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Abstract

By using the probabilistic method, we show that the maximum number of di-
rected Hamiltonian paths in a complete directed graph with n vertices is at least
(e− o(1)) n!

2n−1 .

1 Introduction

A tournament T is an oriented complete graph. A Hamiltonian path in T is a spanning
directed path in it. Let P (T ) denote the number of Hamiltonian paths in T . For n ≥ 2,
define P (n) = maxP (T ), where T ranges over all tournaments T on n vertices. More
than 50 years ago, Szele [5] showed that

P (n) ≥ n!

2n−1
(1)

His proof is considered to be the first application of the probabilistic method in combina-
torics, and is thus mentioned in the beginning of most books and survey-articles on this
method.
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The proof of (1) is very simple. Given a complete graph on n vertices, orient every
edge independently with equal probability for each of the possible 2 orientations. Given
a permutation of the vertices, it is clear that the probability that the permutation forms
a Hamiltonian path is 1

2n−1 . Hence, the expected number of Hamiltonian paths, which
cannot exceed P (n), is n!

2n−1 .
In this note we improve this bound by a factor of e− o(1), as stated in the following

theorem.

Theorem 1

P (n) ≥ (e− o(1))
n!

2n−1
,

where the o(1) term tends to 0 as n tends to infinity.

Like the proof of (1), our result is based on calculating the expected number of Hamil-
tonian paths in randomly generated tournaments. However, in order to increase the ex-
pected number of Hamiltonian paths, we use a scheme in which the edges along triangles
are oriented together.

Let T be a collection of t pairwise edge-disjoint triangles in the complete graph Kn,
and let Tn be the random tournament obtained by orienting each member (i, j, k) of
T , randomly and independently, either (i, j), (j, k), (k, i) or (i, k), (k, j), (j, i) with equal
probability, and by orienting each edge not in any member of T randomly.

For a permutation s = (i1, i2, . . . , in) of the vertices of Tn, and for a triangleR = (i, j, k)
in T , we say that R is present in s if the three vertices of R appear in three consecutive
places of s. Let X(s) denote the number of triangles in T which are present in s. The
crucial point is the observation that the probability that s is a directed Hamiltonian
path in our random tournament Tn is precisely 2X(s)

2n−1 . That is, if X(s) = 0 then the
probability that s is a directed Hamiltonian path is precisely what it is in the usual random
tournament, whereas in any other case it is strictly bigger. Therefore, the expected
number of such paths in Tn is

∑
s∈Sn

2X(s)

2n−1
=

n!

2n−1
E[2X(s)], (2)

where E[2X(s)] denotes the expected value of the random variable 2X(s) and s is a randomly
chosen permutation of Sn.

2 The distribution of X(s)

Using the previous notation suppose, now, that |T | ≥ n2

6
− O(n), and let us estimate

the quantity (2) for large n. To do so, we show that X has an (approximately) Poisson
distribution with mean 1 for large n.
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Proposition 2 For every C > 0, every integer p ≥ 0 and every ε > 0, there is an
n0 = n0(C, p, ε) such that if n ≥ n0, T is a collection of t ≥ n2

6
− Cn pairwise edge-

disjoint triangles in Kn, and if X = X(s) is the random variable counting the number of
members of T present in s, then

|Pr[X = p]− 1

ep!
| < ε.

Proof. We apply Brun’s sieve in the form described, for example, in [2], Chapter 8. To
do so, assign to each triangle R ∈ T an indicator random variable XR, where XR = 1 if
and only if R is present in s. Let BR be the event XR = 1. Then X =

∑
R∈T XR is the

number of triangles present in s.
Denote

S(r) =
∑

Pr[BR1 ∧BR2 ∧ . . . BRr ],

where the sum ranges over all subsets {R1, R2, . . . , Rr} of cardinality r of T . By Brun’s
method it suffices to show that if t ≥ n2

6
−Cn and n is sufficiently large (as a function of

C, r, ε) then

| S(r) − 1

r!
| ≤ ε. (3)

Fix a collection {R1, R2, . . . , Rr} of r distinct triangles in T . If there is no vertex that lies
in more than one member of the collection, then the number of permutations in which all
Ri are present is precisely 6r(n− 2r)!.

It is not too difficult to check that in every other case, the number of permutations in
which all Ri are present is smaller. Therefore, since clearly t ≤ n(n− 1)/6 ≤ n2/6,

S(r) ≤
(
t

r

)
6r(n− 2r)!

n!
≤ n2r

6rr!

6r

n(n− 1)(n− 2) . . . (n− 2r + 1)
≤ (1 +O(

1

n
))

1

r!
.

On the other hand, since |T | = t ≥ n2

6
−Cn, and since there are at most (n− 1)/2 < n/2

members of T containing any given vertex, there are at least

t(t− 3n/2)(t− 6n/2) . . . (t− 3(r − 1)n/2)

r!
≥ (1−O(

1

n
))
tr

r!

collections consisting of r members of T with no vertex in more than one of them. This
implies that

S(r) ≥ (1−O(
1

n
))
tr

r!

6r(n− 2r)!

n!
= (1−O(

1

n
))

1

r!
.

This completes the proof of (3) and hence implies the assertion of the proposition.
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Corollary 3 For every C > 0 and δ > 0 there is an n0 = n0(δ, C) such that for every
n > n0 and every collection T of t ≥ n2

6
− Cn pairwise edge-disjoint triangles in Kn, the

random variable X(s) defined in Section 1 satisfies

E[2X(s)] ≥ e− δ.

Proof. Since
∞∑
p=0

2p

ep!
=
e2

e
= e,

there is some fixed r = r(δ) such that

r∑
p=0

2p

ep!
≥ e− δ

2
.

By Proposition 2, if n ≥ n0(δ, C, r) then

Pr[X = p] >
1

ep!
− δ

2(r + 1)2p

for all p ≤ r. Therefore, for such an n,

E[2X(s)] >
r∑
p=0

(
1

ep!
− δ

2(r + 1)2p
)2p =

r∑
p=0

2p

ep!
−

r∑
p=0

δ

2(r + 1)
≥ e− δ

2
− δ

2
= e− δ.

This completes the proof.

Proof of Theorem 1. The known results about the existence of Steiner Triple Systems,
or the result in [4], imply that for every n there is a collection of t ≥ n2

6
− O(n) pairwise

edge-disjoint triangles in Kn. Therefore, by Corollary 3 the quantity in (2) is at least
(e− o(1)) n!

2n−1 , where the o(1)-term tends to 0 as n tends to infinity.

3 Remarks

1. It is possible to obtain a lower bound for P (n) for n ≥ 3 by modifying the random-
ization scheme of Section 1 as follows. Let T be as before, and let P be a collection
of p pairwise edge-disjoint pairs of connected edges in Kn where no edge lies in P
and in T . Orient each member of T in a random cyclic orientation, as before, and
each member (i, j, k) (with j as the joint vertex) of P , randomly and independently,
either (i, j), (j, k) or (k, j), (j, i) with equal probability.

For a permutation s = (i1, i2, . . . , in) of the vertices of Tn, and for a member (i, j, k)
in P , we say that it is present in s if either (i, j, k) or (k, j, i) appear in three
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consecutive places of s (in one of these two orders). Let Y (s) denote the number
of members in P which are present in s. Then the probability that s is a directed
Hamiltonian path in the random tournament Tn is precisely 2X(s)+Y (s)

2n−1 . Therefore,
the expected number of such paths in Tn is

∑
s∈Sn

2X(s)+Y (s)

2n−1
=

n!

2n−1
E[2X(s)+Y (s)] ≥ n!

2n−1
(1 + E[X(s) + Y (s)]), (4)

where the preceeding inequality is due to the fact that X(s), Y (s) are nonnegative
integers and hence 2X(s)+Y (s) ≥ 1 +X(s) + Y (s) for every s.

Since each member of T is present in 6(n − 2)! permutations and each member
of P is present in 2(n − 2)!, we get that E[2X(s)+Y (s)] ≥ n!

2n−1 (1 + 6t+2p
n(n−1)

). Thus,

considering (4) we have,

P (n) ≥ n!

2n−1
(1 +

6t+ 2p

n(n− 1)
). (5)

It was established in [4] that it is possible to pack in Kn ψ(n) pairwise edge-disjoint
triangles where

ψ(n) =

{
bn

3
bn−1

2
cc for n 6= 5 (mod 6)

bn
3
bn−1

2
cc − 1 for n = 5 (mod 6)

It is also possible to pair some of the remaining edges to construct P with p(n) pairs.
By examining the proof in [4] it is not difficult to check that the best possible value
of p(n) given that we have already packed ψ(n) edge disjoint triangles is p(n) = 2
for n = 5 mod 6, p(n) = 1 for n = 4 mod 6 and p(n) = 0 otherwise.

With these values of ψ(n) and p(n) our arguments thus give the following estimate
for P (n):

P (n) ≥ n!

2n−1
(1 +

6ψ(n) + 2p(n)

n(n− 1)
). (6)

This can be used to derive some lower bounds for P (n) which improve the estimate
in (1) already for small values of n.

2. A Hamiltonian cycle in a tournament T is a spanning directed cycle in T . Applying
Szele’s [5] probability method to C(n), the maximum number of directed Hamilto-

nian cycles in a tournament with n vertices, it is easy to show that C(n) ≥ (n−1)!
2n

. It
is also straightforward to apply our randomization scheme and analysis to improve
the lower bound for C(n) by a factor of about e. Simpler yet, is to apply a result in

[1] which states that C(n + 1) ≥ P (n)
4

and derive this improvement from Theorem
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1. The arguments above that yield (6), modified to deal with cycles, imply that for
every n > 2

C(n) ≥ (n− 1)!

2n
(1 +

6ψ(n) + 2p(n)

(n− 1)(n− 2)
).

3. In his 1943 paper, Szele showed that P (n) ≤ O( n!
23n/4 ) and conjectured that the

limit, as n tends to infinity, of (P (n)/n!)1/n is 1/2. This is proved in [1], where it is
shown that P (n) ≤ O(n3/2 n!

2n
) by applying some known results about permanents

of 0, 1-matrices. Friedgut and Kahn [3] have recently found a clever refinement of
the method of [1] and improved this upper bound by a factor of n1/16 . It would be
interesting to decide if P (n) = Θ( n!

2n
).
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