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Abstract

A recent palette sparsification theorem of Assadi, Chen, and Khanna [SODA’19] states that
in every n-vertex graph G with maximum degree ∆, sampling O(log n) colors per each vertex
independently from ∆+1 colors almost certainly allows for proper coloring ofG from the sampled
colors. Besides being a combinatorial statement of its own independent interest, this theorem
was shown to have various applications to design of algorithms for (∆ + 1) coloring in different
models of computation on massive graphs such as streaming or sublinear-time algorithms.

In this paper, we focus on palette sparsification beyond (∆ + 1) coloring, in both regimes
when the number of available colors is much larger than (∆ + 1), and when it is much smaller.
In particular,

• We prove that for (1+ε)∆ coloring, sampling only Oε(
√

log n) colors per vertex is sufficient
and necessary to obtain a proper coloring from the sampled colors – this shows a separation
between (1 + ε)∆ and (∆ + 1) coloring in the context of palette sparsification.

• A natural family of graphs with chromatic number much smaller than (∆+1) are triangle-
free graphs which are O( ∆

ln ∆ ) colorable. We prove a palette sparsification theorem tailored
to these graphs: Sampling O(∆γ +

√
log n) colors per vertex is sufficient and necessary to

obtain a proper Oγ( ∆
ln ∆ ) coloring of triangle-free graphs.

• We also consider the “local version” of graph coloring where every vertex v can only be
colored from a list of colors with size proportional to the degree deg(v) of v. We show
that sampling Oε(log n) colors per vertex is sufficient for proper coloring of any graph with
high probability whenever each vertex is sampling from a list of (1 + ε) · deg(v) arbitrary
colors, or even only deg(v) + 1 colors when the lists are the sets {1, . . . ,deg(v) + 1}.

Similar to previous work, our new palette sparsification results naturally lead to a host of
new and/or improved algorithms for vertex coloring in different models including streaming and
sublinear-time algorithms.
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1 Introduction

Given a graph G(V,E), let n := |V | be the number of vertices and ∆ denote the maximum degree.
A proper c-coloring of G is an assignment of colors to vertices from the palette of colors {1, . . . , c}
such that adjacent vertices receive distinct colors. The minimum number of colors needed for proper
coloring of G is referred to as the chromatic number of G and is denoted by χ(G). An interesting
variant of graph coloring is list-coloring whereby every vertex v is given a set S(v) of available
colors and the goal is to find a proper coloring of G such that the color of every v belongs to S(v).
When this is possible, we say that G is list-colorable from the lists S.

It is well-known that χ(G) ≤ ∆+1 for every graph G; the algorithmic problem of finding such a
coloring—the (∆+1) coloring problem—can also be solved via a text-book greedy algorithm. Very
recently, Assadi, Chen, and Khanna [4] proved the following palette sparsification theorem
for the (∆ + 1) coloring problem: Suppose for every vertex v of a graph G, we independently
sample O(log n) colors L(v) uniformly at random from the palette {1, . . . ,∆ + 1}; then G is almost-
certainly list-colorable from the sampled lists L (see Appendix B for a formal statement).

The palette sparsification theorem of [4], besides being a purely graph-theoretic result of its own
independent interest, also had several interesting algorithmic implications for the (∆ + 1) coloring
problem owing to its “sparsification” nature: it is easy to see that by sampling only O(log n) colors
per vertex, the total number of edges that can ever become monochromatic while coloring G from
lists L is with high probability only O(n · log2 n); at the same time we can safely ignore all other
edges of G. This theorem thus reduces the (∆ + 1) coloring problem, in a non-adaptive way, to a
list-coloring problem on a graph with (potentially) much smaller number of edges.

The aforementioned aspect of this palette sparsification is particularly appealing for the design
of sublinear algorithms—these are algorithms which require computational resources that are sub-
stantially smaller than the size of their input. Indeed, one of the interesting applications of this
theorem, proven (among other things) in [4], is a randomized algorithm for the (∆ + 1) coloring
problem that runs in Õ(n

√
n)1 time; for sufficiently dense graphs, this is faster than even reading

the entire input once!

Palette sparsification in [4] was tailored specifically to the (∆ + 1) coloring problem. Motivated
by the ubiquity of graph coloring problems on one hand, and the wide range of applications of this
palette sparsification result on the other hand, the following question is natural:

What other graph coloring problems admit (similar) palette sparsification theorems?

This is precisely the question we study in this work from both upper and lower bound fronts.

1.1 Our Contributions

We consider palette sparsification beyond (∆ + 1) coloring: when the number of available colors
is much larger than ∆ + 1, when it is much smaller, and when the number of available colors for
vertices depend on “local” parameters of the graph. We elaborate on each part below.

(1 + ε)∆ Coloring. The palette sparsification theorem of [4] is shown to be tight in the sense
that on some graphs, sampling o(log n) colors per vertex from {1, . . . ,∆ + 1}, results in the sampled
list-coloring instance to have no proper coloring with high probability. We prove that in contrast
to this, if one allows for a larger number of available colors, then indeed we can obtain a palette
sparsification with asymptotically smaller sampled lists.

1Here and throughout the paper, we use the notation Õ(f) := O(f · polylog(f)) to suppress log-factors.
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Result 1 (Informal – Formalized in Theorem 1). For any graph G(V,E), sampling Oε(
√

log n)
colors per vertex from a set of size (1 + ε)∆ colors with high probability allows for a proper
list-coloring of G from the sampled lists.

Result 1, combined with the lower bound of [4], provides a separation between (∆ + 1) coloring
and (1 + ε)∆ coloring in the context of palette sparsification. We also prove that the bound of
Θ(
√

log n) sampled colors is (asymptotically) optimal in Result 1.

To prove Result 1, we unveil a new connection between palette sparsification theorems and some
of the classical list-coloring problems studied in the literature. In particular, several works in the
past (see, e.g. [21, 37, 39] and [2, Proposition 5.5.3]) have studied the following question: Suppose
in a list-coloring instance on a graph G, we define the c-degree of a vertex-color pair (v, c) as the
number of neighbors of v that also contain c in their list; what conditions on maximum c-degrees
and minimum list sizes imply that G is list-colorable from such lists?

Palette sparsification theorems turned out to be closely related to these questions as the sampled
lists in these results can be viewed through the lens of these list-coloring results. In particular,
Reed and Sudakov [39] proved that in the above question if the size of each list is larger than the
maximum c-degree by a (1 + o(1)) factor, then G is always list-colorable. The question here is then
whether or not the lists sampled in Result 1 satisfy this condition with high probability. The answer
turns out to be no as sampling only O(

√
log n) colors does not provide the proper concentration

needed for this guarantee. Despite this, we show that one can still use [39] to prove Result 1 with
a more delicate argument by applying [39] to carefully chosen subsets of the sampled lists.

O( ∆
ln ∆

) Coloring of Triangle-Free Graphs. Even though χ(G) in general can be ∆+1, many
natural families of graphs have chromatic number (much) smaller than ∆ + 1. One key example is
the set of triangle-free graphs which are O( ∆

ln ∆) colorable by a celebrated result of Johansson [22]
(this result was recently simplified and improved to (1 + o(1)) · ∆

ln ∆ by Molloy [26]; see also [7,35]).
We prove a palette sparsification theorem tailored to these graphs.

Result 2 (Informal – Formalized in Theorem 2). For any triangle-free graph G(V,E), sampling
O(∆γ +

√
log n) colors per vertex from a set of size Oγ( ∆

ln ∆) colors with high probability allows
for a proper list-coloring of G from the sampled lists.

Unlike Result 1 of our paper and the theorem of [4], in this result we also have a dependence of ∆γ

on the number of sampled colors (where the exponent depends on the number of available colors).
We prove that this dependence is also necessary in this result (Proposition 3.3).

The proof of Result 2 is also based on the aforementioned connection to list-coloring problems
based on c-degrees. However, unlike the case for Result 1, here we are not aware of any such
list-coloring result that allows us to infer Result 2. As such, a key part of the proof of Result 2
is exactly to establish such a result. Our proof for the corresponding list-coloring problem is by
the probabilistic method and in particular a version of the so-called “Rödl Nibble” or the “semi-
random method”; see, e.g. [29, 40]. Similar to previous work on coloring triangle-free graphs, the
main challenge here is to establish the desired concentration bounds. We do this following the
approach of Pettie and Su [35] in their distributed algorithm for coloring triangle-free graphs.

We shall note that our proofs of Results 1 and 2 are almost entirely disjoint from the techniques
in [4] and instead build on classical work on list-coloring problems in the graph theory literature.

Coloring with Local Lists Size. Finally, we consider a coloring problem with “local” list sizes
where the number of available colors for vertices depends on a local parameter, namely their degree
as opposed to a global parameter such as maximum degree.
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Result 3 (Informal – Formalized in Theorem 3). For any graph G(V,E), sampling Oε(log n)
colors for each vertex v with degree deg(v) from a set S(v) of (1 + ε) · deg(v) arbitrary colors
or only deg(v) + 1 colors when the lists are the sets {1, . . . ,deg(v) + 1}, allows for a proper
coloring of G from the sampled colors.

Coloring problems with local lists size have been studied before in both the graph theory
literature, e.g. in [11, 14] for coloring triangle-free graphs (and as pointed out by [14], the general
idea goes all the way back to the notion of degree-choosability in one of the original list-coloring
papers [16]), and theoretical computer science, e.g. in [13].

To be more precise, the first part of Result 3 refers to the standard (1 + ε) deg list-coloring
problem and the second part corresponds to the so-called (deg +1) coloring problem introduced first
(to our knowledge) in the recent work of Chang, Li, and Pettie [13] (see also [3] for an application
of this problem). We remark that the (deg +1) coloring problem is a generalization of the (∆ + 1)
coloring problem and hence our Result 3 generalizes that of [4] (although technically we build on
many of the ideas and tools developed in [4] for ∆ + 1 coloring).

Our proof of Result 3 takes a different route than Results 1 and 2 that were based on list-
coloring and instead we follow the approach of [4] for the (∆ + 1) coloring problem (outlined
in Appendix B). A fundamental challenge here is that the graph decomposition for partitioning
vertices into sparse and dense parts that played a key role in [4] is no longer applicable to the
(deg +1) coloring problem. We address this by “relaxing” the requirements of the decomposition
and develop a new one that despite being somewhat “weaker” than the ones for (∆ + 1) coloring
in [4,13,19] (themselves based on [36]), takes into account the disparity between degrees of vertices
in the (deg +1) coloring problem. Similar to [4], we then handle “sparse”2 and dense vertices of
this decomposition separately but unlike [4], here the main part of the argument is to handle these
“sparse” vertices and the result for the dense part follows more or less directly from [4].

We conclude this section by noting that our proof for (1 + ε) deg-list coloring problem also
immediately gives a palette sparsification result for obtaining a (1 + ε)κ-list coloring where κ is the
degeneracy of the graph (see Remark 4.1). This problem was studied very recently in the context
of sublinear or “space conscious” algorithms by Bera, Chakrabarti, and Ghosh [6] who also proved,
among many other interesting results, a lower bound that (κ+ 1) coloring cannot be achieved via
palette sparsification (see [6, Section 5.3] – our result thus complements their lower bound.

1.2 Implication to Sublinear Algorithms for Graph Coloring

As stated earlier, one motivation in studying palette sparsification is in its application to design of
sublinear algorithms. As was shown in [4], these theorems imply sublinear algorithms in various
models in “almost” a black-box way (see Section 5 for details). For concreteness, in this paper, we
stick to their application to the two canonical examples of streaming and sublinear-time algorithms.
We only note in passing that exactly as in [4], our results also imply new algorithms in models such
as massively parallel computation (MPC) or distributed/linear sketching; see also [6, 12] for more
recent results on graph coloring problems in these and related models.

Our results in this part appear in Section 5. Table 1 presents a summary of our sublinear
algorithms and the directly related previous work (although our Result 1 implies a separation
between (∆ + 1) and (1 + ε)∆ coloring for palette sparsification, the resulting sublinear algorithms
from Result 1 are subsumed by the previous work in [6] and hence are omitted from Table 1).

2Technically speaking, this decomposition allows for vertices that are neither sparse nor dense according to standard
definitions and are key to extending the decomposition from (∆ + 1) coloring to (deg +1) coloring.
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Problem Graph Family Streaming Sublinear-Time Source

(∆ + 1) Coloring General O(n log2 n) space Õ(n3/2) time [4]

(1 + ε)κ Coloring κ-Degenerate O(n log n) space Õ(n3/2) time [6]

Oγ( ∆
ln ∆ ) Coloring Triangle-Free O(n ·∆γ) space O(n3/2+γ) time our work

(1 + ε) deg List-Coloring General O(n · log2 n) space Õ(n3/2) time our work

(deg +1) Coloring General O(n · log2 n) space Õ(n3/2) time our work

Table 1: A sample of our sublinear algorithms as corollaries of Results 1, 2, and 3, and the previous
work in [4] and [6] (for brevity, we assume ε, γ are constants). All streaming algorithms here are
single-pass and all sublinear-time algorithms except for (1 + ε)κ coloring are non-adaptive.

Sublinear Algorithms from Graph Partitioning. Motivated by our results on sublinear al-
gorithms for triangle-free graphs, we also consider sublinear algorithms for coloring other “locally
sparse” graphs such as Kr-free graphs, locally r-colorable graphs, and graphs with sparse neighbor-
hood. We give several results for these problems through a general algorithm based on the graph
partitioning technique (see, e.g. [6, 12,33,34]). Our results in this part are presented in Section 6.

2 Preliminaries

Notation. For any integer t ≥ 1, we define [t] := {1, . . . , t}. For a graph G(V,E), we use
V (G) := V and E(G) := E to denote the vertex-set and edge-set respectively. For a vertex v ∈ V ,
NG(v) denotes the neighborhood of v in G and degG(v) := |NG(v)| denotes the degree of v (when
clear from the context, we may drop the subscript G). For a vertex-set U ⊆ V , G[U ] denotes the
induced subgraph of G on U .

When there are lists of colors S(v) given to vertices v, we use the term c-degree of v to mean
the number of neighbors u of v of with color c in their list S(u) and denote this by degS(v, c).

Throughout, we use the term “with high probability” (w.h.p.) for an event to mean that the
probability of this event happening is at least 1− 1/nc where c is a sufficiently large constant.

2.1 Probabilistic Tools

We use the following standard probabilistic tools.

Proposition 2.1 (Lovász Local Lemma – symmetric form; cf. [2]). Let E1, . . . , En be n events such
that each event Ei is mutually independent of all other events besides at most d, and P (Ei) ≤ p for
all i ∈ [n]. If e · p · (d+ 1) ≤ 1 (where e = 2.71...), then P

(
∧ni=1Ei

)
> 0.

Proposition 2.2 (Chernoff-Hoeffding bound; cf. [2,25]). Let X1, . . . , Xn be n independent random
variables where each Xi ∈ [0, b]. Define X :=

∑n
i=1Xi. Then, for any t > 0,

P
(
|X − E [X]| > t

)
≤ 2 · exp

(
− 2t2

n · b2

)
.

Moreover, for any δ ∈ (0, 1), and µmin ≤ E [X] ≤ µmax:

P (X > (1 + δ) · µmax) ≤ exp

(
−δ

2 · µmax

3b

)
, P (X < (1− δ) · µmin) ≤ exp

(
−δ

2 · µmin

2b

)
.
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A function f(x1, . . . , xn) is called c-Lipschitz iff changing any single xi can affect the value of
f by at most c. Additionally, f is called r-certifiable iff whenever f(x1, . . . , xn) ≥ s, there exists at
most r · s variables xi1 , . . . , xir·s so that knowing the values of these variables certifies f ≥ s.

Proposition 2.3 (Talagrand’s inequality; cf. [29]). Let X1, . . . , Xn be n independent random vari-
ables and f(X1, . . . , Xn) be a c-Lipschitz function; then for any t ≥ 1,

P (|f − E [f ]| > t) ≤ 2 exp

(
− t2

2c2 · n

)
.

Moreover, if f is additionally r-certifiable, then for any b ≥ 1,

P
(
|f − E [f ]| > b+ 30c

√
r · E [f ]

)
≤ 4 exp

(
− b2

8c2rE [f ]

)
.

2.2 List-Coloring with Constraints on Color-Degrees

We use the following result of Reed and Sudakov [39] on list-coloring of graphs with constraints on
c-degrees of vertices.

Proposition 2.4 ([39]). For every ε > 0 there exists a d0 := d0(ε) such that for all d ≥ d0 the
following is true. Suppose G(V,E) is a graph with lists S(v) for every v ∈ V such that:

(i) for every vertex v, |S(v)| ≥ (1 + ε) · d, and

(ii) for every vertex v and color c ∈ S(v), degS(v, c) ≤ d (recall that degS(v, c) denotes the
c-degree of v which is the number of neighbors u of v with color c ∈ S(u)).

Then, there exists a proper coloring of G from these lists.

A weaker version of this result obtained by replacing (1 + ε) above with some absolute constant
appeared earlier in [37] (see also [2, Proposition 5.5.3] and [21]). For some of our proofs, we only
require this weaker version whose easy proof is provided below for completeness.

Proposition 2.5 (cf. [37]). Suppose G(V,E) is a graph with lists S(v) for every v ∈ V such that
|S(v)| ≥ d2ede (where e = 2.71...) and for every color c ∈ S(v), c-degree of v is at most d. Then,
there exists a proper coloring of G from these lists.

Proof. Pick a color for each vertex v independently and uniformly at random from S(v). For an
edge e = (u, v) ∈ E and each color c that appears in S(u) ∩ S(v), define an event Ee,c as the event
that both endpoints u and v of e have chosen c as their color. Clearly, P (Ee,c) ≤ 1/(2ed)2. On the
other hand, each Ee,c is mutually independent of all other events Ee′,c′ besides those where e and e′

share a vertex and c′ is contained in both end-points of e′. The total number of such events is at
most 2d(2ed) − 1. The proof now follows from Lovász Local Lemma (Proposition 2.1) as there is
an assignment of colors to vertices in which none of the events Ee,c happens.

3 Two New Palette Sparsification Theorems

We present our new palette sparsification theorems in Result 1 and Result 2 in this section.
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3.1 Palette Sparsification for (1 + ε)∆ Coloring

We start with our improved palette sparsification theorem for (1 + ε)∆ coloring.

Theorem 1. For every ε ∈ (0, 1/2), there exists an integer n0(ε) ≥ 1 such that the following
is true. Let G(V,E) be any graph with n ≥ n0(ε) vertices and maximum degree ∆, and define
C := C(ε) = (1 + ε) ·∆. Suppose for every vertex v ∈ V , we independently sample a set L(v)
of colors of size O

(√
log n/ε1.5

)
uniformly at random from colors {1, . . . , C}. Then, with high

probability, there exists a proper coloring of G from lists L(v) for every v ∈ V .

We shall note that in contrast to Theorem 1, it was shown in [4] that for the more stringent
problem of (∆ + 1) coloring, sampling Ω(log n) colors per vertex is necessary. As such, Theorem 1
presents a separation between these two problems in the context of palette sparsification.

Proof of Theorem 1

The proof of this theorem is by showing that the lists sampled for vertices can be adjusted so
that they satisfy the requirement of Proposition 2.4; we then apply this proposition to obtain a
list-coloring of G from the sampled lists. Let ` :=

(
20
√

log n/ε1.5
)

denote the number of sampled
colors per vertex.

Recall that degL(v, c) denotes the c-degree of vertex v with respect to lists L. For every c ∈ L(v),

E [degL(v, c)] :=
∑

u∈N(v)

P (u samples c in L(u)) ≤ ∆ · `
C

=
`

1 + ε
. (1)

Now if degL(v, c) was concentrated enough so that maxv,c degL(v, c) = (1−Θ(ε)) · `, we would
have been done already: by Proposition 2.4, there is always a proper coloring of G from such lists
(take the parameter d to be maxv,c degL(v, c) and so size of each list is (1 + Θ(ε))d). Unfortunately
however, it is easy to see that as ` = Θ(

√
log n) in general no such concentration is guaranteed.

We fix the issue above by showing existence of a subset L̂(v) of each list L(v) such that these
new lists can indeed be used in Proposition 2.4. The argument is intuitively as follows: the
probability that degL(v, c) deviates significantly from its expectation is 2−Θ(`) = 2−Θ(

√
logn) by a

simple Chernoff bound. Moreover, the probability that Ω(
√

log n) colors in L(v) all deviate from

their expectation can be bounded by
(

2−Θ(
√

logn)
)Ω(
√

logn)
(ignoring dependency issues for the

moment). This probability is now n−Θ(1), enough for us to take a union bound over all vertices.
As such, by removing some fraction of the colors from the list of each vertex, we can satisfy the
c-degree requirements for applying Proposition 2.4 and conclude the proof. We now formalize this.

We say that a color c ∈ L(v) is bad for v iff degL(v, c) > (1 + ε/2) · `
1+ε . As the choice of color

c for each vertex u ∈ N(v) is independent, by Eq (1) and Chernoff bound (Proposition 2.2),

P
(

degL(v, c) > (1 + ε/2) · `

1 + ε

)
≤ exp

(
− ε

2

12
· `

1 + ε

)
. (2)

Define bad(v) as the number of colors c in L(v) that are bad for vertex v. We note that by the
sampling process in Theorem 1, conditioning on some colors being bad for v can only reduce the
chance of the remaining colors being bad for v. As such, by Eq (2),

P
(
bad(v) ≥ ε/4 · `

)
≤
(

`

ε/4 · `

)
· exp

(
− ε

2

12
· `

1 + ε

)ε·`/4
≤ 2` · exp

(
− ε

3

72
· `2
)
≤ exp (−5 log n) .

(by the choice of ` = 20
√

log n/ε1.5 and as ε < 1/2 is sufficiently smaller than n)
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By a union bound over all n vertices, with high probability, for every vertex v, bad(v) ≤ ε · `/4.
We let L̂(v) to be a subset of L(v) obtained by removing all bad colors from L(v). For any c ∈ L̂(v):

deg
L̂

(v, c) ≤ degL(v, c) ≤ (1 + ε/2) · `

1 + ε
≤ (1− ε/3) · `. (for ε < 1/2)

On the other hand, as bad(v) ≤ ε · `/4, we have
∣∣∣L̂(v)

∣∣∣ ≥ (1− ε/4) · `. As such, by Proposition 2.4

(as ε is a constant with respect to `), we can list-color G from lists L̂ and consequently also L,
finalizing the proof. Theorem 1

Asymptotic Optimality of the Bounds in Theorem 1

We give a simple proof of the (asymptotic) optimality of O(
√

log n) sampled colors in Theorem 1.
That is, if we instead sample slightly smaller number of colors per each vertex, then there are
graphs where, w.h.p., the resulting list-coloring instance has no proper coloring. For concreteness,
we focus on 2∆ coloring; it will be evident how to extend this to other choices of O(∆) coloring.

Proposition 3.1. There exists an n-vertex graph G with maximum degree ∆ = 0.5
√

log n such
that if for each vertex v ∈ V , we independently pick a set L(v) of colors with size ` = 0.5

√
log n

uniformly at random from 2∆ colors, then, with probability 1− o(1), there exists no proper coloring
of G such that for all vertices v ∈ V color of v is chosen from L(v).

Proof. Consider a graph G which is a collection of (`+ 1)-cliques C1, . . . , Ck for k = n/(`+ 1). As
such, maximum degree of this graph is ∆ = `. For a clique Ci, let L(Ci) := ∪v∈CiL(v) denote the
set of sampled colors for vertices in Ci. As we are sampling the colors from a set of size 2∆ = 2`
colors, and by the independence across vertices in their choice of colors, we have,

P (L(Ci) = {1, . . . , `}) =

(
2`

`

)−(`+1)

≥
(

22`−2
)−(`+1)

≥ 2−2`2 = n−1/2,

by the choice of ` = 0.5
√

log n. Using the fact that n/(` + 1) = ω(n1/2) and that the event
above is independent across the cliques, with probability 1− o(1), there exists a clique Ci in which
L(Ci) = {1, . . . , `}. This clique clearly cannot be colored using the colors L(v) for v ∈ Ci.

3.2 Palette Sparsification for Triangle-Free Graphs

We now prove a palette sparsification theorem for triangle-free graphs.

Theorem 2. Let G(V,E) be any n-vertex triangle-free graph with maximum degree ∆. Let γ ∈ (0, 1)

be a parameter and define C := C(γ) =
(

9∆
γ·ln ∆

)
. Suppose for every vertex v ∈ V , we independently

sample a set L(v) of size b · (∆γ +
√

log n) uniformly at random from colors {1, . . . , C} for an
appropriate absolute positive constant b. Then, with high probability there exists a proper coloring
of G from lists L(v) for every vertex v ∈ V .

It is known that there are triangle-free graphs with chromatic number Ω( ∆
ln ∆) [10] (In fact this

bound holds even for graphs with arbitrarily large girth not only girth > 3). Theorem 2 then shows
that one can match the chromatic number of these graphs asymptotically by sampling only a small
number of colors per vertex (almost as small as O(∆o(1) +

√
log n) in the limit).
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Proof of Theorem 2

As we already saw in the proof of Theorem 1, looking at the sampled lists L(v) of vertices as a list-
coloring problem with constraints on c-degrees can be quite helpful in proving the corresponding
palette sparsification result. We take the same approach in proving Theorem 2 as well. However,
unlike for (1 + ε)∆ coloring, to the best of our knowledge, no such list-coloring results (with
constraints on c-degrees instead of maximum degree) are known for coloring triangle-free graphs.
Our main task here is then exactly to prove such a result formalized as follows.

Proposition 3.2. There exists an absolute constant d0 such that for all d ≥ d0 the following holds.
Suppose G(V,E) is a triangle-free graph with lists S(v) for every v ∈ V such that:

(i) for every vertex v, |S(v)| ≥ 8 · d
ln d , and

(ii) for every vertex v and color c ∈ S(v), degS(v, c) ≤ d.

Then, there exists a proper coloring of G from these lists.

A word of interpretation is in order. It is known that any triangle-free graph G with maximum
degree ∆ is O( ∆

ln ∆) (list-)colorable [22,26]. However, in Proposition 3.2, the maximum degree of a
vertex can be as large as Θ(d2/ ln d) even after omitting all edges between adjacent vertices with
disjoint lists, while the size of each list is only O(d/ ln d). (In fact this is precisely the setting of
parameters we will be interested in while proving Theorem 2). Proposition 3.2 shows that even in
this case, as long as the c-degrees are bounded by d, we can list-color the graph with O(d/ ln d)
colors (similar to Proposition 2.4 for (1 + ε)∆ coloring)3.

We give the proof of Theorem 2 assuming Proposition 3.2 here. The proof of Proposition 3.2
itself is technical and detailed and thus even though interesting on its own, we opted to postpone
it to Appendix A to preserve the flow of the paper.

Proof of Theorem 2. We prove this theorem with the weaker bound of O(∆γ + log n) (as opposed
to O(∆γ +

√
log n)) for the number of sampled colors. The extension to the improved bound with

O(
√

log n) dependence is exactly as in the proof of Theorem 1 and is thus omitted.

Let ` := (∆γ + 3000 lnn) and suppose each vertex samples ` colors from {1, . . . , C} for C :=

C(γ) =
(

9∆
γ·ln ∆

)
. Let p := `/C which is equal to the probability that any vertex v samples a

particular color in L(v). We have,

E [degL(v, c)] =
∑

u∈N(v)

P (u samples c in L(u)) ≤ p ·∆.

Note that as p ·∆ ≥ p ·C = ` ≥ 3000 lnn, a simple application of Chernoff bound (Proposition 2.2)
plus union bound ensures that, for every vertex v and color c, degL(v, c) ≤ (1.1) · p∆ with high
probability. In the following, we condition on this event.

Let d := (1.1) · p∆. By the above conditioning, c-degree of every vertex v ∈ V is at most d. In
order to apply Proposition 3.2 to graph G with lists L, we only need to prove that ` ≥ 8d

ln d . We
prove that in fact ` · ln ` ≥ 8d which implies the desired bound as ` = p · C ≤ p ·∆ ≤ d. We have,

` · ln ` ≥ (p · C) · ln (∆γ) = p ·
(

9∆

γ · ln ∆

)
· γ · ln ∆ = 9 · p∆ > 8d.

(as ∆γ < ` = p · C and by the choice of C)

3It is worth mentioning that transforming results on maximum degree to ones on maximum c-degree in general is
a non-trivial task and not even always true: it was shown in [9] that there are graphs and lists so that c-degree of
every vertex is d and still the graph is not d+ 1 list-colorable (even though every graph is (∆ + 1) list-colorable).
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The proof now follows from applying Proposition 3.2 to lists L. Theorem 2

Asymptotic Optimality of the Bounds in Theorem 2

We now prove the optimality of Theorem 2 up to constant factors.

Proposition 3.3. There exists a distribution on n-vertex graphs with maximum degree ∆ = Θ(n1/3)
such that for every γ < 1/16 and C := C(γ) = ∆

16γ·ln ∆ the following is true. Suppose we sample a
graph G(V,E) from this distribution and then for each vertex v ∈ V , we independently pick a set
L(v) of colors with size ∆γ uniformly at random from colors {1, . . . , C}; then, with high probability
there exists no proper coloring of G where for all v ∈ V color of v is chosen from L(v).

Let Gn,p denote the Erdős-Rényi distribution of random graphs on n vertices in which each edge
is chosen independently with probability p. Define the following distribution G−K3

n,p on triangle-
free graphs: Sample a graph G from Gn,p, then remove every edge that was part of a triangle
originally. Clearly, the graphs output by G−K3

n,p are triangle-free. Throughout this section, we take

p = Θ(n−2/3) (the exact choice of the leading constant will be determined later).

We prove Proposition 3.3 by considering the distribution G−K3
n,p . However, we first present some

basic properties of distribution Gn,p needed for our purpose. The proofs are simple exercises in
random graph theory and are provided in Appendix C for completeness. In the following, let t(G)
denote the number of triangles in G and α(G) denote the maximum independent set size, and recall
that ∆(G) denotes the maximum degree of G.

Lemma 3.4. For G ∼ Gn,p, E [t(G)] ≤ (np)3, and t(G) ≤ (1 + o(1))E [t(G)] w.h.p.

Lemma 3.5. For G ∼ Gn,p, E [α(G)] ≤ 3·ln (np)
p , and α(G) ≤ 3·ln (np)

p w.h.p.

Lemma 3.6. For G ∼ Gn,p, ∆(G) ≤ 2np w.h.p.

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. Let p := 1
3 · (n)−2/3 for this proof and consider the distribution G−K3

n,p .
Moreover, let L denote the distribution of lists of colors sampled for vertices. By Lemma 3.6,
the maximum degree of G ∼ Gn,p and consequently G ∼ G−K3

n,p is at most ∆̃ := 2np with high
probability. Throughout the following argument, we condition on this event. This can only change
the probability calculations by a negligible factor (that we ignore for the simplicity of exposition).

This way, the number of colors sampled in L can be assumed to be at most C := ∆̃

16γ·ln ∆̃
. We

further use q := ∆̃γ/C to denote the probability that a color c is sampled in list L(v) of a vertex v.

For a graph G(V,E) ∼ G−K3
n,p and lists L ∼ L, let V1, . . . , VC be a collection of subsets of V

(not necessarily disjoint) where for every c ∈ [C], Vc denotes the vertices v that sampled the color
c in their list L(v). As each color is sampled with probability q by a vertex, and the choices
are independent across vertices, a simple application of Chernoff bound ensures that with high
probability, |Vc| ≤ 2q ·n for all c. We also condition on this event in the following (and similarly as
before ignore the negligible contribution of this conditioning to the probability calculations below).

Let δ denote the probability of “error” i.e., the event that the sampled colors do not lead to a
proper coloring of the graph. An averaging argument implies that there exists a fixed set of lists
L ∼ L such that for G sampled from G−K3

n,p , the error probability of L on G is at most δ. Fix such
a choice of L in the following. We will show that δ = 1− o(1).

Recall thatG ∼ G−K3
n,p is chosen independent of the lists L (by definition of palette sparsification).

For any graph G, define:

9



• µL(G) := max(U1,...,UC)

∑C
c=1 |Uc| where all Uc’s are disjoint, each Uc ⊆ Vc, and G[Uc] is an

independent set.

As we have fixed the choice of the lists L, the function µL(·) is fixed at this point and its value only
depends on G. A necessary condition for G to be colorable from the lists L is that µL(G) = n.
This is because (i) any proper coloring of G from lists L necessarily induces an independent set
inside each Vc; (ii) these independent sets are disjoint and hence we can take them as a feasible
solution (U1, . . . , UC) to µL(G); (iii) these independent sets cover all vertices of G. Our task is
now to bound the probability that µ(G) = n to lower bound δ.

Firstly, we can switch from the distribution G−K3
n,p to Gn,p using the following equation (recall

that t(G) denotes the number of triangles):

E
G∼G−K3

n,p

[µL(G)] ≤ E
H∼Gn,p

[µL(H) + 3 · t(H)] . (3)

This is because any graph G ∼ G−K3
n,p is obtained by removing edges of every triangle in a graph

H ∼ Gn,p and removing these edges can only increase the total size of a collection of disjoint
independent sets (namely, the value of µL) by the number of vertices in the triangles (in fact, by
at most two vertices from each triangle). We can upper bound the second-term in Eq (3) using
Lemma 3.4. We now bound the first term. In the following, let nc := |Vc| for c ∈ [C]. We have,

E
H∼Gn,p

[µL(H)] ≤ E
H∼Gn,p

[
C∑
c=1

α(H[Vc])

]
,

(by removing the disjointness condition between sets Uc’s we can only increase value of µL(H))

=
C∑
c=1

E
Hc∼Gnc,p

[α(Hc)]

(by linearity of expectation and as for every c ∈ [C], H[Vc] is sampled from Gnc,p)

≤
C∑
c=1

3 · ln (ncp)

p
(by Lemma 3.5)

≤ C · 3 · ln (2qn · p)
p

(as we conditioned on nc ≤ 2q · n)

=
∆̃

16γ · ln ∆̃
· 3 · ln (q · ∆̃)

(∆̃/2n)
(by definitions of C and ∆̃)

=
6n

16
· ln (q · ∆̃)

ln (∆̃γ)
(by a simple re-arranging of terms)

<
6n

8
. (as ln

(
q · ∆̃

)
= ln

(
∆̃γ · 16γ · ln ∆̃

)
< 2 ln

(
∆̃γ
)

)

Plugging this in Eq (3) together with Lemma 3.4 to bound the second term, implies that:

E
G∼G−K3

n,p

[µL(G)] ≤ 6n

8
+ 3 · (n

1/3

3
)3 <

7n

8
.

Finally, by the assertions of Lemma 3.4 and Lemma 3.5, µL(G) < n w.h.p. This implies that
δ = 1− o(1) as needed. Proposition 3.3
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4 A Local Version of Palette Sparsification

We now give a “local version” (see, e.g. [11, 14]) of the palette sparsification theorem in which
the initial number of available colors for vertices depends on the local parameters of the vertices,
namely, their degree, as opposed to a global parameter such as maximum degree.

Theorem 3. Let G(V,E) be any n-vertex graph and assume each vertex v ∈ V is given a list S(v)
of colors. Suppose for every vertex v ∈ V , we independently sample a set L(v) of colors of size `
uniformly at random from colors in S(v):

(i) if S(v) is any arbitrary set of (1 + ε) · deg(v) colors and ` = Θ(ε−1 · log n) for ε > 0,

(ii) or if S(v) = {1, . . . ,deg(v) + 1} and ` = Θ(log n),

then, with high probability, there exists a proper coloring of G from lists L(v) for v ∈ V .

The main part of the proof of Theorem 3 is Part (ii) as the proof of the first part follows almost
directly from this proof. However, we start with a standalone proof of Part (i) as a warm-up and
then present the proof of Part (ii), which involves the bulk of our effort in this section.

4.1 Warm Up: Palette Sparsification for (1 + ε) deg List-Coloring

Proof of Theorem 3 – Part (i). Fix any ε > 0 (not necessarily a constant) and suppose we sample
` := 10

ε · lnn colors L(v) from S(v) for every vertex v ∈ V . Consider the following process:

1. Iterate over vertices v in an arbitrary order and for each vertex v, let N<(v) denote the
neighbors of v that appear before v in this ordering.

2. For each vertex v, if there exists a color c(v) in L(v) that is not used to color any vertex
u ∈ N<(v), color v with c(v). Otherwise abort.

We argue that this procedure will terminate with high probability without having to abort. This
ensures that G is colorable from sampled lists L, thus proving Part (i) of Theorem 3. We have,

P (abort) ≤
∑
v

P
(
L(v) is a subset of colors chosen for N<(v)

)
(by union bound)

≤
∑
v

(
|N<(v)|
|S(v)|

)`
≤ n ·

(
deg(v)

(1 + ε) · deg(v)

)`
≤ n · (1− ε/2)`

(by the sampling without replacement procedure of Theorem 3)

≤ n · exp

(
−ε

2
· 10

ε
· lnn

)
= n−4. (by the choice of `)

This concludes the proof of Part (i) of Theorem 3. Theorem 3

We conclude this part by noting that our proof above can be also tailored to obtain a palette
sparsification theorem for coloring a graph with “about κ” colors where κ is the degeneracy of the
graph (see [6] for a recent application of such a result to algorithms in “space-conscious” models).

Remark 4.1 (Palette sparsification for coloring via degeneracy). For the above proof, we
considered an arbitrary ordering of vertices and upper bounded |N<(v)| by |N(v)| = deg(v) which
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sufficed for our purpose. However, if we instead worked with the degeneracy ordering of vertices4,
we could have upper bounded |N<(v)| by κ(v) ≤ κ where κ is the degeneracy of the graph and
κ(v) ≤ deg(v) is the degree of v in the degeneracy ordering. This immediately allows us to extend
the previous argument to the case where size of each S(v) is only (1 + ε)κ(v). This shows that
palette sparsification works for coloring with “about κ” colors (and κ(v) colors for a local version).

Remark 4.1 is closely related to a very recent work of Bera, Chakrabarti, and Ghosh [6] that
obtained similar-in-spirit results for graph coloring using about κ colors based on graph partitioning
(see Section 6). Our Remark 4.1 thus gives an alternative way of obtaining (some of the) sublinear
algorithms for κ+ o(κ) coloring studied in [6] such as streaming and sublinear-time algorithms. As
such results (in more details) have already been obtained in [6] and this is not the contribution of
our work, we omit the details and only note that in our approach, unlike [6], an additional care is
also needed to keep the running time of algorithms small.

Finally, we note that [6] shows that obtaining a (1 + ε)κ coloring via palette sparsification
requires sampling Ω(log n/poly(ε)) colors per vertex (when ε = o(1/ log n)); our upper bound
matches this bound to within poly(1/ε) terms.

4.2 Palette Sparsification for (deg +1) Coloring

We now prove the second and the main part of Theorem 3. We follow the approach of [4] for (∆+1)
coloring problem (outlined in Appendix B) to prove this result. The key difference here is that the
graph decomposition for partitioning the graph into sparse and dense parts that played a key role
in [4] is no longer applicable to the (deg +1) coloring problem.

In the following, we first give a new graph decomposition tailored to (deg +1) coloring problem
and states its main properties as well as its differences with similar decompositions for (∆ + 1)
coloring in [4,13,19] (themselves based on [36]). The next step is then to show that this decompo-
sition, even though “weaker” than the one for (∆ + 1) coloring, still has enough structure to carry
out the proof for (deg +1) coloring along the lines of the one for (∆ + 1) coloring in [4] with the
main difference being on how we handle the “sparse” vertices in our new decomposition.

4.2.1 A Graph Decomposition for (deg +1) Coloring

Let ε ∈ (0, 1) be a parameter. We define the following structures for any graph G(V,E).

Definition 4.1. We say that an induced subgraph K of G is an ε-almost-clique iff:

(i) For every v ∈ K, degG(v) ≥ (1− 8ε) ·∆(K) where we define ∆(K) := maxv∈K degG(v);

(ii) (1− ε) ·∆(K) ≤ |V (K)| ≤ (1 + 8ε) ·∆(K);

(iii) Any vertex v ∈ K has at most 8ε ·∆(K) non-neighbors (in G) inside K;

(iv) Any vertex v ∈ K has at most 9ε ·∆(K) neighbors (in G) outside K.

Definition 4.1 can be seen as a natural analogue of (∆, ε)-almost-cliques defined in [4] (see
Appendix B). The main difference is that instead of having dependence on the global parameter ∆
in a (∆, ε)-almost-clique of [4], our ε-almost-cliques only depend on ∆(K) which is a (1 + Θ(ε))-
approximation of the degree of every vertex in K (and thus can be much smaller than ∆).

Definition 4.2. We say a vertex v ∈ G is ε-sparse iff there are at least ε2 ·
(

deg(v)
2

)
non-edges in

the neighborhood of v.

4A degeneracy ordering of G is obtained by repeatedly picking the vertex of minimum remaining degree, removing
it and updating the degree of remaining vertices, and moving on to the next vertex.
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Again, Definition 4.2 is a natural analogue of sparse vertices in [4, 13, 19] by replacing the
dependence on ∆ with deg(v) instead.

Definition 4.3. We say a vertex v ∈ G is ε-uneven iff for at least ε · deg(v) neighbors u of v,
we have deg(v) < (1− ε) · deg(u).

Roughly speaking, a vertex v is considered uneven if it has a “sufficiently large” number of
neighbors with “sufficiently larger” degree than v. Definition 4.3 is tailored specifically to (deg +1)
coloring problem and does not have an analogue in [4, 13, 19] for (∆ + 1) coloring. We prove the
following decomposition result using the definitions above.

Lemma 4.2 (Graph Decomposition for (deg +1) Coloring). For any sufficiently small ε > 0, any
graph G(V,E) can be partitioned into vertices V := V uneven t V sparse tK1 t . . . tKk such that:

(i) For every i ∈ [k], the induced subgraph G[Ki] is an ε-almost-clique;

(ii) Every vertex in V sparse is (ε/2)-sparse;

(iii) Every vertex in V uneven is (ε/4)-uneven.

The key difference of Lemma 4.2 with prior decompositions for (∆ + 1) coloring in [4, 13, 19, 36] is
the introduction of V uneven that captures vertices with “sufficiently large” higher degree neighbors.
Allowing for such vertices is (seemingly) crucial for this type of decomposition that depends on the
local degrees of vertices as opposed to maximum degree5.

Before we move on, a word of caution is in order. By definition, any ε-almost-clique is also an
ε′-almost clique for ε′ ≥ ε. On the other hand, the exact opposite relation holds for ε-sparse and
ε-uneven vertices: any ε-sparse vertex is also ε′′-sparse for ε′′ ≤ ε (similarly for uneven vertices). As
such, one cannot simply “rescale” the value of ε in above definitions and lemma directly (although
there are enough slacks in our arguments to allow for proper changes when needed).

Proof of Lemma 4.2

We prove this lemma through a series of simple claims along the lines of the HSS decomposition [19]
and its extension in [4]. The general approach is similar to [4,19] but there are some key differences
in several places as well.

We start with some necessary definitions. For any sufficiently small θ ∈ (0, 1) (θ < 1/20 suffices
for our purpose), we define the following:

• An edge (u, v) is θ-balanced iff min {deg(u),deg(v)} ≥ (1− θ) ·max {deg(u),deg(v)}.

• An edge (u, v) is θ-friend iff it is θ-balanced and |N(u) ∩N(v)| ≥ (1−θ) ·min {deg(u), deg(v)}.

• A vertex v is θ-dense iff it is incident on at least (1− θ) · deg(v) many θ-friend edges.

Let Fθ ⊆ E denote the set of θ-friend edges and Dθ ⊆ V denote the set of θ-dense vertices. Consider
the (not necessarily induced) subgraph Hθ of G defined as Hθ := (Dθ, Fθ), i.e., the subgraph on
θ-dense vertices and consisting of only the θ-friend edges (here we slightly abused the notation as
endpoints of some edges in Fθ may not belong to Dθ in which case we ignore them in Hθ as well).

5For instance, consider a vertex of degree d that is incident to d vertices of a 2d-clique. Such a vertex is neither
sparse (its neighborhood is a clique), nor belongs to an almost-clique for small ε < 1.
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Handling Vertices in Dθ. We use connected components of Hθ to identify the almost-cliques
in the decomposition (where we take θ = Θ(ε)). To do so, we need a series of simple claims. In the
following, we use C to denote an arbitrary connected component of Hθ.

Claim 4.3. For any u, v ∈ C ⊆ Dθ, |N(u) ∩N(v)| ≥ (1− 5θ) ·min {deg(u),deg(v)}.

Proof. Consider a path u = w0, w1, . . . , wt = v between u and v in Hθ (u and v belong to the same
connected component). We prove inductively that for every i ∈ [t] (the case i = t proves the claim):

|N(u) ∩N(wi)| ≥ (1− 5θ) ·min {deg(u), deg(wi)} , and

min {deg(u),deg(wi)} ≥ (1− 2θ) ·max {deg(u), deg(wi)} .

The induction step for i = 1 is true because (u,w1) is a θ-friend edge. Now suppose this is true
up until some i and consider i+ 1. Since (wi, wi+1) is a θ-friend edge, we have:

|N(wi) ∩N(wi+1)| ≥ (1− θ) ·min {deg(wi),deg(wi+1)} , and

min {deg(wi),deg(wi)} ≥ (1− θ) ·max {deg(wi), deg(wi+1)} . (4)

On the other hand, the induction hypothesis implies that:

|N(u) ∩N(wi)| ≥ (1− 5θ) ·min {deg(u), deg(wi)} , and

min {deg(u),deg(wi)} ≥ (1− 2θ) ·max {deg(u), deg(wi)} . (5)

We use this to show that there exists a vertex z (not necessarily in C or even Dθ) such that both
(u, z) and (z, w) are θ-friend edges. As u is θ-dense and by Eq (5), we have that u has a θ-friend
edge to at least (1− 8θ) · deg(wi) neighbors of wi. Similarly, as wi+1 is θ-dense and by Eq (4), we
have that wi+1 has a θ-friend edge to at least (1− 3θ) deg(wi) neighbors of wi. For θ < 1/11, this
implies that there exists some neighbor z of wi where both u and wi+1 have a θ-friend edge to.

Since (u, z) and (z, wi+1) are θ-friend edges and thus θ-balanced as well, we obtain the second
part of the induction hypothesis for i+ 1. For the first part, again by using the fact that (u, z) and
(z, wi+1) are θ-friend edges, we have that :

|N(u) ∩N(z)| ≥ (1− θ) ·min {deg(u),deg(z)} , and

|N(z) ∩N(wi+1)| ≥ (1− θ) ·min {deg(z),deg(wi+1)} .

implying that |N(u) ∩N(wi+1)| ≥ (1− 5θ) ·min {deg(u),deg(z)} (using the bound on degrees of u
and wi+1). This concludes the proof of the induction hypothesis and the claim. Claim 4.3

The following claim is an immediate corollary of Claim 4.3 (and was directly proved there).

Claim 4.4. For any u, v ∈ C ⊆ Dθ, min {deg(u),deg(v)} ≥ (1− 2θ) max {deg(u),deg(v)} .

We further bound the number of θ-dense neighbors of any vertex v ∈ C that are outside C.

Claim 4.5. For any v ∈ C, |N(v) ∩Dθ \ C| ≤ 2θ · deg(v).

Proof. As v is a θ-dense vertex, it has at least (1− θ) · deg(v) edges that are θ-friend edges. If the
end point of any such edge belongs to Dθ, then that vertex clearly belongs to C as well. As such, at
most θ · deg(v) neighbors of v that are in Dθ maybe outside of C, proving the claim. Claim 4.6
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The next step is to bound the number of non-neighbors of any vertex v ∈ C inside C. Follow-
ing [19], we do this via a double-counting argument. However, we shall note that the parameter we
use for double-counting is crucially different than the one in [19, Lemma 3.9].

Claim 4.6. For any v ∈ C, |C \N(v)| ≤ 2θ · deg(v).

Proof. Let d(v) := |C \N(v)| denote the number of non-neighbors of v in C. Let T denote the
number of triples (v, w, u) where (v, w) and (w, u) are both θ-friend edges of G while u ∈ C \N(v).
We have,

T =
∑

u∈C\N(v)

|{w : (v, w), (w, u) ∈ Fθ}| (by definition)

≥
∑

u∈C\N(v)

(1− 5θ) ·min {deg(u),deg(v)} − 2θ ·max {deg(u),deg(v)}

(by Claim 4.3 and since both u and v are θ-dense)

≥ d(v) · (1− 9θ) · deg(v); (by definition of d(v) and Claim 4.4 as both u, v ∈ C)

T =
∑

w:(v,w)∈Fθ

|{u : (w, u) ∈ Fθ} ∩ (C \N(v))| (by definition)

≤
∑

w:(v,w)∈Fθ

|N(w) \N(v)| ≤ deg(v) · θ · deg(v). (as w and v are θ-friend)

Combining the bounds above implies that d(v) ≤ θ
1−9θ ·deg(v) ≤ 2θ·deg(v) for θ < 1/18. Claim 4.6

The following claim summarizes the key properties of connected components of Hθ.

Claim 4.7. For any connected component C of Hθ, define ∆(C) := maxv∈C deg(v). Then:

(i) For all v ∈ C, deg(v) ≥ (1− 2θ) ·∆(C);

(ii) For all v ∈ C, |N(v) ∩Dθ \ C| ≤ 2θ ·∆(C);

(iii) For all v ∈ C, |C \N(v)| ≤ 2θ ·∆(C);

(iv) Size of C is |C| ≤ (1 + 2θ) ·∆(C).

Proof. The first three items are restatements of Claims 4.4, 4.5, 4.6 and the last one is an immediate
corollary of Claim 4.6. Claim 4.7

Handling Vertices Not in Dθ. So far, we only focused on vertices of Dθ (through connected
components of Hθ). We now show a simple property of vertices that are not in Dθ that would
immediately allows us to partition them into V sparse and V uneven.

Claim 4.8. Any vertex v not in Dθ is either (θ/2)-sparse or (θ/4)-uneven.

Proof. Because v is not θ-sparse, it has at least at least θ · deg (v) neighbors that are not θ-friend
with v. Let F (v) ⊆ N(v) denote the set of these vertices. Recall that a vertex u is not θ-friend
with v iff either (u, v) is not a θ-balanced edge or |N(u) ∩N(v)| < (1 − θ) ·min {deg(u), deg(v)}.
Let B(v) denote the vertices in N1(v) that were added because of the first reason and R(v) denote
the remaining vertices in F (v). There a couple cases to consider here.
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Case 1:
∣∣B(v)

∣∣ < |R(v)|. Any vertex u in R(v) contributes at least θ · deg(v) non-edges to
the neighborhood of v (when deg(u) < deg(v) it can only contribute more non-edges). As such, in
this case there are at least

1

2
· |R(v)| ·

(
θ · deg(v)

)
≥ 1

2
·
(θ · deg(v)

2

)
·
(
θ · deg(v)

)
= (θ/2)2 · deg(v)2,

many non-edges in the neighborhood of v; hence v is (θ/2)-sparse in this case.

Case 2:
∣∣B(v)

∣∣ ≥ |R(v)|. Let B+(v) denote u ∈ B(v) where deg(v) < (1 − θ) · deg(u) and
B−(v) denote the ones where deg(u) < (1 − θ) · deg(v) (since (u, v) is not θ-balanced, one of the
two cases must happen for u). We partition this case into another two cases.

Case 2a:
∣∣B+(v)

∣∣ < ∣∣B−(v)
∣∣. Any vertex u in B−(v) already contributes θ ·deg(v) non-edges

to the neighborhood of v (simply because its degree is sufficiently small). Hence in this case there
are at least

1

2
·
∣∣B−(v)

∣∣ · (θ · deg(v)
)
≥ 1

2
·
(θ · deg(v)

4

)
·
(
θ · deg(v)

)
> (θ/2)2 ·

(
deg(v)

2

)
many non-edges in the neighborhood of v; hence v is (θ/2)-sparse in this case also.

Case 2a:
∣∣B+(v)

∣∣ ≥ ∣∣B−(v)
∣∣. In this case, we have at least (θ/4) · deg(v) neighbors u of v

such that deg(v) ≤ (1− θ) · deg(u) < (1− θ/4) · deg(u), hence v is (θ/4)-uneven in this case. This
concludes the proof. Claim 4.8

Concluding the Proof of Lemma 4.2. We are now ready to finalize the proof of the decom-
position. The general strategy is to let the connected components of Hθ be the almost-cliques and
then use Claim 4.8 to partition remaining vertices in V sparse and V uneven accordingly. The catch at
this point is that Claim 4.7 does not allow us to lower bound size of connected components of Hθ

nor it bounds the number of neighbors of vertices in a connected component to outside vertices in
G (only in Hθ). We handle these using a similar approach as in [4].

Proof of Lemma 4.2. Let θ = 4ε. Consider the graph Hθ(Dθ, Fθ) defined earlier and let C1, . . . , C`
be its connected components. Let K1, . . . ,Kk be the components among these that contain at least
one ε-dense vertex. Moreover, define U as the set of vertices in V \K1 ∪ . . . ∪Kk.

None of the vertices in U are ε-dense, hence by Claim 4.8, we can decompose them into V sparse

consisting of (ε/2)-sparse vertices and V uneven consisting of (ε/4)-uneven vertices (breaking the ties
between the two sets arbitrarily). Hence, these two sets satisfy the requirements of the lemma.

We now show that for every i ∈ [k], Ki is an ε-almost-clique according to Definition 4.1. To do
so, we prove the properties of Definition 4.1 for Ki one by one.

• Property (i): For any v ∈ Ki, by Claim 4.7, deg(v) ≥ (1− 2θ) ·∆(Ki) = (1− 8ε) ·∆(Ki).

• Property (ii): By Claim 4.7, |Ki| ≤ (1 + 2θ) ·∆(Ki) = (1 + 8ε) ·∆(Ki), hence we only need
to prove the lower bound. Let v be any ε-dense vertex in Ki and F (v) be the neighbors of
v that are ε-friend with v and thus |F (v)| ≥ (1 − ε) · deg (v). At the same time, any vertex
u ∈ F (v) shares at least (1 − ε) · min {deg(v),deg(u)} ≥ (1 − 2ε) · deg(v) neighbors with v
by definition of the (u, v) being ε-friend. As such, u has at least (1 − 3ε) · deg (v) neighbors
in F (v). Moreover, because any two vertices in F (v) share a common neighbor over their
ε-friend edges (namely v), their degrees are within a factor (1 − 2ε) of each other. As such,
any vertex in F (v) has a (4ε)-friend edge to at least (1 − 3ε) · deg (v) other vertices in Sv
(these edges are (4ε)-friend and not (3ε) to account for the fact that degrees of vertices in
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F (v) can be larger than deg(v) by (at most) (1− ε)−1 factor). This in particular implies that
all vertices in F (v)∪ {v} are part of the same connected component Ki in Hθ = H4ε. Hence,
|Ki| ≥ |F (v)| ≥ (1− ε) ·∆(Ki).

• Property (iii): By Claim 4.7, any vertex v ∈ Ki has at most 2θ · ∆(Ki) = 8ε · ∆(Ki)
non-neighbors in Ki.

• Property (iv): By combining the lower bound in Property (ii) with Property (iii), we have
v ∈ Ki can only have 9ε ·∆(Ki) neighbors outside of C.

This concludes the proof of the lemma. Lemma 4.2

4.2.2 Proof of Theorem 3 – Part (ii)

For the rest of the proof, fix a decomposition of the graph G(V,E) with some sufficiently small
absolute constant ε > 0 (taking ε = 10−4 would certainly suffice6). In the following, we show
that we can handle both V uneven and V sparse vertices first, and then color the almost-cliques using
a result of [4] almost in a black-box way. As such, the main difference between our work and [4]
(beside the decomposition) is in the treatment of vertices in V uneven ∪ V sparse.

Before we move on, we make an assumption (without loss of generality) that is used to make
sure various concentration bounds in the proof hold.

Assumption 1. We may and will assume that degree of every vertex is at least Dmin := α·ε10 ·log n
for some sufficiently large absolute constant α > 0. This is without loss of generality because
by sampling Θ(log n) colors, any vertex with lower degree will have L(v) = S(v) and hence we can
greedily color these vertices after finding a proper coloring of the rest of the graph.

Coloring Sparse and Unbalanced Vertices

We prove the following lemma in this part.

Lemma 4.9. Suppose for every vertex v ∈ V sparse ∪ V uneven, we sample a set L(v) of Θ(ε−6 · log n)
colors independently and uniformly at random from S(v) := {1, . . . ,deg(v) + 1}. Then, with high
probability, the induced subgraph G[V sparse ∪ V uneven] can be properly colored from the sampled lists.

We construct the coloring of Lemma 4.9 in two steps. The first step is to create “excess” colors
on vertices (reducing the problem essentially to (1 + o(1)) deg(v) coloring) and the second one is to
exploit these excess colors to color the vertices using an argument similar to Part (i) of Theorem 3.
One important bit is that the first step of this argument should be done simultaneously for both
V uneven and V sparse.

For the proof of Lemma 4.9, we need to partition vertices in V sparse and V uneven further in order
to be able to handle the disparity in degree of vertices. As such, we define:

• ψ := ε2/32: a parameter used throughout the definitions in this part for ease of notation.

• V small: Let Small(v) := {u ∈ N(V ) : deg(u) < dsmall(v)} where dsmall(v) := ψ · deg(v).
We define V small ⊆ V sparse ∪ V uneven as all vertices v with |Small(v)| ≥ 2dsmall(v).

6In the interest of simplifying the exposition of the proof, we made no attempt in optimizing the constants in
this section and instead chose the most straightforward values in every step. Our results continue to hold with much
smaller constants.
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• V large: Let Large(v) := {u ∈ N(v) : deg(u) > dlarge(v)} where dlarge(v) := 2 deg(v).
We define V large ⊆ V sparse ∪ V uneven as all vertices v with |Large(v)| ≥ ψ · deg(v).7

As stated earlier, the goal of our first step is to construct excess colors for vertices. As it
will become evident shortly, vertices in V small actually do not need require having excess colors to
begin with (roughly speaking, after coloring their very “low degree” neighbors in Small(v), we are
anyway left with many excess colors). Hence, we ignore these vertices in the first step altogether
and handle them directly in the second one. Another important remark about the first step is that
even though its goal is to color only V sparse ∪ V uneven (minus V small), we assume all vertices of the
graph (including almost-cliques) participate in its coloring procedure. This is only to simplify the
math and after this step we simply uncolor all vertices that are not in V sparse ∪ V uneven.

Creating Excess Colors. We start with the following coloring procedure as our first step:

FirstStepColoring: A procedure for finding a (partial) coloring of G[V sparse ∪ V uneven].

1. Iterate over vertices of V in an arbitrary order.

2. For every vertex v, activiate v w.p. pactive := ψ/16 (= Θ(ε2)).

3. For every activated vertex v, pick a color c1(v) uniformly at random from L(v) and if c(v)
is not used to color any neighbor of v so far, color v with c1(v).

We shall note right away that distribution of c1(v) for every vertex v in FirstStepColoring is
simply uniform over S(v). For any vertex v ∈ V , let S1(v) denote the list of available colors S(v)
after removing the colors assigned to neighbors of v in this procedure. Similarly, let deg1(v) denote
the degree of v after removing the colored neighbors of v from the graph. We show that S1(v) is
“sufficiently larger” than deg1(v) for all vertices in V sparse ∪ V uneven \ V small. Formally,

Lemma 4.10. There exists an absolute constant α ∈ (0, 1) such that with high probability, for
every v ∈ V sparse ∪ V uneven \ V small, we have |S1(v)| ≥ deg1(v) + α · ε6 · deg(v).

The proof of of this lemma is given in three parts, each for coloring one of the sets V uneven, V large

and V sparse \ (V small ∪V large) separately. The first two have an almost identical proof and are based
on a novel argument – the third part uses a different argument which on a high level is similar to
the approach of [4] (and [13,15,19], all rooted in an earlier work of [27]) for coloring sparse vertices
(according to a global definition of sparse based on ∆), although several new challenges has to be
addressed there as well.

Lemma 4.11. W.h.p. for every v ∈ V uneven we have |S1(v)| ≥ deg1(v) + α · ε4 · deg(v).

Proof. Let θ := (ε/4) and recall that all vertices in V uneven are θ-uneven by Lemma 4.2. Fix a
vertex v in V uneven and let U(v) be the neighbors u of v where deg(v) < (1 − θ) · deg(u). As v is
θ-uneven |U(v)| ≥ θ · deg(v). For any u ∈ U(v), let Sext(u) = S(u) \ S(v) denote the set of colors
that are available (originally) to u but not to v. For sext(u) := |Sext(u)|, we have,

sext(u) = deg(u)− deg(v) ≥ deg(u)− (1− θ) · deg(u) = θ · deg(u). (6)

We say that a vertex u ∈ U(v) is good iff u is colored from Sext(u) by FirstStepColoring. Let
ngood(v) denote the number of good neighbors of v. It is easy to see that |S1(v)| ≥ deg1(v)+ngood(v)
as colors of good vertices are not removed from S(v). Our goal is to lower bound ngood(v) then.

7We remark that the change in the place where ψ used in the two definitions above is intentional and not a typo.
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Define the following two events:

• Eactive: For every vertex u ∈ V , the number of active neighbors of u, denoted by degactive(u),
is between (pactive/2) · deg(u) and (2pactive) · deg(u).

• EUactive(v): The set Uactive(v) of active vertices in U(v) has size at least (pactive/2) · θ · deg(v).

By our Assumption 1 and a simple application of Chernoff bound, both event Eactive and EUactive(v)
hold with high probability (recall the lower bound on size of U(v)) above. Note that both these
events are only a function of the probability of activating each vertex and independent of choice
of lists L. Hence, in the following we condition on these events (and all coins tosses for activation
probabilities) and only consider the randomness with respect to choices in L.

Let u1, . . . , uk for k := (pactive/2) · θ ·deg(v) be the first k vertices in Uactive(v) according to the
ordering of FirstStepColoring. Let R(ui) denote all the random choices that govern whether ui will
be good or not. Note that by the time we process ui at most degactive(ui) colors from S(ui) may
have been assigned to neighbors of ui. Even if all of these colors are adversarially chosen to be in
Sext(ui), the number of colors that if chosen by ui make ui a good vertex is at least:

sext(ui)− degactive(ui) ≥ θ · deg(ui)− (2pactive) · deg(ui) > (θ/2) · deg(ui).
(by Eq (6) and event Eactive, respectively and since pactive = Θ(ε2) < θ/4)

Even conditioned on everything else, this choice is only a function of c1(ui) chosen uniformly at
random from S(ui). As such,

P (ui is good | R(u1), . . . ,R(ui−1)) ≥ (θ/2) · deg(ui)

deg(ui) + 1
≥ (θ/3).

This implies that (i) E [ngood(v)] ≥ (θ/3) · k and (ii) the distribution of good vertices among first
k vertices in Uactive(v) stochastically dominates the binomial distribution B(k, θ/3). By a basic
concentration of binomial distributions (say by using Chernoff bound in Proposition 2.2):

P (ngood(v) < (θ/6) · k) ≤ exp (−Θ(1) · θ · k) = exp
(
−Θ(1) · ε4 · log n

)
� n−10.

(by the choice of θ = Θ(ε), pactive = Θ(ε2), k, and Assumption 1)

As k = Θ(ε3 ·deg(v)) and θ = Θ(ε), we obtain that w.h.p. ngood(v) ≥ Θ(ε4) ·deg(v). Lemma 4.11

Lemma 4.12. W.h.p. for every v ∈ V large we have |S1(v)| ≥ deg1(v) + α · ε4 · deg(v).

Proof. Proof of this lemma is almost identical to that of Lemma 4.11. The reason is that since v
belongs to V large:

(i) N(v) contains at least (ε2/8) · deg(v) vertices in Large(v) with degree ≥ dlarge(v) = 2 deg(v);

(ii) Each vertex in u ∈ Large(v) have sext(u) ≥ deg(v) for sext(u) defined in Lemma 4.11 to be
the number of colors in S(u) \ S(v).

As such, we can apply the same exact argument in Lemma 4.11 to vertices in Large(v) (i.e., take
U(v) there to be Large(v)) and bound the number of resulting good vertices. The proof now follows
verbatim from the proof of Lemma 4.11 and hence is omitted. We only note that even though size
of Large(v) is smaller by a factor Θ(ε) here than U(v) in the other lemma, size of sext(u) for
u ∈ Large(v) is a factor Θ(1/ε) larger than than sext(u) ∈ U(v) in there and thus we obtain the
same exact bound up to constant factors. Lemma 4.12
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Lemma 4.13. Wh.p. for every v ∈ V sparse\(V small∪V large) we have |S1(v)| ≥ deg1(v)+α·ε6·deg(v).

Proof. Let us define NonEdge(v) as the set of non-edge in N(v) between vertices u and w where
neither u nor w belong to Small(v) ∪ Large(v), i.e.,

NonEdge(v) := {u,w ∈ N(v) : (u,w) /∈ E ∧ u /∈ Small(v) ∪ Large(v) ∧ w /∈ Small(v) ∪ Large(v)} .

Define θ := (ε/2). As v is neither in V small nor V large but it is in V sparse and hence is θ-sparse by
Lemma 4.2, we have,

|NonEdge(v)| ≥ θ2 ·
(

deg(v)

2

)
−
∣∣∣V small

∣∣∣ · deg(v)−
∣∣∣V large

∣∣∣ · deg(v)

(each vertex u ∈ Small(v) ∪ Large(v) can only contribute deg(v) non-edges)

≥ θ2 ·
(

deg(v)

2

)
− (4θ2/32) · deg(v)2 − (4θ2/32) · deg(v)2

> (θ2/3) · deg(v)2. (7)

Let k := |NonEdge(v)| and f1, . . . , fk denote these non-edges. We define the random variable:

• Z: number of colors in S(v) that are sampled by at least two activated vertices in V (NonEdge(v))
and are additionally retained (i.e., assigned as a color to the vertex) by all these activated
neighbors.

Since any color counted in Z is used more than once to color a neighbor of v, we have,

|S1(v)| ≥ deg1(v) + Z. (8)

We now lower bound the expectation of Z and later on prove that it is concentrated.

Claim 4.14. E [Z] ≥ Θ(ε6) · deg(v).

Proof. For every non-edge fi := (ui, wi), define the indicator random variable Yi where Yi = 1 iff:

(i) E1: both ui and wi are activated and sample the same color c1(ui) = c1(wi) ∈ S(v);

(ii) E2: color c1(ui) = c1(wi) is not sampled by any active vertex in N(ui) ∪N(wi);

(iii) E3: color c1(ui) = c1(wi) is not sampled by any active vertex in V (NonEdge(v)) \ {ui, wi}.

Define Y =
∑k

i=1 Yi. Note that Y ≤ Z because in the definition of Y , we are counting number
of colors sampled and retained by exactly two neighbors of v as opposed to at least two neighbors
in the definition of Z. We can thus focus on lower bounding Y instead.

Clearly, E [Yi] = P (E1 ∧ E2) · P (E3 | E1, E2) . We compute each of these probabilities below. By
symmetry, let us assume that deg(ui) ≤ deg(wi). We define one more auxiliary event:

• Eactive(v, ui, wi): There are at most 4pactive deg(wi) active vertices in N(ui) ∪N(wi), and at
most 2pactive deg(v) active vertices in V (NonEdge(v)) \ {ui, wi}.

As before, Eactive(v, ui, wi) happens with high probability by Chernoff bound. We condition on this
event and the activation coin flips of all vertices in N(ui)∪N(wi)∪V (NonEdge(v))\{ui, wi} (note
that we excluded ui, wi from this conditioning).
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We now bound probability of E1 ∧ E2. Firstly,

dsmall(v) ≥ ψ · deg(v) ≥ ψ/2 · deg(wi) ≥ 8pactive · deg(wi).
(as wi /∈ Large(v), and by definition of pactive = ψ/16)

This implies that the number of colors in S(ui)∩ S(v) ⊆ S(wi)∩ S(v) that have not been sampled
by any active vertex in N(ui)∪N(wi) is at least (here we crucially use the fact that the underlying
problem is (deg +1) coloring not (deg +1) list-coloring):

min {deg(ui), deg(v)} − 4pactive deg(wi) ≥ min {deg(ui),deg(v)} /2 ≥ deg(ui)/4.
(by E(v, ui, wi) and because dsmall(v) ≤ deg(ui) ≤ 2 deg(v) and deg(v) > dsmall(v))

Clearly, if both ui and wi are activated and sample one of these colors (that belong to the lists of
both of them), then E1 ∧ E2 happens. As such,

P (E1 ∧ E2) ≥ p2
active ·

deg(ui)/4

deg(ui) + 1
· 1

deg(wi) + 1
≥ Θ(ε4) · 1

deg(v)
,

(deg(wi) ≤ 2 deg(v) and pactive = Θ(ε2))

To calculate E3 | E1, E2, we only need to bound the probability of the event that each vertex
z ∈ V (NonEdge(v)) \ (N(ui)∪N(wi)∪ {ui, wi}) samples the color c (implied by events E1, E2). As
the choice of vertices z are independent (and independent of the conditioned events), plus the fact
that for every z ∈ V (NonEdge(v)) we know that deg(z) ≥ dsmall(v), we have,

P (E3 | E1, E2) ≥
(

1− pactive ·
1

dsmall(v)

)deg(v)

≥ exp (−pactive/2ψ) = Θ(1). (pactive = Θ(ψ))

By the equations above, linearity of expectation, and Eq (7) (and since θ = ε/2),

E [Z] ≥ E [Y ] =
∑
i

E [Yi] ≥ |NonEdge(v)| ·Θ(ε4)/deg(v) ≥ Θ(ε6) · deg(v)

concluding the proof. Claim 4.14

Let us now prove that Z is concentrated which concludes the proof. The proof of this con-
centration is somewhat standard and appears in different forms (and with different techniques) in
several places, see, e.g. [13,15,19,27] (in particular [27, Lemma 2], [15, Lemma 3.1], [19, Lemma 5.5],
or [13, Lemma 3]). However, as none of these results directly apply to our setting, we present this
proof following the approach of [29, Chapter 10].

For each vertex u in the graph, let ωu denote the random variable for the choice of activation
coin and the random color sampled from S(u) if u is activated. Notice that Z is only a function of ωu
for u ∈ N(v)∪N(N(v)) and by definition, these variables are independent of each other. To apply
Talagrand’s inequality, we need to show that Z is c-Lipschitz and r-certifiable in these variables for
some (ideally) small c and r (see Proposition 2.3 and its preceding paragraph for these definitions).
Unfortunately, this is in fact not the case for Z (in particular, Z may only be Ω(deg(v))-certifiable
because for every color counted in Z, we need to reveal wu for Ω(deg(v)) vertices to ensure this
color is retained; this is too large to apply Talagrand’s inequality directly.)

We thus bound Z indirectly as follows. Define the two additional variables:

• T : number of colors in S(v) that are sampled by at least two neighbors of v in V (NonEdge(v)).
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• D: number of colors in S(v) that are sampled by at least two neighbors of v but are not
retained by at least one of them.

Firstly, it is clear that Z = T − D. Also notice that both T and D are functions of ωu for
u ∈ N(v) ∪N(N(v)). Moreover, unlike Z, both T and D are Θ(1)-certifiable (for T point to two
neighbors of v that sampled the color; for D additionally point to one of the neighbors of this
pair that also sampled the color, hence not allowing one of them to retain it). They are also both
Θ(1)-Lipschitz: changing choice of one color for a vertex can only affect the two colors involved (the
original one and the changed one). As such, we can apply Talagrand’s inequality (Proposition 2.3)
to obtain the desired bounds as follows.

We first prove the bound for T . By bounding the total number of colors sampled in the
neighborhood of v, it is easy to verify that,

E [T ] ≤ deg(v) · p2
active = Θ(ε4) · deg(v), (9)

as pactive = Θ(ψ) = Θ(ε2). Moreover, T is both Θ(1)-Lipschitz and Θ(1)-certifiable as argued
above. As such, by Talagrand’s inequality (Proposition 2.3):

P (|T − E [T ]| ≥ E [Z] /100) ≤ exp

(
−Θ(1) ·

(E [Z] /100−Θ(1)
√
E [T ])2

E [T ]

)

≤ exp

(
−Θ(1) · E [Z]2

E [T ]

)
(as E [Z] >

√
E [T ]/2 by Claim 4.14, Eq (9), and Assumption 1)

≤ exp
(
−Θ(ε4) · E [Z]

)
(as E [Z] ≥ Θ(ε4) · E [T ] by Claim 4.14 and Eq (9))

≤ exp
(
Θ(ε10) · deg(v)

)
(by Claim 4.14)

� n−4. (by Assumption 1)

We now focus on D. By applying Talagrand’s inequality again (Proposition 2.3):

P (|D − E [D]| ≥ E [Z] /100) ≤ exp

(
−Θ(1) ·

(E [Z] /100−Θ(1)
√

E [D])2

E [D]

)
� n−4,

by exactly the same calculation as above since E [D] ≤ E [T ] (as D ≤ T ). Combining the above
two equations implies that with high probability,

Z = T −D ≥ (E [T ]− E [Z] /100)− (E [D] + E [Z] /100) ≥ (49/50) · E [Z] .

Plugging in this bound in Eq (8) concludes the proof. Lemma 4.13

Lemma 4.10 now follows directly from Lemmas 4.11, Lemma 4.12 and 4.13 and a union bound.

Exploiting Excess Colors. For the second step, consider the following procedure:

SecondStepColoring: A procedure for finishing the proper coloring of G[V sparse ∪ V uneven].

1. Iterate over uncolored vertices v ∈ V sparse ∪ V uneven in an arbitrary order and for each
vertex v, let N<(v) denote the neighbors of v that appear before v in this ordering plus all
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neighbors of v that have been colored in the first step.

2. For each vertex v, if there exists a color in L(v) that is not used to color any vertex
u ∈ N<(v), color v with this color. Otherwise abort.

It is immediate that if SecondStepColoring does not abort, we find a proper coloring using the
sampled colors in lists L. We now prove that abort happens with only a small probability.

Lemma 4.15. W.h.p. SecondStepColoring does not abort.

Proof. Recall that α ∈ (0, 1) is the constant in Lemma 4.10. Let ` := ( 10
α·ε6 · log n+ 1) and suppose

size of each list L(v) is at least ` (which is Θ(log n) as both α, ε ∈ Θ(1)). Define the event:

• Eabort(v): L(v) is a subset of colors assigned to N<(v).

We prove that P (Eabort(v)) ≤ n−4; a union bound finalizes the proof as SecondStepColoring would
abort only if at least one of the events Eabort(v) happens.

Suppose first v belongs to V sparse ∪ V uneven \ V small (but not colored in the first step). Recall
that at the beginning of this step, the list of available colors to v is S1(v) and deg1(v) denotes the
degree of v to remaining uncolored vertices. By the time it is turn to color v in SecondStepColoring,
at most deg1(v) other colors have been removed from available colors S1(v). As such,

P (Eabort(v)) ≤
(
|S(v)| − (|S1(v)| − deg1(v))

|S(v)|

)`−1

≤
(

1− α · ε6 · deg(v)

deg(v) + 1

)`−1

(by Lemma 4.10 and since |S(v)| = deg(v) + 1)

≤ exp

(
−α · ε6 · 10

α · ε6
· log n

)
� n−4. (by the choice of `)

Now suppose v belongs to V small instead. By definition, in this case v has at least 2dsmall(v)
neighbors with degree < dsmall(v). For each such neighbor u, S(u) = {1, . . . ,deg(u) + 1} originally.
As such, even if we have colored all neighbors of v by the time we want to process v, there are at
most deg(v) − 2dsmall(v) + dsmall(v) = (1 − ε2/32) deg(v) distinct colors that have appeared in the
neighborhood of v. As such,

P (Eabort(v)) ≤
(

(1− ε2/32) deg(v)

|S(v)|

)`−1

≤ exp

(
−(ε2/32) · 10

α · ε6
· log n

)
� n−4.

(by the choice of ` and since |S(v)| = deg(v) + 1)

This concludes the proof. Lemma 4.15

Lemma 4.9 now follows from Lemmas 4.10 and 4.15 and a union bound.

Coloring Almost-Cliques

We are now left with the coloring of almost-cliques from the sampled lists after fixing the colors
of remaining vertices. This is done by the following lemma. We note that this lemma is a simple
generalization of a result of [4] for (∆ + 1) coloring (see Lemma B.4 in Appendix B) and the proof
is via a simple “reduction” to the proof of the analogous lemma for (∆ + 1) coloring; hence, we
claim no novelty for the proof of this lemma.

Recall the definition of an ε-almost-cliques K in Definition 4.1. For a vertex v ∈ K, we define
out-deg(v) as the number of neighbors of v that are outside K. Note that by definition of ε-almost-
cliques, out-deg(v) ≤ 9ε ·∆(K).
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Lemma 4.16. Let K be an ε-almost-clique in G according to Definition 4.1 for some sufficiently
small ε > 0 and define ∆(K) := maxv∈K deg(v). Suppose for every vertex v ∈ K, we adversarially

pick a set S(v) of size at most out-deg(v) ≤ 9ε ·∆(K) from colors {1, . . . ,deg(v) + 1}. If for every
vertex v ∈ V , we sample a set L(v) of Θ(ε−1 · log n) colors independently from the set of colors
{1, . . . ,deg(v) + 1}, then, with high probability, the induced subgraph G[K] can be properly colored
from the lists L(v) \ S(v) for v ∈ C.

Proof. Fix an ε-almost-clique K in G. For every vertex v ∈ K, we define S′(v) to be S(v) plus
the colors {deg(v) + 2, . . . ,∆(K)}. Consider the graph G′ consisting of the ε-almost-clique K and
additionally for each v ∈ K, out-deg(v)+(∆(K)−deg(v)) dummy vertices that are only connected
to v. For every vertex v ∈ K, define the set S′(v) := S(v) ∪ {deg(v) + 2, . . . ,∆(K) + 1}: we can
think of this as coloring out-deg(v) dummy vertices incident on v by S(v) and (∆(K) − deg(v))
dummy vertices incident on v by the “new colors” for v (due to the increase in its degree), thus
effectively canceling the contribution of these new colors for v.

Note that if we can find a coloring of K in G′ in a scenario where every vertex samples a list of
colors L′(v) from {1, . . . ,∆(K) + 1} (as opposed to {1, . . . ,deg(v) + 1} for L(v)), and then coloring
each vertex from L′(v) \S′(v) we will be done – this is because the color used for coloring v should
still belong to {1, . . . ,deg(v) + 1} ∩ L(v) \ S(v) as all the colors in L′(v) \ L(v) belong to S′(v).

The final observation here is that in the graph G′, ∆ := ∆(G′) = ∆(K) and so we have:

(i) we claim that K in G′ is a (∆, ε′)-almost clique according to definition of Lemma B.2 of [4] for
some ε′ which is larger than ε by some constant factor (ε′ = 20ε certainly suffice): the only
property of (∆, ε′)-almost clique that one needs to worry is the number of neighbors of each
vertex in K to outside K (as we increased it by adding some new dummy vertices). However,
this is not problematic because out-deg(v) ≤ 9ε ·∆(K) and ∆(K) − deg(v) ≤ 8ε∆(K) and
hence each vertex in K has at most 17ε ·∆(K) out degree in G′, which is smaller than ε′∆.
For the remaining parameters (1− ε′) ·∆ ≤ |K| ≤ (1 + ε′) ·∆ and number of non-neighbors
inside is at most 8ε∆(K) ≤ ε′∆. Thus, K is indeed a (∆, ε′)-almost-clique.

(ii) We still placed at most out-degG′(v) in the lists of colors S′(v) that are “blocked”;

(iii) ε′ is still a sufficiently small constant (by taking ε to be small enough);

(iv) We can “simulate” the sampling of colors L′(v) from {1, . . . ,∆(K) + 1} by sampling L(v)
from {1, . . . ,deg(v) + 1} (i.e., use the given colors in the lemma statement for v) and sampling
from {deg(v) + 2, . . . ,∆(K) + 1} separately (i.e., picking some “artificial” colors for v); as the
latter colors cannot be assigned to v anyway, this does not make a problem.

Hence, can apply Lemma B.4 (of [4]) to K in G′ and obtain the coloring of K in G. Lemma 4.16

Concluding the Proof

Proof of Theorem 3 – Part (ii). We fix a decomposition of the graph G according to Lemma 4.2
for some sufficiently small absolute constant ε > 0 (taking ε = 10−4 would certainly suffice).
Lemma 4.9 allows us to argue that with high probability, all vertices except for almost-cliques in
the decomposition can be properly colored using the sampled lists. We fix such a coloring of those
vertices. We then iterate over almost-cliques one by one, and invoke Lemma 4.16 to each almost-
clique Ki by letting S(v) for every v ∈ Ki to be the set of colors used so far in this process for
coloring neighbors of v outside this almost-clique. This allows us to color this almost-clique in a way
that its coloring can be extended to the partial coloring computed so far (with high probability).
Iterating over all almost-cliques this way and using a union bound finalizes the proof.
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5 Sublinear Algorithms from Palette Sparsification

In this section, we describe some applications of our palette sparsification theorems to sublinear
algorithms following the work of [4]. In the following, we give the definition of each of the two
models of streaming algorithms and sublinear-time algorithms formally, followed by the resulting
algorithms from palette sparsification for each one separately.

5.1 Streaming Algorithms

In the streaming model, edges of the graph are presented one by one to an algorithm that can make
one or a few passes over the input and use a limited memory to process the stream and has to
output the answer at the end of the last pass. In this paper, we only consider single-pass streaming
algorithms. We can obtain the following algorithms from Results 1, 2, and 3.

Corollary 5.1. There exists randomized single-pass streaming algorithms for finding each of the
following colorings with high probability:

• a (1 + ε)∆ coloring of any general graph with Oε(n log n) space;

• an O( ∆
γ·ln ∆) coloring of any triangle-free graph with Õ(n ·∆2γ) space;

• a (1 + ε) deg-list coloring of any general graph with Oε(n · log2 n) space;

• a (deg +1) coloring of any general graph with O(n · log2 n) space.

The streaming algorithms in Corollary 5.1 are basically as follows: we sample the colors in L
at the beginning of the stream and throughout the stream whenever an edge (u, v) is presented, we
check whether L(u) ∩ L(v) = ∅ or not; if not we store this edge explicitly. At this point, obtaining
the first two algorithms in Corollary 5.1 from Results 1 and 2 is straightforward (see also [4]).
However, the results for the latter two parts does not immediately follow from the argument for
other two (or the one in [4]). This is due to the fact that both (1 + ε) deg and (deg +1) problems
are “local” problems with dependence on deg instead of ∆.

To show that the above strategy still works even for these local coloring problems, we only
need to show that the total number of edges stored by the algorithm is not “too large”. This
is equivalent to bounding the number of edges in the conflict-graph Gconflict(V,Econflict) where
Econflict := {(u, v) ∈ E : L(u) ∩ L(v) 6= ∅}. This is done in the following lemma. We prove this
result for (deg +1) coloring problem; the proof can be extended to (1 + ε) deg problem verbatim.
We note that in the following we assume we know deg(v) of each vertex beforehand (so that we can
sample the needed colors from S(v)). This assumption is not needed and we show how to remove
it in Lemma 5.4 and Remark 5.5.

Lemma 5.2. W.h.p. the total number of edges in Econflict in palette sparsification for (deg +1)
coloring problem is at most O(n · log2 n).

Proof. In (∆ + 1) coloring, we can simply show that maximum degree of Gconflict(V,Econflict) is at
most O(log2 n). This is no longer true for (deg +1) – consider the center of an induced star with
Θ(n) petals. We fix this issue as follows. Let us orient the edges E of G from lower degree endpoint
to the higher degree one (breaking the ties arbitrarily). Let deg+

G(v) denote the out-degree of v in
G under this orientation. We show that even though degGconflict

(v) can be too large, deg+
Gconflict

(v) is

still O(log2 n) for every v with high probability.

Consider any vertex u which is counted toward deg+
G(v), i.e., in the orientation, v has an outgoing

edge to u. Since degG(u) ≥ degG(v) the probability that u samples one of the O(log n) colors in
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L(v) is at most O(log2 n)/deg(u) ≥ O(log2(n))/ deg(v). As such, E
[
deg+

Gconflict
(v)
]

= O(log2 n). By

Chernoff bound, we have that deg+
Gconflict(v) is also O(log2 n). As every edge of Gconflict is counted

exactly once in deg+
Gconflict

(·) across all vertices, we obtain that |Econflict| = O(n · log2 n).

It is now easy to see that the last two parts of Corollary 5.1 also follow from Result 3.

We conclude this part by noting that our results can be extended to dynamic streams where
edges can be both inserted to and deleted from the stream by increasing the space of the algorithm
with polylog(n) factors as was done in [4].

5.2 Sublinear-Time Algorithms

When designing sublinear-time algorithms, it is crucial to specify the data model as the algorithm
cannot even read the entire input once. We assume the standard query model for sublinear-time
algorithms on general graphs (see, e.g., [17, Chapter 10]). In this model, we have the following
three types of queries (i) what is the degree of a vertex v; (ii) what is the i-th neighbor of a given
vertex v; and (iii) whether a given pair of vertices (u, v) are neighbor to each other or not. We say
an algorithm is non-adaptive if it asks all its queries in parallel in one go.

We can obtain the following algorithms from Results 1, 2, and 3.

Corollary 5.3. There exists randomized non-adaptive sublinear-time algorithms for finding each
of the following colorings with high probability:

• a (1 + ε)∆ coloring of any general graph in Õε(n
3/2) time;

• an O( ∆
γ·ln ∆) coloring of any triangle-free graph in Õ(n3/2+2γ) time;

• a (1 + ε) deg-list coloring of any general graph in Õ(n3/2) time;

• a (deg +1) coloring of any general graph in Õ(n3/2) time.

The sublinear-time algorithms in Corollary 5.3 are again based on finding the edges of the
conflict-graph Econflict using Õ(min

{
n∆, n2/∆

}
) queries for the case of (1 + ε)∆ coloring and

Õ(min
{
n∆, n2/∆1−2γ

}
) queries for triangle-free graphs. This can be done using the simple ap-

proach of [4] but as before that does not work for the last two parts. Here, we give another simple
way for finding edges of the conflict-graph using a small number of queries. We again only prove it
for (deg +1) coloring problem; the same argument extends to other problems as well.

Lemma 5.4. W.h.p. all edges in Econflict can be found using Õ(n3/2) queries non-adaptively.

Proof. Define t := O(log n) “potential” palettes P1, . . . , Pt where for every i ∈ [t], Pi :=
{

1, . . . , 2i
}

.
Let ` = Θ(log n) denote the number of sampled colors in the palette sparsification theorem for
(deg +1) coloring problem. For every vertex v ∈ V , we sample t “potential” lists L̂1(v), . . . , L̂t(v)
where each L̂i(v) is obtained by sampling each color in Pi with probability 10`/ |Pi|. Note that all
this has been done without querying the graph yet.

We now make the following queries non-adaptively for every vertex v ∈ V :

(i) We make a single degree-query on v;

(ii) We make 10
√
n neighbor-queries on v to return min {deg(v), 10

√
n} neighbors of v;

(iii) For every i, j where |Pi| ≥
√
n and |Pj | ≥

√
n, we make a pair query between (v, u) whenever

L̂i(v) ∩ L̂j(u) 6= ∅. A simple application of Chernoff bound ensures that in this case also we

make at most Õ(
√
n) queries as size of both Pi, Pj is at least

√
n.
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Overall with high probability we made at most Õ(n
√
n) queries.

After getting the answer to those queries, we know deg(v) for every v ∈ V . We then pick the
smallest integer i and Pi with |Pi| ≥ deg(v), and consider L(v) := L̂i(v)∩Pi \{deg(v) + 2, . . . , |Pi|}.
Again, by Chernoff bound, size of each L(v) is at least ` as deg(v) and |Pi| differ from each other
by at most a factor of 2 and by the construction of L̂i(v). This way, we obtain ` colors L(v) chosen
uniformly at random from {1, . . . ,deg(v) + 1}. These lists define Econflict uniquely.

Finally, any edge (u, v) ∈ Econflict, if either deg(u) < 10
√
n or deg(v) < 10

√
n we have found

this edge using the neighbor queries for the lower degree vertex in item (ii). On the other hand,
if both vertices have degree larger than 4

√
n then we will find this edge using the pair queries in

item (iii). This concludes the proof.

So far, we only analyzed the query complexity of the algorithms and ignored the runtime
needed to compute the list-coloring of the conflict-graph. It is easy to see that all our proofs also
imply an efficient algorithm for finding the coloring in time linear in the size of the conflict-graph
(when needed, we can run algorithmic variants of Lovász Local Lemma using the Moser-Tardos
framework [32]). The only exception is for (deg +1) coloring problem when we invoke the result
of [4]; for that particular instance the runtime of the algorithms is Õ(n

√
n) (as shown in [4]) even

though the conflict graph is sparser.

It is now easy to see that all items in Corollary 5.3 follow from Lemma 5.4 and Results 1, 2,
and 3 (we remark that for (1+ε) deg)-list coloring our sublinear time algorithm works even without
having direct access to the list S(v) as long as it can be sampled).

5.3 Further Remarks

We conclude this section by the following remarks. These remarks also apply the same exact way
to our algorithms in Section 6.

Remark 5.5 (Knowledge of ∆). We do not require a prior knowledge of ∆. As was shown
already in Lemma 5.4, there is a simple “guessing” mechanism for easily working with unknown
values of ∆ (which is more crucial for the local versions), and whenever needed we can run that
approach at a cost of increasing the complexity of the algorithms by a polylog(n) factor. We note
that this is not new to our paper and also holds for previous work in [4, 6].

Remark 5.6 (Deterministic Guarantee on Resource Requirements). The resource require-
ment of our algorithms, as stated, is bounded with high probability but not deterministically.
However, this is easy to fix by a standard argument: whenever the resources used by the algorithm
exceed the bound implied by the high-probability-result, simply terminate the whole algorithm –
this can only increase the error probability by a negligible factor. As such, there is a deterministic
guarantee on the resource requirement of algorithms in this paper.

6 Sublinear Algorithms from Graph Partitioning

In this section, we deviate from our theme of palette sparsification and consider another technique
for designing sublinear algorithms for graph coloring. A simple technique that lies at the core
of various algorithms for graph coloring in different models is random graph partitioning (see,
e.g. [6,12,20,33,34]). While the exact implementation of this technique varies significantly from one
application to another, the basic idea is as follows: Partition the vertices of the graph G randomly
into multiple parts V1, . . . , Vk, then color the induced subgraphs G[V1], . . . , G[Vk] separately using
disjoint palettes of colors for each subgraph. The hope is that each subgraph G[Vi] has become
“simpler enough” so that it can be colored “easily” with a “small” palette of colors so that using
disjoint palette for each subgraph would not be too wasteful.
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We apply the same basic idea in this section. To state our result, we need some definitions first.
We say that a family G of graphs is hereditary iff for every G ∈ G, every induced subgraph of G
also belongs to G, namely, G is closed under vertex deletions.

Definition 6.1. Let G be a hereditary family of graphs and ζ : N+ → N+ be a non-decreasing
function. We say that G is ζ-colorable iff every graph G in G is ζ(∆)-colorable, where ∆ := ∆(G)
denotes the maximum degree of G.

For instance, the family of all graphs is an ζ-colorable family for the function ζ(∆) = ∆ + 1,
and triangle-free graphs are ζ-colorable for ζ(∆) = O( ∆

ln ∆).

Theorem 4. Let G be a ζ-colorable family of graphs (see Definition 6.1) and G(V,E) be an n-vertex
graph with maximum degree ∆ in G. For the parameters

ε > 0, 1 ≤ k ≤ ε2 ·∆
9 lnn

, C := C(ε, k) = k · ζ
(

(1 + ε) · ∆

k

)
,

suppose we partition V into k sets V1, . . . , Vk uniformly at random; then with high probability G
can be C-colored by coloring each G[Vi] with a distinct palette of size C/k.

The proof of this theorem is by simply showing that the maximum degree of each graph G[Vi]
is sufficiently small, itself a simple application of Chernoff bound.

Lemma 6.1. The maximum degree of any G[Vi] is at most (1 + ε) · ∆
k with high probability.

Proof. For any vertex v ∈ Vi, let degi(v) denote the number of neighbors of v in G[Vi]. Clearly,
E [degi(v)] = 1

k · deg(v) ≤ ∆
k . As the choice of neighbors of v in Vi are independent, by Chernoff

bound (Proposition 2.2 with µ = 1
k ·∆ and δ = ε),

P
(

degi(v) ≥ (1 + ε)
∆

k

)
≤ exp

(
−ε2 · ∆

3k

)
= 1/n3. (as k ≤ ε2·∆

9 lnn)

A union bound on all n vertices finalizes the proof. Lemma 6.1

Proof of Theorem 4. Since G is a hereditary family, G[Vi] also belongs to G, and since G is ζ-
colorable and maximum degree of G[Vi] is at most (1 + ε) · ∆

k by Lemma 6.1, with high probability,
the total number of colors needed for coloring G this way is at most

k∑
i=1

ζ
(

(1 + ε) · ∆

k
)
)

= k · ζ
(

(1 + ε) · ∆

k
)
)

= C,

finalizing the proof. Theorem 4

Even though Theorem 4 is quite simple, it has various interesting implications combined with
known results on chromatic number of different families of “locally sparse” graphs. In the following,
we first show how this theorem implies a “recipe” for designing sublinear algorithms and then state
several of its implications.
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# of Colors Graph Family Streaming Sublinear-Time

O( ∆
γ·ln ∆ ) Triangle-Free O(n∆2γ) space Õ(n3/2+2γ) time

O(∆ ln ln ∆
γ·ln ∆ ) Kr-Free O(n∆2γ) space Õ(n3/2+Θ(γ)) time

O( ∆
γ ln ∆ · ln r) Locally r-Colorable O(n∆2γ) space Õ(n3/2+2γ) queries

O( ∆
γ ln lnn · ln r) Locally r-Colorable O(n∆2γ) space poly(n) time

O( ∆
ln (1/δ) ) δ-Sparse-Neighborhood O(n/δ) space Õ(n3/2 · poly(1/δ)) time

Table 2: A sample of our sublinear algorithms obtained as corollaries of Theorem 4. All the
streaming algorithms here are single-pass and all sublinear-time algorithms are non-adaptive. Note
the two different rows for locally r-colorable graphs; see also Remark 6.7.

6.1 Sublinear Algorithms from Theorem 4

As before, we only focus on streaming and query algorithms in this section. Table 2 contains a
summary of our results in this part. Before getting to our results though, we first prove a simple
auxiliary lemma.

Lemma 6.2. In the setting of Theorem 4, the maximum number of vertices in any graph G[Vi] is
at most O(n/k) with high probability.

The proof of this lemma is identical to that of Lemma 6.1 and is hence omitted. In the following
two algorithms, the parameters C and k are the same as in Theorem 4.

Streaming Algorithms from Theorem 4. The algorithm is simply as follows:

(i) At the beginning, sample a random k-partitioning of the vertices into V1, . . . , Vk.

(ii) Throughout the stream, store any edge that belongs to one of the graphs G[Vi].

(iii) At the end, use the stored subgraphs to find a C-coloring of G by coloring each G[Vi] with
a distinct palette of size C/k.

The correctness of the algorithm (with high probability) follows from Theorem 4. The space
complexity of this algorithm is also: O(n) (to store the random partitioning) +k · O(n∆/k2) (by
Lemmas 6.1 and 6.2) = O(n · ∆

k ). This implies the following corollary.

Corollary 6.3. Let G be a ζ-colorable family of graphs (Definition 6.1). There exists a randomized
streaming algorithm that makes a single pass over any graph G from G with maximum degree ∆,
and for any setting of parameters:

ε > 0, 1 ≤ k ≤ ε2 ·∆
9 lnn

, C := C(ε, k) = k · ζ
(

(1 + ε) · ∆

k

)
,

with high probability computes a proper C-coloring of G using O(n · ∆
k ) space.

Query Algorithms from Theorem 4. The algorithms is as follows:

29



(i) Sample a random k-partitioning of the vertices into V1, . . . , Vk.

(ii) Obtain the subgraphs G[V1], . . . , G[Vk] using the following procedure:

• If ∆ > n/k, then non-adaptively query all pairs of vertices u, v where both u, v belong
to the same Vi (using pair queries);

• Otherwise, non-adaptively query all neighbors of all vertices u (using neighbor queries).

(iii) Find a C-coloring of G by coloring each G[Vi] with a distinct palette of size C/k (with no
further access to G).

The correctness of the algorithm (with high probability) again follows from Theorem 4. The
query complexity of this algorithm is also (by Lemma 6.2): min

{
O(n∆) +O(n2/k)

}
queries (note

that the first term on its own is trivial as it requires looking at the entire graph). It now follows:

Corollary 6.4. Let G be a ζ-colorable family of graphs (Definition 6.1). There exists a randomized
non-adaptive algorithm that given query access to any graph G from G with maximum degree ∆,
for any setting of parameters:

ε > 0, 1 ≤ k ≤ ε2 ·∆
9 lnn

, C := C(ε, k) = k · ζ
(

(1 + ε) · ∆

k

)
,

with high probability computes a proper C-coloring of G using min
{
O(n∆) +O(n2/k)

}
queries.

We conclude this section with some important remarks about Corollaries 6.3 and 6.4.

Remark 6.5 (Runtime of our algorithms). We did not state the runtime of our algorithms
in this section and focused primarily on space and query complexity of algorithms, respectively.
This is because in both cases, the runtime of the algorithm crucially depends on the runtime of the
coloring algorithm for finding a ζ-coloring of each subgraph G[Vi] which is specific to the family G
(and ζ) and thus not known a-priori.

Nevertheless, for almost all our applications to specific families of graphs (with one exception),
the runtime of the algorithms is also sublinear in the input size.

6.2 Particular Implications of Theorem 4

We now list the applications of Theorem 4 and Corollaries 6.3 and 6.4 to different families of “locally
sparse” graphs that are colorable with much fewer than (∆ + 1) colors.

Triangle-Free Graphs

As stated earlier, triangle-free graphs admit an O( ∆
ln ∆) coloring. This was first proved by Johans-

son [22] by showing an upper bound of 9 ∆
ln ∆ on the chromatic number of these graphs8. The leading

constant was then improved to 4 by Pettie and Su [35] and very recently to 1 + o(1) by Molloy [26]
matching the result of Kim for graphs of girth 5 [24]. Moreover, Molloy’s result implies an Õ(n∆2)
time algorithm for finding such a coloring.

Note that triangle-free graphs form a hereditary family of graphs and aforementioned results
imply that they are ζtri-free-colorable for ζtri-free(∆) = O( ∆

ln ∆). As such, Corollaries 6.3 and 6.4

imply the following algorithms for any γ ∈ (0, 1/2) as small as Θ( ln ln ∆
ln ∆ ):

8This result of Johansson was never published – see [29, Chapter 13] for a lucid presentation of the original proof.
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• Streaming Model: A randomized single-pass Õ(n1+γ) space algorithm for O( ∆
γ ln ∆) coloring

of triangle-free graphs. The post-processing time of this algorithm is Õ(n ·∆γ).

• Query Model: A randomized non-adaptive Õ(n3/2+γ)-query algorithm for O( ∆
γ ln ∆) coloring

of triangle-free graphs. The runtime of this algorithm is also Õ(n3/2+2γ).

Both results above are proved by picking ε = Θ(1) and k = Θ(∆1−γ), thus obtaining a C-coloring:

C = C(ε, k) = k · ζtri-free

(
Θ(∆/k)

)
= O(k) · ∆/k

ln (∆/k)
= O(

∆

ln ∆γ
) = O(

∆

γ ln ∆
).

Remark 6.6. The above approach can also be used to obtain a linear time classical algorithm
for O( ∆

ln ∆) coloring of triangle-free graphs faster than the state-of-the-art algorithm of Molloy [26]
(albeit with a larger number of colors by a constant factor). For any γ ∈ (0, 1/2), we obtain an
algorithm for O( ∆

γ·ln ∆) coloring of triangle-free graphs in O(n∆) + Õ(n∆2γ) = O(n∆) time.

Kr-Free Graphs

For any fixed integer r ≥ 1, we refer to any graph that does not contain a copy of the Kr, namely,
the clique on r vertices, as a Kr-free graph. Johansson proved that any Kr-free graph admits an
O(∆ ln ln ∆

ln ∆ ) coloring [23] and gave an O(n · poly(∆)) time algorithm for finding it9. This result was
very recently simplified (and extended to r beyond a fixed constant) by Molloy [26] (however the
latter result does not imply an efficient algorithm).

Similar to the case of triangle-free graphs, combining these results with Corollaries 6.3 and 6.4
imply the following algorithms for any γ ∈ (0, 1/2) as small as Θ( ln ln ∆

ln ∆ ):

• Streaming Model: A randomized single-pass Õ(n1+γ) space algorithm for O(∆ ln ln ∆
γ ln ∆ ) coloring

of Kr-free graphs. The post-processing time of this algorithm is O(n1+Θ(γ)).

• Query Model: A randomized non-adaptive Õ(n3/2+γ)-query algorithm for O(∆ ln ln ∆
γ ln ∆ ) coloring

of Kr-free graphs. The runtime of this algorithm is also O(n3/2+Θ(γ)).

Graphs with r-Colorable Neighborhoods

For any fixed integer r ≥ 1, we say that a graph G is locally r-colorable iff neighborhood of every
vertex in G is r-colorable. Johansson also proved that r-colorable graphs admits an O( ∆

ln ∆ · ln r)
coloring [23]; see [5] for a proof and also an algorithm that finds such a coloring in poly(n ·2∆) time
(which uses, as a subroutine, a result of [8]).

It is easy to see that locally r-colorable graphs also form a hereditary family. Consequently, as
before, Corollaries 6.3 and 6.4 imply the following for any γ ∈ (0, 1/2) as small as Θ( ln ln ∆

ln ∆ ):

• Streaming Model: A randomized single-pass Õ(n1+γ) space algorithm for O( ∆
γ ln ∆ · ln r)

coloring of locally r-colorable graphs. The post-processing time of the algorithm is poly(n ·2∆γ
).

• Query Model: A randomized non-adaptive Õ(n3/2+γ)-query algorithm for O( ∆
γ ln ∆ · ln r) col-

oring of locally r-colorable graphs. The runtime of this algorithm is also poly(n · 2∆γ
).

Remark 6.7. By picking k = Θ(∆/ log n) in the query algorithm above (instead of k = ∆1−γ in
the above part), we obtain a (classical) algorithm for O( ∆

ln lnn · ln r) coloring in poly(n · 2Θ(logn)) =

poly(n) time. Although the number of colors of this algorithm is sub-optimal for ∆ > (log n)ω(1),
this gives a polynomial time algorithm for coloring these graphs.

9This result of Johansson was also never published – see [5] for a streamlined version of this proof.
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Graphs with δ-Sparse Neighborhoods

For any δ ∈ (0, 1), we say a graph G(V,E) has a δ-sparse neighborhood iff the total number of
edges in the neighborhood of any vertex v (i.e., edges between neighbors of v) is at most δ ·∆2 (not
to be confused with Definition 4.2 for ε-sparse vertices, albeit the two definitions are equivalent
for ∆-regular graphs by setting δ = (1 − ε2)). Alon, Krivelevich and Sudakov [1] proved that any
graph G with maximum degree ∆ and δ-sparse neighborhood admits an O( ∆

log (1/δ)) coloring and
that this is tight for all admissible values of δ and ∆.

We note that unlike all other families of graphs considered in this section, the family of sparse-
neighborhood graphs is not a hereditary family. As such, we cannot readily apply Theorem 4 (and
hence Corollaries 6.3 and 6.4). However, we can modify the proof of Theorem 4 slightly to apply
to this case as well. In particular, we prove the following result.

Lemma 6.8. For any δ ∈ (0, 1), let G(V,E) be an n-vertex graph with maximum degree ∆ and
δ-sparse neighborhoods. For the parameters

1 ≤ k ≤ δ ·∆
9 · lnn

, C := Θ(
∆

ln (1/δ)
),

suppose we partition V into k sets V1, . . . , Vk uniformly at random; then with high probability G
can be C-colored by coloring each G[Vi] with a distinct palette of size C/k.

The proof of this result is by simply showing that not only the maximum degree of each graph
G[Vi] is sufficiently small (Lemma 6.1), but also it is a (2δ)-sparse neighborhood graph.

Lemma 6.9. With high probability G[Vi] has a (2δ)-sparse neighborhood.

Proof. Fix a vertex v ∈ Vi. For any vertex u ∈ N(v), let degN(v)(u) denote the degree of u to other

vertices in N(v). Moreover, define degiN(v)(u) as the degree of u to vertices in N(v) that are also
present in Vi, hence,

E
[
degiN(v)(u)

]
=

1

k
· degN(v)(u) ≤ ∆/k.

Moreover, degiN(v)(u) is a sum of ∆ independent random variables and hence by Chernoff bound
(Proposition 2.2 with µ = ∆/k and δ = 1):

P
(

degiN(v)(u) ≥ 2∆/k
)
≤ exp

(
−∆

3k

)
≤ 1

n3
,

by the condition on value of k. By a union bound, with high probability, for all vertices v ∈ Vi
and u ∈ N(v) the above inequality holds. In the following, we condition on this event. Note that
as this is a “high probability” event, this conditioning does not change the distribution of random
variables by more than a negligible factor.

Again fix a vertex v ∈ Vi. Define (at most) ∆ random variables Xu for u ∈ N(v) where
Xu = degiN(v)(u) iff u is also sampled in Vi and otherwise Xu = 0. Define X :=

∑
u∈N(v)Xu to be

the number of edges between vertices in N(v) ∩ Vi. As each edge appears in G[Vi] w.p. 1/k2, by
linearity of expectation,

E [X] ≤ δ ·∆2 · 1

k2
.
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Moreover, as X is a sum of independent random variables which are in [0, 2∆/k] (by the high
probability event we conditioned on), an application of Chernoff bound (Proposition 2.2) implies
that:

P
(
X ≥ 2 · δ · ∆2

k2

)
≤ exp

(
−(δ2 ·∆4/k4)

3 ·∆2/k2

)
= exp

(
−δ

2 ·∆2

3k2

)
≤ 1

n3
,

by the choice of k. We take another union bound over all vertices v ∈ V .

Finally, as by Lemma 6.1, we have that maximum degree of G[Vi] is at most 2∆/k and since
by the above argument, neighborhood of each vertex contains at most 2δ ·∆2/k2 edges, we obtain
that G[Vi] has (2δ)-sparse neighborhoods, concluding the proof.

Lemma 6.8 now follows from Lemma 6.9 (the same exact way as in the proof of Theorem 4).
Similar to Corollaries 6.3 and 6.4, this in turn implies the following algorithms:

• Streaming Model: A randomized single-pass Õ(n/δ) space algorithm for O( ∆
ln (1/δ)) coloring

of graphs with δ-sparse neighborhoods. The post-processing time is Õ(n · poly(1/δ)).

• Query Model: A randomized non-adaptive Õ(n3/2/δ)-query algorithm for O( ∆
ln (1/δ)) coloring

of graphs with δ-sparse neighborhoods. The runtime of the algorithm is Õ(n3/2 · poly(1/δ))

Acknowledgements

Sepehr Assadi would like to thank Suman Bera, Amit Chakrabarti, Prantar Ghosh, Guru Guru-
ganesh, David Harris, Sanjeev Khanna, and Hsin-Hao Su for helpful conversations and Mohsen
Ghaffari for communicating the (deg +1) coloring problem and an illuminating discussion that led
us to the proof of the palette sparsification theorem for this problem in this paper. We are also
thankful to the anonymous reviewers of RANDOM 2020 for helpful suggestions on the presentation
of the paper, and to Stijn Cambie and Ross Kang for helpful comments.

References

[1] N. Alon, M. Krivelevich, and B. Sudakov. Coloring graphs with sparse neighborhoods. J.
Comb. Theory, Ser. B, 77(1):73–82, 1999. 32

[2] N. Alon and J. Spencer. The Probabilistic Method. Fourth Edition, Wiley, 2016. 2, 4, 5

[3] A. Amir, O. Kapah, T. Kopelowitz, M. Naor, and E. Porat. The family holiday gather-
ing problem or fair and periodic scheduling of independent sets. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State
Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 367–375, 2016. 3

[4] S. Assadi, Y. Chen, and S. Khanna. Sublinear algorithms for (∆ + 1) vertex coloring. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 767–786, 2019. ii, 1, 2, 3, 4, 6,
12, 13, 16, 17, 18, 23, 24, 25, 26, 27, 46, 47

[5] N. Bansal, A. Gupta, and G. Guruganesh. On the Lovász theta function for independent sets
in sparse graphs. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 193–200, 2015. 31

33



[6] S. K. Bera, A. Chakrabarti, and P. Ghosh. Graph coloring via degeneracy in streaming and
other space-conscious models. CoRR, abs/1905.00566. To appear in ICALP 2020, 2019. 3, 4,
11, 12, 27

[7] A. Bernshteyn. The Johansson-Molloy theorem for DP-coloring. Random Structures & Algo-
rithms, 54(4):653–664, 2019. 2

[8] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM
J. Comput., 39(2):546–563, 2009. 31

[9] T. Bohman and R. Holzman. On a list coloring conjecture of Reed. Journal of Graph Theory,
41:106–109, 2002. 8

[10] B. Bollobás. Chromatic number, girth and maximal degree. Discrete Mathematics, 24(3):311–
314, 1978. 7

[11] M. Bonamy, T. Kelly, P. Nelson, and L. Postle. Bounding χ by a fraction of ∆ for graphs
without large cliques. arXiv preprint arXiv:1803.01051, 2018. 3, 11

[12] Y. Chang, M. Fischer, M. Ghaffari, J. Uitto, and Y. Zheng. The complexity of (∆+1) coloring
in congested clique, massively parallel computation, and centralized local computation. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 471–480, 2019. 3, 4, 27

[13] Y. Chang, W. Li, and S. Pettie. An optimal distributed (∆ + 1)-coloring algorithm? In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 445–456, 2018. 3, 12, 13, 18, 21, 47

[14] E. Davies, R. de Joannis de Verclos, R. J. Kang, and F. Pirot. Colouring triangle-free graphs
with local list sizes. CoRR, abs/1812.01534, 2018. 3, 11

[15] M. Elkin, S. Pettie, and H. Su. (2∆− 1)-edge-coloring is much easier than maximal matching
in the distributed setting. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 355–370,
2015. 18, 21, 47
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A Proof of Proposition 3.2

We present the proof of Proposition 3.2, restated below, in this section.

Proposition (Restatement of Proposition 3.2). There exists an absolute constant d0 such that for
all d ≥ d0 the following holds. Suppose G(V,E) is a triangle-free graph with lists S(v) for every
v ∈ V such that:

(i) for every vertex v, |S(v)| ≥ 8 · d
ln d , and

(ii) for every vertex v and color c ∈ S(v), degS(v, c) ≤ d.

Then, there exists a proper coloring of G from these lists.

We prove Proposition 3.2 using the probabilistic method and in particular a version of the
so-called “Rödl Nibble”, the “semi-random method”, or the “wasteful coloring procedure”; see,
e.g. [29, 40]: The idea is to iteratively find a partial coloring of G from the given lists by coloring
a small fraction of the vertices randomly, update the lists of their neighbors, and continue until
we can color G entirely. We shall remark that our approach in proving Proposition 3.2 closely
follows the distributed algorithm of Pettie and Su [35] and we borrow several ideas from their work
although there are many differences as well.

Preliminaries and Parameters

Our procedure is iterative. Each iteration i of the procedure uses the following parameters:

• αideal
i : used as an “ideal” lower bound for size of each list;

• βideal
i : used as an “ideal” upper bound on the c-degree of each vertex v ∈ Gi for every c ∈ Ai(v).

These parameters are defined recursively as follows (these expressions would become clear shortly):

keepi :=

(
1− 1

2 ln d · αideal
i

)2βideal
i

colori :=

(
1− 1

2 ln d · αideal
i

)keepi·αideal
i /2

αideal
1 = 8 · d

ln d
αideal
i+1 := keepi · αideal

i

βideal
1 = d βideal

i+1 := colori · keepi · βideal
i . (10)

The following lemma lists some of the main relations between parameters αideal
i and βideal

i that we use
throughout the proof. The proof is by some rather straightforward (albeit daunting) calculations.

Lemma A.1. The parameters αideal
i and βideal

i satisfy the following properties:

(i) For every i, βideal
i /αideal

i ≤ βideal
1 /αideal

1 ≤ ln d/8.

(ii) There exists some sufficiently small δ = Θ(1) such that for every i, αideal
i ≥ dδ.

(iii) There exists an i? = O(log2 d) such that βideal
i? < αideal

i? /100.

Proof. The first part is immediate as the ratio βideal
i /αideal

i drops by a factor colori ∈ (0, 1) in each
iteration. We now prove the second part. Firstly,

keepi =

(
1− 1

2 ln d · αideal
i

)2βideal
i

≥ exp

(
− 2βideal

i

ln d · αideal
i

)
≥ exp

(
− 2βideal

1

ln d · αideal
1

)
≥ 3/4.
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By definition of colori:

colori =

(
1− 1

2 ln d · αideal
i

)keepi·αideal
i /2

≤ exp

(
−keepi

4 ln d

)
≤ 1− 1

6 ln d
.

Define ri := βideal
i /αideal

i . By the above equation:

ri+1 = colori · ri ≤
(

1− 1

6 ln d

)
· ri ≤

(
1− 1

6 ln d

)i
· r1.

This in turn allows us to bound keepi:

keepi =

(
1− 1

2 ln d · αideal
i

)2βideal
i

≥ exp

(
−1 + o(1)

ln d
· ri
)

≥ exp

(
−1 + o(1)

ln d
·
(

1− 1

6 ln d

)i−1
· r1

)
= exp

(
−(1 + o(1))

8
·
(

1− 1

6 ln d

)i−1
)
. (as r1 = ln d/8)

By using this bound in the definition of αideal
i , we get that:

αideal
i = αideal

1 ·
i−1∏
j=1

keepj ≥ α1 · exp

−(1 + o(1))

8
·
i−1∑
j=1

(
1− 1

6 ln d

)j−1


≥ α1 · exp

(
−(1 + o(1))

8
· 6 ln d

)
≥ dδ (for some small δ = Θ(1))

This proves the second part. For the third part, note that as long as βideal
i ≥ αideal

i /100, we have,

keepi =

(
1− 1

2 ln d · αideal
i

)2βideal
i

≤ exp

(
− 1

ln d
· β

ideal
i

αideal
i

)
≤ exp

(
− 1

100 ln d

)
≤ 1− Θ(1)

ln d
.

This, together with the upper bound on colori implies that:

βideal
i ≤ βideal

1 ·
i−1∏
j=1

colorj · keepj ≤ d ·
(

1− Θ(1)

ln d

)i−1

.

As such, as long as βideal
i ≥ αideal

i /100, βideal
i will decrease by at least some fixed rate while by

the second part we know that αideal
i will never go below dδ for some constant δ. Hence, after

i? = O(log2 d) steps we will have βideal
i < αideal

i /100.

Notation. We further define the following notation to describe our procedure. The definition of
some of these parameters would become more clear later but we still list them all here for ease of
reference (in the following G1 := G and A1(v) = S(v)).

• Gi: The remaining graph to color at the beginning of iteration i;

• Ai(v): List of available colors to v ∈ Gi at the beginning of iteration i – let ai(v) := |Ai(v)|;
we further define amin

i := minv ai(v);
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• Bi(v, c): Set of vertices u ∈ N(v) such that c ∈ Ai(u) – let bi(v, c) := |Bi(v, c)|;
we further define bmax

i := maxv,c bi(v, c);

• Âi(v): The intermediate list of colors of vertex v during iteration i – let âi(v) :=
∣∣∣Âi(v)

∣∣∣;
• B̂i(v, c): Set of vertices u ∈ N(v) such that c ∈ Âi(u) – let b̂i(v, c) :=

∣∣∣B̂i(v, c)∣∣∣.
A.1 The Coloring Procedure

Each iteration i of our procedure is as follows (with a minor modification described below):

WastefulColoring: The algorithm for each iteration i of the coloring procedure.

1. For every vertex v ∈ Gi and every color c ∈ Ai(v), we assign c to v with probability
pi(v) := 1

2 ln d·αideal
i

and include the assigned colors in a set Ci(v).

2. For every v ∈ Gi we obtain the intermediate list Âi(v) from Ai(v) by removing each color
c assigned to some u ∈ NGi(v), i.e., if c ∈ Ci(u).

3. If there exists a color c ∈ Âi(v) ∩ Ci(v), color v with c (breaking the ties arbitrarily).

4. Update the following parameters for the next iteration:

Gi+1 := Gi \ {colored vertices in iteration i} , Ai+1(v) :=
{
c ∈ Âi(v) | b̂i(v, c) ≤ 2βideal

i+1

}
.

Several remarks are in order. Firstly, it is easy to see that the partial coloring found by this
procedure is always feasible: we (conservatively) throw out any color c from the list Ai(v) of a
vertex v if it is assigned to (and not even necessarily used to color) a neighbor of v. Secondly,
at the end of each iteration, we additionally throw out any color c from Ai(v) that has a “large”
c-degree bi(v, c) > 2βideal

i , hence, the c-degrees of vertices is at most twice the ideal value βideal
i .

Finally, we will run this procedure up until a certain point where we can guarantee that the size
of Ai(v) for every vertex v ∈ Gi is some constant factor larger than the c-degree of v for c ∈ Ai(v):
at this point, we can simply apply Proposition 2.5 to color the remainder of the graph.

Equalizing probabilities: Let keepi(v, c) denote the probability that color c ∈ Ai(v) is being
kept in Âi(v). It would make our proof much easier if all valid choices of v, c have the same
probability keepi(v, c) = keepi (where keepi is defined in Eq (10)). While this is not guaranteed by
the WastefulColoring procedure, as we show below a simple additional step in every iteration can
ensure this property. Note that for every choices of v and c ∈ Ai(v):

keepi(v, c) = P (c is not assigned to any vertex in Bi(v, c))

=
∏

u∈Bi(v,c)

(1− 1

ln d
· 1

2αideal
i

) ≥
(

1− 1

2 ln d · αideal
i

)2βideal
i

= keepi. (11)

We modify the procedure by removing each color c ∈ Âi(v) with probability 1 − keepi
keepi(v,c)

in

Line (2) of WastefulColoring. As a consequence of this, in the modified procedure, for every valid
choices of v, c in iteration i:

P
(
c ∈ Ai(v) belongs to Âi(v) in iteration i

)
= keepi. (12)

From now on, we work with this modified procedure and hence we can use Eq (12).
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The Setup

Recall that amin
i denotes the minimum list size and bmax

i denotes the maximum c-degree in each
iteration i. Our goal is to maintain the invariant that in each iteration i, amin

i ≥ αideal
i /2 and

bmax
i ≤ 2βideal

i (as stated, this invariant is “too tight” and thus in the proof we actually allow for
some small approximation to take care of the errors due to the concentration bounds). As we know
by Lemma A.1 that eventually βideal

i < αideal
i /100, such an invariant allows us to reach an iteration

i where amin
i > bmax

i /10. At this point, we can apply Proposition 2.5 and color the rest of the graph.

It turns out for the purpose of bounding amin
i and bmax

i , working with the parameters ai(v) and
bi(v, c) directly is a hard task due to the lack of appropriate concentration (in particular, bi(v, c)’s
are not concentrated). To address this, let us further define the following parameters:

• λi(v) := min
{

1, ai(v)/αideal
i

}
: the ratio of size of list Ai(v) to the ideal size αideal

i ;

• bi(v) :=
∑

c∈Ai(v) bi(v, c)/ai(v): the average c-degree of v in Ai(v);

• ηi(v) := λi(v) · bi(v) + (1− λi(v)) · 2βideal
i ; we further define ηmax

i := maxv ηi(v).

We note that ηi(v) can be seen as the average c-degree of v if we add αideal
i − ai(v) new artificial

colors with c-degree 2βideal
i to v. Let us first see how does these parameters can help with our goal

of bounding amin
i and bmax

i .

Claim A.2. For any iteration i:

amin
i ≥ αideal

i ·
(

1− ηmax
i

2βideal
i

)
and bmax

i ≤ 2 · βideal
i .

Proof. The proof of the second part follows from the condition in Line (4) of WastefulColoring as
bi(v, c) ≤ b̂i−1(v, c) ≤ 2 · βideal

i for every v and any c ∈ Ai(v). For the first part, consider any v
where ai(v) < αideal

i (if no such v exists we are already done):

ai(v) = λi(v) · αideal
i ≥ αideal

i ·
(

1− ηi(v)

2βideal
i

)
≥ αideal

i ·
(

1− ηmax
i

2βideal
i

)
,

where the first inequality follows from the definition of ηi(v).

As such, instead of directly computing amin
i and bmax

i , we instead maintain the invariant that
ηmax
i ≤ βideal

i (again modulo some small approximation terms), and then plugin in this value in
Claim A.2 to obtain the desired bounds on amin

i and bmax
i . We shall note that this invariant on ηmax

i

is analogous to the induction hypothesis of [35] and is heart of the proof. The rest of the proof
from there is straightforward as we already discussed.

A.2 Bounding ηmax
i in Each Iteration

We now state and prove the aforementioned bound on ηmax
i for each iteration i. The following

lemma allows us to bound ηmax
i inductively using the fact that ηmax

1 = bmax
1 = d as a base case.

Lemma A.3. Consider any iteration i < i? and let ε ∈ (0, 1) be a parameter such that ε > d−δ/10

(for i? and δ defined in Lemma A.1). Suppose

ηmax
i ≤ (1 + ε) · βideal

i .

Then, with positive probability,

ηmax
i+1 ≤ (1 + 19ε) · βideal

i+1 .
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We prove Lemma A.3 in this part. In the following, we condition on the events that happened
in iterations < i so far including the assumption that ηmax

i ≤ (1 + ε) · βideal
i and only consider the

probability of events with respect to random choices in iteration i. Claim A.2 then implies that:

ηmax
i ≤ (1 + ε) · βideal

i , amin
i ≥ 1− ε

2
· αideal

i and bmax
i ≤ 2βideal

i . (13)

Recall that Ai+1(v) is obtained by first moving from Ai(v) to Âi(v) through the process of
assigning colors and then from Âi(v) to Ai+1(v) by filtering out the high c-degree colors. Our main
goal is to understand the change between Ai(v) to Âi(v). To this end, let us further define:

• b̂i(v) :=
∑

c∈Âi(v)
b̂i(v, c)/âi(v): the average c-degree of v in Âi(v).

In the following two lemmas, we prove that both âi(v) and b̂i(v) are concentrated. These are
the main parts of the proof and in the only part when we use G is triangle-free.

Lemma A.4. For any vertex v ∈ Gi:

P (âi(v) < (1− ε) · keepi · ai(v)) < exp
(
−Θ(d4δ/5)

)
.

Proof. Recall that Âi(v) is obtained by picking each color c ∈ Ai(v) that is not assigned to a
neighbor of v. By Eq (12), the probability of this event for each color is precisely keepi. Moreover,
the colors are chosen independently of each other to be included in Âi(v). Hence, âi(v) is a sum of
ai(v) independent {0, 1}-random variables with E [âi(v)] = keepi · ai(v). Hence, by Chernoff bound
(Proposition 2.2 and since keepi = Ω(1)):

P (âi(v) < (1− ε) · keepi · ai(v)) ≤ exp
(
−Θ(1) · ε2 · ai(v)

)
≤ exp

(
−Θ(1) · d4δ/5

)
,

where the last inequality is because by Eq (13), ai(v) ≥ Θ(1) · αideal
i , by Lemma A.1, αideal

i ≥ dδ,
and since ε > d−δ/10.

Lemma A.5. For any unfinished iteration i and vertex v ∈ Gi:

P
(
b̂i(v) > colori · keepi · bi(v) + 8ε · colori · keepi · bmax

i

)
< exp

(
−Θ(d4δ/5)

)
.

Proof. Let us additionally define the following parameters similar to b̂i+1(v, c) and bi(v), b̂i(v):

• b̃i(v, c): number of neighbors u ∈ Bi(v, c) that keep the color c ∈ Âi(v) regardless of whether
they are colored in this iteration or not (in other words, u will be counted in b̃i(v, c) even if
u is colored in this iteration as long as c ∈ Âi(u)). As such, b̃i(v, c) ≥ b̂i(v, c).

• b̃i(v) :=
∑

c∈Âi(v)
b̃i(v, c) (we emphasize that unlike bi(v) and b̂i(v) which are the average of

bi(v, c)’s and b̂i(v, c)’s, here we take b̃i(v) to be the sum of b̃i(v, c)’s for simplicity).

In the following claims, we first upper bound b̃i(v) and then relate it b̂i(v) and bi(v).

Claim A.6. P
(
b̃i(v) > keep2

i · ai(v) · bi(v) + ε · keep2
i · ai(v) · bmax

i

)
≤ exp

(
−Θ(d4δ/5)

)
.
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Proof. We argue that:

E
[
b̃i(v)

]
= E

 ∑
c∈Ai(v)

I
[
c ∈ Âi(v)

]
· b̃i(v, c)

 =
∑

c∈Ai(v)

P
(
c ∈ Âi(v)

)
· E
[
b̃i(v, c)

]
. (14)

To do this, we prove that the event c ∈ Âi(v) is independent of the random variable b̃i(v, c). Indeed,
the event c ∈ Âi(v) is only a function of random choices of vertices u ∈ Bi(v, c). On the other hand,
for any vertex u ∈ Bi(v, c) the choice of whether u is counted in b̃i(v, c) is only a function of vertices
w ∈ Bi(u, c) (note that in definition of b̃i(v, c) we crucially excluded the possibility of u changing
b̃i(v, c) by coloring itself). Now note that since G is triangle-free, for any vertex u ∈ Bi(v, c),
Bi(u, c) ∩ Bi(v, c) is disjoint (otherwise we find a triangle with u, v and the intersecting vertex).
This shows the correctness of Eq (14). By expanding the RHS of (14),

E
[
b̃i(v)

]
=

∑
c∈Ai(v)

keepi ·
∑

u∈Bi(v,c)

P
(
c ∈ Âi(u)

)
(by Eq (12) for the first term and by definition for second one)

=
∑

c∈Ai(v)

keepi · bi(v, c) · keepi (again by Eq (12))

= keep2
i · ai(v) · bi(v). (by definition of bi(v))

We now prove a concentration bound for b̃i(v). For any c ∈ Ai(v) define the random variable Xc =
b̃i(v, c) if c is kept in Âi(v) as well and Xc = 0 otherwise. Additionally, define X :=

∑
c∈Ai(v)Xc.

By Eq (14), X = b̃i(v) and by the discussion after this equation plus the fact that the choices of
b̃i(v, c) and b̃i(v, c

′) for colors c 6= c′ are independent, we have that Xc’s are independent. Moreover,
each Xc ≤ bi(v, c) ≤ bmax

i by definition. As such, by Chernoff bound (Proposition 2.2 and since
keepi = Ω(1)),

P
(
X − E [X] > ε · keep2

i · ai(v) · bmax
i

)
≤ exp

(
−Θ(1) · ε

2 · ai(v)2 · (bmax
i )2

ai(v) · (bmax
i )2

)
≤ exp

(
−Θ(1) · ε2 · ai(v)

)
≤ exp

(
−Θ(1) · d4δ/5

)
(as already calculated in the proof of Lemma A.4)

Since X = b̃i(v) and by the value of E [X] calculated earlier, this finalizes the proof. Claim A.6

Claim A.7. P
(
b̂i(v, c) > colori · b̃i(v, c) + 2ε · colori · bmax

i

)
< exp

(
−Θ(d4δ/5)

)
.

Proof. Consider the complement of the event in Lemma A.4 for all vertices u ∈ Bi(v, c). Note
that the choice of colors in Âi(u) is entirely independent of the randomness of vertex u itself.
Similarly, let B̃i(v, c) denote the set of vertices u ∈ Bi(v, c) that are counted in b̃i(v, c) (defined at
the beginning of the proof of the lemma). Note that again for each vertex u ∈ Bi(v, c), the choice
whether u joins B̃i(v, c) or not is independent of randomness of u itself (this is the key difference
between B̃i and B̂i). In the following, we condition on the choice of Âi(u) for vertices u ∈ Bi(v, c)
as well as the choice of B̃i(v, c); by union bound over at most poly(d) vertices in the constant-hop
neighborhood of v, we have that the complement of the event in both Lemma A.4 and Claim A.6
happens with sufficiently probability for the assertion of the claim.
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Now consider each vertex u ∈ B̃i(v, c). For u to join B̂i(v, c) as well (and hence counted in
b̂i(v, c)), u should not be colored in this iteration. This is equivalent to the event that no color in
Âi(u) is assigned to u. This choice is only a function of randomness of u. As such,

P
(
u ∈ B̃i(v, c) joins B̂i(v, c)

)
= P (u is not colored in iteration i)

=
∏

c∈Âi(u)

(1− P (c is assigned to u))

= (1− 1

2 ln d · αideal
i

)âi(u)

(by the choice of pi(u) in WastefulColoring)

≤ (1− 1

2 ln d · αideal
i

)(1−ε)·keepi·ai(v) (by Lemma A.4)

≤ (1− 1

2 ln d · αideal
i

)(1−ε)2·keepi·αideal
i /2 (by Eq (13))

≤ colori · (1−
1

2 ln d · αideal
i

)−2ε·keepi·αideal
i /2

(by definition of colori in Eq (10) and since (1− ε)2 ≤ 1− 2ε)

≤ colori · exp

(
ε · keepi · αideal

i

2 ln d · αideal
i

)
≤ colori · (1 + ε). (as keepi = Θ(1)� ln d)

This implies that E
[
b̂i(v, c) | B̃i(v, c)

]
≤ colori · (1 + ε) · b̃i(v, c). Moreover, as stated earlier, at

this point all choices of whether u ∈ B̃i(v, c) also belongs to B̂i(v, c) depend on the randomness
of u itself and are thus independent across different u ∈ B̃i(v, c). As such, b̂i(v, c) is a sum of
b̃i(v, c) {0, 1}-independent random variables and hence by Chernoff bound (Proposition 2.2 and
since colori = Ω(1)):

P
(
b̂i(v, c) > colori · (1 + ε) · b̃i(v, c) + ε · bmax

i

)
≤ exp

(
−Θ(1) · ε2 · bmax

i

)
≤ exp

(
−Θ(1) · ε2 · amin

i

)
(as iteration i < i? has bmax

i ≥ amin
i /100)

≤ exp
(
−Θ(1) · d4δ/5

)
( by the choice of ε as already calculated in Lemma A.4)

This concludes the proof. Claim A.6

We are now ready to finalize the proof of Lemma A.5. We condition on the complements of
the events in Claims A.6 and A.7 and by union bound (over poly(d) vertices in the constant-hop
neighborhood of v), this happens with sufficiently high probability for the proof. We now have,∑

c∈Âi(v)

b̂i(v, c) ≤
∑

c∈Âi(v)

(
colori · b̃i(v, c) + 2ε · colori · bmax

i

)
(by Claim A.7)

≤

colori ·
∑

c∈Âi(v)

b̃i(v, c)

+ 2ε · colori · ai(v) · bmax
i (as âi(v) ≤ ai(v))
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= colori · b̃i(v) + 2ε · colori · ai(v) · bmax
i (by definition of b̃i(v))

≤ colori ·
(
keep2

i · ai(v) · bi(v) + ε · keep2
i · ai(v) · bmax

i

)
+ 2ε · colori · ai(v) · bmax

i

(by Claim A.6)

≤ colori · keep2
i · ai(v) · bi(v) + 3ε · colori · ai(v) · bmax

i . (as keepi < 1)

Let us now further condition on the event of Lemma A.4. We will thus have,

b̂i(v) =
1

âi(v)
·
∑

c∈Âi(v)

b̂i(v, c)

≤ 1

(1− ε) · keepi · ai(v)
·
(
colori · keep2

i · ai(v) · bi(v) + 3ε · colori · ai(v) · bmax
i

)
=

colori · keep2
i · ai(v) · bi(v)

(1− ε) · keepi · ai(v)
+

3ε · colori · ai(v) · bmax
i

(1− ε) · keepi · ai(v)

≤ colori · keepi · bi(v) · (1 + 2ε) +
4ε · colori · bmax

i

keepi
≤ colori · keepi · bi(v) · (1 + 2ε) + 5ε · colori · bmax

i

(as calculated in Lemma A.1, for i < i? keepi ≥ (1−Θ(1)/ ln d))

≤ colori · keepi · bi(v) + 8ε · colori · keepi · bmax
i , (again by the lower bound on keepi)

concluding the proof. Lemma A.5

We now combine the above lemmas to prove the following bound on ηmax
i .

Lemma A.8. For every v ∈ Gi+1, assuming the events in Lemmas A.4 and A.5:

ηi+1(v) ≤ colori · keepi · ηi(v) + 18ε · βideal
i+1 .

Proof. Let us define two new parameters for the purpose of this proof (similar to λi and ηi):

• λ̂i(v) := min
{

1, âi(v)/αideal
i+1

}
: the ratio of size of Âi(v) to the ideal size αideal

i+1 ;

• η̂i(v) := λ̂i(v) · b̂i(v) + (1− λ̂i(v)) · 2βideal
i+1 .

Firstly, as ηi+1(v) is obtained from η̂i(v) by changing the contribution of any color in Âi(v)\Ai+1(v)
from something larger than 2βideal

i+1 down to 2βideal
i+1 , we have ηi+1(v) ≤ η̂i(v). We use this in the

following claim.

Claim A.9. ηi+1(v) ≤ λi(v) · b̂i(v) + (1− λi(v)) · 2βideal
i+1 + 2ε · βideal

i+1 .

Proof. We have,

λ̂i(v) =
âi(v)

αideal
i+1

≥ (1− ε) · keepi · ai(v)

keepi · αideal
i

≥ (1− ε) · λi(v).

(by Lemma A.4 in the nominator and definition of αideal
i in Eq (10) for the denominator)

Moreover,

b̂i(v) ≤ colori · keepi · bi(v) + 8ε · colori · keepi · bmax
i (by Lemma A.5)
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≤ (1 + ε)βideal
i + 16ε · βideal

i

(by definition, bi(v) ≤ ηi(v) and by Eq (13), ηi(v) ≤ (1 + ε)βideal
i and bmax

i ≤ 2βideal
i )

< 2βideal
i . (for ε sufficiently small – ε < 1/100 certainly suffices)

Consequently,

ηi+1(v) ≤ η̂i(v) = λ̂i(v) · b̂i(v) + (1− λ̂i(v)) · 2βideal
i+1

≤ (λi(v)− ελi(v)) · b̂i(v) + (1− λi(v) + ελi(v)) · 2βideal
i+1 (by the two equations above)

≤ λi(v) · b̂i(v) + (1− λi(v)) · 2βideal
i+1 + 2ε · βideal

i+1 . Claim A.9 (as λi(v) ≤ 1)

Finally, by Claim A.9,

ηi+1(v) ≤ λi(v) · b̂i(v) + (1− λi(v)) · 2βideal
i+1 + 2ε · βideal

i+1

≤ λi(v) ·
(
colori · keepi · bi(v) + 8ε · colori · keepi · bmax

i

)
+ (1− λi(v)) · 2βideal

i+1 + 2ε · βideal
i+1

(by Lemma A.5)

≤ λi(v) ·
(
colori · keepi · bi(v) + 16εβideal

i+1

)
+ (1− λi(v)) · 2βideal

i+1 + 2ε · βideal
i+1

(by Eq (13), bmax
i ≤ 2βideal

i and by definition of βideal
i+1 )

= colori · keepi
(
λi(v) · bi(v) + (1− λi(v)) · 2βideal

i

)
+ 18ε · βideal

i+1

(by definition of βideal
i+1 = colori · keepi · βideal

i in Eq (10))

= colori · keepi · ηi(v) + 18ε · βideal
i+1 . (by definition of ηi(v))

This finishes the proof of the lemma. Lemma A.8

Lemma A.3 now follows easily from this as follows.

Proof of Lemma A.3. For any vertex v and color c ∈ Ai(v), the events of Lemmas A.4 and A.5 are
only a function of random choices in the constant-hop neighborhood of v. Hence, each such event
depends on at most poly(d) other events. As such, by the bounds on the probability of success
in these two lemmas and Lovász Local Lemma (Proposition 2.1), we obtain that with positive
probability none of these events happen. We can thus apply Lemma A.8 to any vertex v ∈ Gi+1

and hence obtain that:

ηmax
i+1 ≤ colori · keepi · ηmax

i + 18ε · βideal
i+1

≤ colori · keepi · (1 + ε) · βideal
i + 18ε · βideal

i+1 (by Eq (13))

= (1 + ε) · βideal
i+1 + 18ε · βideal

i+1 (by definition of βideal
i+1 in Eq (10))

= βideal
i+1 + 19ε · βideal

i+1 ,

finishing the proof. Lemma A.3

A.3 Concluding the Proof of Proposition 3.2

We now show that by repeatedly applying Lemma A.3, we can reach the desired state whereby
size of the lists for remaining vertices is sufficiently larger than their c-degrees and thus apply
Proposition 2.5 to obtain the coloring of all remaining vertices in one shot.
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Proof of Proposition 3.2. We run the WastefulColoring procedure over iterations i ≤ i? (recall the
definition of i? from Lemma A.1). Let us define the following parameter εi recursively:

ε1 = d−δ/20 and εi+1 = (1 + 19εi).

It is easy to see that for i ≤ i?, all εi > d−δ/10 and since i? = O(log2 d), we also have εi = o(1).
As such, we can repeatedly apply Lemma A.3 with parameters εi and ηmax

i ≤ (1 + εi) · βideal
i to

with positive probability obtain ηmax
i+1 ≤ (1 + 19εi) · βideal

i+1 = (1 + εi+1) · βideal
i+1 . At iteration i?, by

Lemma A.1, we have that βideal
i? < αideal

i? /100. At this point, by Eq (13), we have,

amin
i? ≥ αideal

i? /2 · (1− εi?) > αi?/3 > 30βideal
i? ≥ 15 · bmax

i? .

We can now simply apply Proposition 2.5 and obtain a proper coloring of G. Proposition 3.2

B Background on the Palette Sparsification Theorem of [4]

Our main results are closely related to the palette sparsification theorem of Assadi, Chen, and
Khanna [4] and our Result 3 involves using components of this result in a non-black-box way. As
such, we give a brief high level overview of this result here, and state the main properties that we
use in our proofs. The palette sparsification theorem of [4] is as follows.

Proposition B.1 (Palette sparsification theorem of [4]). In any graph G(V,E) with n vertices and
maximum degree ∆, if we sample Θ(log n) colors L(v) for each vertex v ∈ V independently and
uniformly at random from colors {1, . . . ,∆ + 1}, then G can be properly colored from the sampled
lists L(v) for v ∈ V with high probability.

The proof of this result is carried out in three main steps in [4]: (i) introducing a proper
decomposition of every graph G into sparse and dense vertices, (ii) proving that sampled colors
are sufficient for coloring sparse vertices, and (iii) proving that after fixing the colors for sparse
vertices (even adversarially), the sampled colors are sufficient for coloring the dense vertices. We
shall note the idea of decomposing the graph into sparse and dense parts and analyzing each part
separately in the context of (∆ + 1) coloring has a long history in the graph theory literature
starting with the pioneering work of Reed [36]; see, e.g. [28, 30,31,38].

We now briefly describe each of the three components of the proof of Proposition B.1 in [4].

Graph Decomposition. For a parameter ε ∈ (0, 1), we say a vertex v ∈ V in a graph G(V,E)
is (∆, ε)-sparse iff there are at least ε2 ·

(
∆
2

)
non-edges in the neighborhood of v (when deg(v) < ∆,

we first append the neighborhood of v with ∆− deg(v) dummy vertices connected only to v). We
use V sparse

ε to denote the set of (∆, ε)-sparse vertices. The following decomposition proven in [4] is
an extension of the HSS decomposition of [19] (itself based on anearlier decomposition of [36]).

Lemma B.2 (Extended HSS Decomposition [4]). For any parameter ε ∈ [0, 1), any graph G(V,E)
can be partitioned into a collection of vertices V := V sparse

? t C1 t . . . t Ck such that:

1. V sparse
? ⊆ V sparse

ε , i.e., any vertex in V sparse
? is (∆, ε)-sparse.

2. For any i ∈ [k], Ci has the following properties (we refer to Ci as an (∆, ε)-almost-clique):

(a) (1− ε)∆ ≤ |Ci| ≤ (1 + 6ε)∆.

(b) Any v ∈ Ci has at most 7ε∆ neighbors outside of Ci.

(c) Any v ∈ Ci has at most 6ε∆ non-neighbors inside of Ci.
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The approach in [4] is then as follows. The authors first pick some small enough constant ε > 0
(say ε = 10−4 for concreteness). Let V sparse

? t C1 t . . . t Ck be a decomposition of the given graph
G(V,E) in Lemma B.2 for this parameter ε. The rest is to color V sparse

? and C1 ∪ . . .∪Ck from the
sampled colors in lists L using different arguments.

Coloring Sparse Vertices. The first (and the easy) part of the argument is to color sparse
vertices, ignoring entirely all the dense vertices. This is done using the following lemma.

Lemma B.3 ([4]). Suppose for every vertex v ∈ V sparse
ε , we sample a set L(v) of Θ(ε−2 · log n)

colors independently and uniformly at random from {1, . . . ,∆ + 1}. Then, with high probability,
the induced subgraph G[V sparse

ε ] can be properly colored from the sampled lists L(v) for v ∈ V sparse
ε .

This lemma is proven in [4] by “simulating” a simple greedy coloring procedure for coloring G
using by-now standard ideas from [13,15,19] (which are all rooted in [27] that proved that chromatic
number of any graph where all vertices are ε-sparse is at most (1−Θ(ε)) ·∆). Equipped with this
lemma, one can then color all vertices in V sparse

? ⊆ V sparse
ε in the decomposition using the sampled

lists in the palette sparsification theorem (recall that ε is a sufficiently small constant).

Coloring Almost-Cliques. The second (and the main) part of the argument in [4] is to color
almost-cliques, which is done using the following lemma.

For a vertex v in a (∆, ε)-almost-clique C, we define the out-degree of v in C, denoted by
out-degC(v) as the number of neighbors of v in G that are outside C. Recall that by definition of
a (∆, ε)-almost-clique, out-deg(v) ≤ 7ε∆.

Lemma B.4 ([4]). Let C be a (∆, ε)-almost-clique in G. Suppose for every v ∈ C, we adversarially

pick a set S(v) of size ≤ out-degC(v) colors from {1, . . . ,∆ + 1}. Now, if for every vertex v ∈ V ,
we sample a set L(v) of Θ(ε−1 · log n) colors independently from {1, . . . ,∆ + 1}, then, with high
probability, the induced subgraph G[C] can be properly colored from the lists L(v) \ S(v) for v ∈ C.

Lemma B.4 is the heart of the argument in [4]. It states that the no matter how we color the
remainder of the graph, there is “enough” randomness in the lists of almost-cliques so that we can
(with high probability) find a coloring of each almost-clique to extend to the previous coloring. As
such, we can simply go over the almost-cliques one by one and color each almost-clique C using
Lemma B.4 as follows: As every vertex v ∈ C has at most out-degC(v) ≤ 7ε∆ neighbors outside C
(by definition of (∆, ε)-almost-cliques in Lemma B.2), we pick the colors used for these neighbors
in the set S(v) and then invoke Lemma B.4 to color C with high probability. We iterate like this
until we find a proper coloring of G. This concludes the high level approach of the proof in [4].

C Proofs of Basic Random Graph Theory Results

Lemma (Restatement of Lemma 3.4). For G ∼ Gn,p, E [t(G)] ≤ (np)3, and w.h.p.

t(G) ≤ (1 + o(1))E [t(G)] .

Proof. E [t(G)] ≤
∑

u,v,w P ((u, v), (v, w), (w, u) belongs to G) =
(
n
3

)
· p3 ≤ (np)3. The high proba-

bility result can be proven in several ways and is well known, see, for example, [18].

Lemma (Restatement of Lemma 3.5). For G ∼ Gn,p, E [α(G)] ≤ 3·ln (np)
p , and w.h.p.

α(G) ≤ 3 · ln (np)

p
.
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Proof. Fix any set S of k := 3·ln (np)
p vertices in G. We have,

P (S is an independent set) = (1− p)(
k
2) ≤ exp

(
−p ·

(
k

2

))
≤ exp

(
−4

p
· ln2 (np)

)
.

On the other hand, the total number of choices for S is:

#of k-subsets of V =

(
n

k

)
≤
(e · n

k

)k
≤ exp

(
k · ln (

n

k
) + k

)
≤ exp

(
3

p
· ln2 (np)

)
.

Taking a union bound over all k-subsets S, we obtain that w.h.p, none of the subsets can be an
independent set. This implies α(G) < k with high probability and α(G) ≤ k in expectation.

We note that the constant 3 above can be easily reduced to 2 + o(1) but this is not needed here.

Lemma (Restatement of Lemma 3.6). For G ∼ Gn,p, w.h.p. ∆(G) ≤ 2np.

Proof. A direct application of Chernoff bound and union bound.
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