 

_~ ~ D  . 

a r + l  
r (18) 

Q 
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Remarks: (i) As observed by J. Bourgain [private communication] it is pos- 
sible to prove proposition 1.3 using harmonic a~alysis, along the lines of 
[Bo]. 

(ii) By allowing r to vary with m, the estimate in proposition 1.3 may 
be improved. Specifically, for m > e l~ let r be the least even integer greater 
than log log m. Substituting this value of r into (18) yields 

COROLLARY 5.2. With the hypothesis and notation of  proposition 1.3, the 
conclusion can be sharpened to 

Hm _< 3(km) l+0~ log m)-' 

provided m > e 1~ 

Finally we note that it is possible to get (slightly) better estimates for 
the sum in (14), but this does not yield a noticeable improvement of the 
bound in the preceding Corollary. 

6. The Harmonic Analysis Approach and Restricted Multipliers 

We start by reproving Theorem 1.1 in the following slightly sharper form, 
and then establish some extensions. 

PROPOSITION 6.1. Using the notation of  the introduction, the inequality 

holds, provided e > 0 is sufticiently small. 

We note that this may also be established by the probabilistic method 
of section 4; the key point is the application of corollary 5.2 rather than 
proposition 1.3. Throughout this section, we use the notation 

era(t) = e 2'~im* �9 

Let us start by recalling a classical fact concerning "bump" functions. 

LEMMA 6.2. There exist, for 0 < e < 1, nonnegative functions g~ : R ~ R 

of period 1 such that 
(i) g (t) = 0 for E _< It[ _< 1/2.  
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Oi) The Fourier coefficients ~ ( m )  = f~ g~(t)em(t)dt satisfy ff~(O) = 1 and 

Vm E Z -< c e x p  , 

where C is an absolute constant. (Actually, a slower ra te  of decay 
would suffice to establish theorem 1.1.) 

Proof: For the convenience of the reader, we reproduce the well-known 
argument. By the easy direction of the Denjoy-Carleman theorem (cf. [K], 
chapter V) there exists a nonnegative function g : R -+ R which vanishes off 

(- �89189 and satisfies fR g(t)dt = 1 and 

for some C > 0 and all real s. Explicitly, one may take g to be the infi- 
oo _ _  s  ~--3/2 nite convolution *e=lo~t where ~ ( t )  - T if It[ < and ~t(t)  = 0 

otherwise. Then for each 0 < e < 1, define ge(t) = }g( t /e )  for Itl < 
1 1/2 and continue g~ with period 1. Since ~ ( m )  = -g f~ g(t/e)e2~i'~tdt = 

fR g(u) e2~im~udu, we are done. Observe that  for this construction, 

i /, g~(t)2d t = _1 2d t e g(t) . (19) 

Proof of Proposition 6.1: Let e > 0, and suppose that  X = { X l , . . .  , x k }  is 
a set of k points in T such that  for every integer n, the dilation nx(mod  1) 
is not e-dense. We shall derive from this assumption an upper bound on 
k, implying the proposition. By our hypothesis, for each integer n there is 

some An E T such that  n X  and the interval (An - 6 / 2 ,  An+e~2), both taken 
rood l, are disjoint. Employing the function g~ from the previous lemma, 

we have for every N > 1, 

o = + = 

n = l  j = l  

N k 
1 

n = l  j = l  r n = - o o  

Since ff~ (0) = 1, separating this coefficient gives 

_ N k M [ oo 

n = l  j = l  m = l  r e = M + 1  

' ( 2 0 )  
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for any choice of M > 1. 
The rightmost sum is easy to estimate: 

E 
m = M + l  r n = M ' + l  e 

= - -  2 u e - U d u  = + 1 . 
E 

Setting 

we see that for E < z0, certainly ~ = M + I  Ig~(m)l < 1/4. Substituting this 
into (20) gives 

N M k  I 4 -  
n = l  m = l  j = l  

Now we square both sides and use Cauchy-Schwartz twice: 

--16 - < -N E ~(m) E em(nXj -4- An) _< 
n--1 m = l  j = l  

I I n----1 m = l  m--1 j = l  

(22) 

By Bessel's inequality and (19), there is an absolute constant cl such that 

M 2 [~(m) _< Cl 

m = l  

Denoting c2 = 16c1, (22) implies that 

n = l  m = l  j = l  

M k k 1 N 

E 
rn----1 j = l  ~----1 n-----1 

(23) 
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Next we let N --* c~, and observe that  for fixed m we have a nonzero 
contribution from a pair xj,  xe iff m(x j  - xt) is an integer. Recalling the 
definition of the quantities h,~ and Hm (which depend on x l , . . . ,  xk) from 
proposition 1.3, we get 

M 
k2 _< c_ c [k + 2hm] = - (kM + 

Using proposition 1.3, this immediately yields theorem 1.1. Utilizing corol- 
lary 5.2 instead, we conclude that  for some c3 > 0, if c < c0 then our initial 
assumption that  no dilation of X is c-dense, forces the inequality 

k2 ~_ c3 (km)l+(loglog M)-' 
G 

to hold. Recalling our choice of M from (21), we see that  necessarily 

k < ( ~ )  2+3(l~176 

provided c > 0 is sufficiently small. 

This completes the proof. 

To motivate our final theorem, we mention some results from [BP]. A 
set of integers S is called a Glasner set if for any infinite set X C T there 
exists an c-dense dilation n X  with n E S. If there is a finite k such that  the 
same holds for any X C -r of cardinality k, then the smallest k with this 

property is denoted by ks(c) (otherwise, we define ks(c) = oo). In [BP] it 
was shown that  any set S C Z of positive upper Banach density is a Glasner 
set and ks(c) <_ 0 ( ~ ) ~  ). 

In fact, corollary 4.2 from section 4 guarantees that  if S has positive 
x)2+~) upper Banach density then for every/3 > 0 we have ks(c) < 0 ((-g . 

This is also easy to verify by the method of this section. Thinner sets defined 
arithmetically are more interesting. In [BP] it was proved that  the image 
f(Z) of a nonconstant  polynomial with integer coefficients is a Glasner set, 

but the techniques used there did not yield any bound on the corresponding 
ks(c). The method  used to establish proposition 6.1 is particularly well- 
suited for obtaining such a bound and enables us to prove: 
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T H E O R E M  6.3. 
(i) For any 6 > O, ifO < e < e1(5) then every set X in T of cardinality 

1 
e2+5 , 

has an c-dense dilation p X  with p prime. 
(ii) Let f be a polynomial of degree L >_ 1 with integer coefficients and let 

6 > 0. I f0  < e < e2(f, 5), then any set X in T ofcardinality 

2 L + 6  

has an c-dense dilation of the form f (n )X ,  for some n E Z. fActu- 
ally, e2(f,5) depends on f only through its degree L and the greatest 
common divisor of its coefficients]. 

Proof: (i) As in proposition 6.1., we assume that X = {Xl , . . . ,  X/c} i s  a set 
of cardinality k in -[ such that pX  is not c-dense for all primes p, and derive 
an upper bound on k. If {pn} is the sequence of primes in ascending order, 
this assumption implies that 0 ~ g k = ~ = 1  Y2"~.j=I g~(pnxj + A,) for suitable 
{An} and any N > 1. Proceeding exactly as in proposition 6.1., we arrive 
at the analogue of (23): 

M h k N 

1 E em(p,(xj  - xe)) (24) 
e 

m = l  j = l  ~=1 n--1 

with the same value of M (given in (21)) and the same constant c2. For any 
irrational number a, the sequence {p,,a} is equidistributed modulo 1 (cf. 
[V], chapter 11). Also, it is well known that for any two relatively prime 
integers a and b, the sequence {pnamodb},~>l is asymptoticMly equidis- 
tributed among the ~(b) residue classes which are relatively prime to b (cf. 
[D]), and hence 

( ) (o') 
lim 1 N . a 1 E exp 27rT Y.- -1  exp 2 ,pn = o, 

(25) 

where the right-hand sum is over all 1 < a' < b such that gcd(a', b) = 1. But 
the sum of all primitive roots of unity of order b (i.e., the sum of the roots 
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of the b-th cyclotomic polynomial) is precisely #(b) where # is the MSbius 
function, by the usual formula for the cyclotomic polynomials. Thus the 
right-hand side of (25) equals u(b) If x j  -- x t  = ~ is a reduced fraction, ~-~. 

then the denominator of m ( x j  - x t )  as a reduced fraction is bt = g%'YX(-~b 
and therefore 

I . 1 N xe)) #(b') O(loglogb') Nhrn -~ ~ em(p.(xj- = ~ <- b' 
"a.~l 

_ 2gcd(m,b)  O(loglogb) 
b " 

Denoting by d(b) the number of divisors of b, we have 

M 

O(loglogb) E gcd(m,b)  <_ O(loglogb) E M - -  o r  

r 
m = l  rib 

r < M  

<_ O ( l o g l o g b ) M d ( b )  <_ C ~ M b "  , 

where C~ is a constant depending only on 7 > 0 (cf. [H], chapter 6, theorem 
5.2 for the rightmost inequality). Consequently for fixed x j ,  xe as above, 

Z lim ,,, Z em(p~(x j  - xe)) _ < 2 C s M b  ~-1 . (26) 
m----1 n--1 

Let hb be the number of pairs (j,g) with 1 < j < g _< k such that 
xj - x~ as a reduced fraction has denominator b. Also, let ffIb = ~-,i=lb hl.  
As N --~ ~ ,  we can bound the right hand side of (24) by the sum over all 
1 _< j, t _< k of the left-hand side in (26) and infer that for some constant 
C' 7 

] ] ~2 ,~ " /7  ]g-Jl- Zhbb"/-1 = CTT k'df" Z ffIb (b"/-1-- (b-]" 1) '7--1)  

b=2 b=2 

(27) 
(using summation by parts). Next, for b _> k we use the trivial inequality 
Hb _< k 2 and for b < k the inequality -~b -< Hb <_ (kb) 1+~ provided by 
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proposi t ion 1.3 (assuming k is sufficiently large). Thus  

or k 
E ~'b ( b~'-I --(b-]- 1) ~/-1) _~ E Hbb~/-2 "~- k2kA/-1 ~- 
b=2 b=2 

< < 

Insert ing this into (27),  we find tha t  

C"  M k1+33, k2< ~--~- 

Recalling the value of M from (21), we see tha t  our assumpt ion  tha t  p X  is 
never e-dense forces the  inequality 

k l -37  < ( 1 )  2+3' 

to hold, provided e > 0 is sufficiently small. 
This implies the assertion of the theorem. 
(ii) We first suppose the coefficients of f have g.c.d. 1. Star t ing from 

the  assumpt ion  tha t  all dilations of X = { x l , . . . ,  xk} of the form f ( n ) X  
axe not e-dense, one arrives as above at the inequali ty 

M k k 1 N 

m=l j--1 ~----1 n----1 

If xj  - x~ is irrational then 

l im 1 N N--.~ -N ~ em ( f ( n ) ( x j  - x~)) = 0 
rt.-.~ l 

by Weyl 's equidistr ibut ion theorem (cf. [KN]). If xj  - xe is rational,  m > 1 
and  

a (29) m(x j  - : 

is a reduced fraction we invoke Hua's es t imate  

E exp 27rif(n) <_ C~,Lbl-1/L+~ (30) 
n=0 
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valid for arbitrary 5 > 0 (cf. [H], chapter 7, theorem 10.1). Here the 
assumption on the coefficients of f is needed. Note that  even though Weil's 
inequality gives a much better bound, ( L -  1)b 1/2 when b is prime, in general 
(30) is sharp except possibly for the &error term. This may be seen by 
considering the case in which b = pL is a prime power and f( t)  = t L. From 
(29),(30) we immediately infer 

lim 1 N E ( b )  N--+~-N E em (f(n)(xj  -- xe)) = lim 1 N g--,o~ N exp 27rif(n) <_ 
n = l  n = l  

< C&L b-1/L+5 . 

Inserting this into (28) and repeating the argument in part (i) we get 

1 k2_l/L+35 
k 2 <_ C~,Le-7~ ~ 

which implies the assertion of (ii) under our assumption on the coefficients 
of f. In the general case, write f = qfl where q E Z and the coefficients of 
fl have no common divisor. If a set X C T of cardinality k has the property 
that f ( n ) X  is never e-dense for any n, then the set qX(mod 1), which has 
cardinality at least [k/q], has the same property with respect to f l .  This 
completes the proof. D 

It would be interesting to determine the best possible power of 1/e 
required in Theorem 6.3, part (ii), and in particular to decide if it is bigger 
than 2 + 5 (for some fixed 5 > 0) for f ( t)  = t 2. 

7. C o n c l u d i n g  R e m a r k s  

We conclude with two applications of the foregoing. 

COROLLARY 7.1. Let a and b be relatiyely prime integers. The set of ratio- 
nals in [0, 1) with a terminating expansion in base a, such that in their base 
b expansion one of the digits O, 1, 2 , . . . ,  b - 1 does not appear, is a finite set. 

Proof: We give the details assuming a is prime. The general case can be 
deduced from this via the Chinese Remainder Theorem. Consider the sub- 
group generated by b in the multiplicative group modulo am. The index of 
this subgroup is monotone nondecrea.sing in m, but is eventually constant 
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(this follows from Hensel's lemma, for instance). Denote by r the ultimate 
value of this index. Also, fix 0 < e < ~. By Corollary 4.2 there exists 
k such that  for any set X of at least k points in T, the integers n such 
that  n X  mod 1 fails to be ~-dense constitute a set of upper density less than 
1(1 i )  ~ a " 

Fix such a choice of k. Next we show that any rational x of the form 
C x = ~-~, where c is not divisible by a, has all digits 0, 1, 2 , . . . ,  b -  1 appearing 

in its base b representation, provided ~(a - 1)a m-1 >_ k. This will obviously 
complete the proof. 

The left hand side of the last inequality is precisely the cardinMity of 
the set 

X = { b J x m o d l : j >  1}. 

By our choice of k, there exists an e-dense dilation n X  with n congruent 
to some power of b modulo am. For such n, however, n X  - X mod 1. We 
conclude that  for every d E {0, 1, 2 , . . . ,  b - 1} there is some point of X in 
the interval [d, ~ ) ,  as claimed. [] 

Remark: It is possible to extract from the proof above bounds on the cardi- 
nality of the set of rationals whose finiteness is established there. Corollary 
7.1 was motivated by the note [W] in which C. R. Wall shows that  there 
are precisely 16 terminating decimals in the ternary Cantor set and exhibits 
them explicitly. We mention that establishing finiteness of the set of inte- 
gers m _> 1 for which some digit is miss!ng in the decimal expansion of 5 -m 
is an open problem, first raised in IF]. 

Finally, let us show how similar ideas yield a very simple proof, com- 
municated to us by H. Furstenberg, of the following result of K. Mahler. 

COROLLARY 7.2. [M] For every integer b > 1 and every irrationM a, there 

exists an integer n such that in the base b expansion of  na  each of  the digits 

0, 1, 2 , . . . ,  b - 1 occurs infinitely often. 

Proof: [H. Furstenberg] Denote by X the set of limit points of the sequence 
{bJc~mod 1}j>l. A moments  reflection shows that  X is infinite. By Glas- 
net 's lemma there exists an e-dense dilation n X  for, say, e = ~b" For each 
d E {0, 1 , 2 , . . . ,  b -  1} there exists some x e X such that  d < nx  < d-~bl. 
This means tha t  d appears infinitely often in the base b expansion of ha.  o 
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Remark: Mahler 's original proof (which relies on the geometry of numbers) 
is longer but  yields an explicit bound on the multiplier n which depends only 

on the base b and not on c~. The proof presented here, besides its simplicity, 
also allows restricting the multiplier n to lie in a prescribed Glasner set (see 
section 6 or [BP] for the definition of these sets). Thus, for every irrational 
c~, the set of integers n for which each possible digit appears infinitely often 
in the base b expansion of n~,  has density 1 and contains squares, primes, 
etc. 
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