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Abstract

We discuss scheduling problems with m identical machines and n jobs where each job
has to be assigned to some machine. The goal is to optimize objective functions that
solely depend on the machine completion times.

As a main result, we identify some conditions on the objective function, under which
the resulting scheduling problems possess a polynomial time approximation scheme. Our
result contains, generalizes, improves, simplifies, and unifies many other results in this
area in a natural way.

Keywords: Scheduling theory, approximation algorithm, approximation scheme, worst
case ratio, combinatorial optimization.

1 Introduction

In this paper we consider scheduling problems with m identical machines Mi, 1 ≤ i ≤ m,
and n independent jobs Jj , 1 ≤ j ≤ n, where job Jj has processing time (or length) pj . A
schedule is an assignment of the n jobs to the m machines. For 1 ≤ i ≤ m, the completion
time Ci of machine Mi in some fixed schedule equals the total processing time of the jobs
that are assigned to Mi. The goal is to find a schedule that optimizes an objective function
that solely depends on the machine completion times. More precisely, for a fixed function
f : IR+

0 → IR+
0 , we consider the problems of

(I). minimizing the objective function
∑m
i=1 f(Ci),

(II). minimizing the objective function maxmi=1 f(Ci).

In the standard scheduling notation of Lawler, Lenstra, Rinnooy Kan and Shmoys [13], these
problems are denoted by P | · |

∑
f(Ci) and by P | · |max f(Ci), respectively. Moreover, we

will deal with maximization problems that are dual to the problems (I) and (II) i.e. with the
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problem (I’) of maximizing the objective function
∑m
i=1 f(Ci) and with the problem (II’) of

maximizing minmi=1 f(Ci).
Apparently, all non-trivial scheduling problems of the forms (I), (II), (I’), and (II’) are

NP-complete in the strong sense. Hence, research focused on obtaining polynomial time
approximation algorithms for this problem, i.e. fast algorithms which construct schedules
whose objective function value is not too far away from the optimum value. We say that an
approximation algorithm for a minimization problem has performance ratio or performance
guarantee ρ for some real ρ ≥ 1, if it always delivers a solution with objective function
value at most ρ times the optimum value. Such an approximation algorithm is then called
a ρ-approximation algorithm. A family of polynomial time (1 + ε)-approximation algorithms
over all ε > 0 is called a polynomial time approximation scheme or PTAS, for short. For
maximization problems, ρ-approximation algorithms with ρ ≤ 1 are defined in a symmetric
way. Moreover, a PTAS for a maximization problem is a family of polynomial time (1− ε)-
approximation algorithms over all ε > 0.

1.1 Four examples

Let us give four illustrating examples for scheduling problems with objective functions of the
type (I), (II), (I’), and (II’):

Example 1. Minimizing the maximum machine completion time, i.e. problem (II) with
f(x) = x. This definitely is the most classical scheduling problem on parallel machines.
Already in the 1960s, Graham [10, 11] analyzed the worst case behavior of variants of the
greedy-algorithm for this problem: List Scheduling (LS, for short) starts with an arbitrarily
ordered list of jobs and repeatedly assigns the next job in the list to a machine with currently
smallest load. The Longest Processing Time rule (LPT, for short) first sorts the jobs by non-
increasing processing time and then behaves like LS. Graham proved that LS has performance
guarantee 2 and that LPT has performance guarantee 4/3. Sahni [16] constructed a PTAS
for the case where the number of machines is not part of the input. Finally, Hochbaum and
Shmoys [12] completely settled the approximability status of this problem by constructing a
PTAS for the most general case with an arbitrary number of machines.

Example 2. Minimizing the sum of squares of the machine completion times, i.e. problem
(I) with f(x) = x2. This problem arises e.g. when placing a set of records on a sectored drum
so as to minimize the average latency time (Cody and Coffman [4]) and in other storage
allocation problems (Chandra and Wong [3]). Chandra and Wong [3] analyzed the LPT
rule for this problem and proved a performance guarantee of 25/24; this result was slightly
improved by Leung and Wei [15]. Avidor, Azar and Sgall [2] showed that LS has performance
guarantee 4/3.

A more general problem is to minimize the sum of the p-th powers of the machine comple-
tion times, i.e. problem (I) with f(x) = xp. Note that this problem is equivalent to minimizing
the Lp-norm of the vector (C1, . . . , Cm), i.e. to minimize (

∑m
i=1C

p
i )1/p. Chandra and Wong

[3] showed that for every fixed p ≥ 1, the LPT rule achieves a constant performance ratio
whose value depends on p and may be as large as 3/2. Alon, Azar, Woeginger, and Yadid [1]
finally exhibited a PTAS for every fixed p ≥ 1. Their approach exploits the equivalence with
the minimization of the Lp-norm and relies heavily on the triangle inequality.

Example 3. Scheduling machines with extensible working times, i.e. problem (I) with
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f(x) = max{1, x}. This problem arises e.g. in systems with m workers who have regular
working times of one time unit and who may make (if needed) extra-paid overtime work.
The goal is to assign duties to the workers so as to minimize the total cost, i.e. the fixed
cost for regular working times plus the extra cost for overtime work. Dell’Olmo, Kellerer,
Speranza, and Tuza [6] showed that the LPT rule has a performance guarantee of 13/11. A
straightforward modification of the Hochbaum and Shmoys [12] approach yields a PTAS for
this problem.

Example 4. Maximizing the minimum machine completion time, i.e. problem (II’) with
f(x) = x. This problem has applications in the sequencing of maintenance actions for
modular gas turbine aircraft engines, see Friesen and Deuermeyer [8]. Deuermeyer, Friesen
and Langston [7] showed that the LPT rule has a performance guarantee of 3/4; Csirik,
Kellerer and Woeginger [5] tightened this analysis. Finally, Woeginger [17] gave a PTAS for
this problem.

1.2 Results of this paper

We identify some conditions on functions f for which the corresponding scheduling problems
(I), (II), (I’), and (II’) possess a polynomial time approximation scheme. Function f : IR+

0 →
IR+

0 is convex if and only if f(x+ ∆) + f(y −∆) ≤ f(x) + f(y) holds for all 0 ≤ x ≤ y with
0 ≤ ∆ ≤ y − x. Function f is concave if and only if f(x + ∆) + f(y − ∆) ≥ f(x) + f(y)
holds for all 0 ≤ x ≤ y with 0 ≤ ∆ ≤ y − x. The following condition (F∗) will be essential
throughout the paper.

(F∗): For all ε > 0 there exists a δ > 0 whose value depends only on ε, such that:

∀x, y ≥ 0, (1− δ)x ≤ y ≤ (1 + δ)x =⇒ (1−ε)f(x) ≤ f(y) ≤ (1+ε)f(x)

Now our main result on problems (I) and (II) is stated as follows.

Theorem 1.1 For every non-negative and convex function f that fulfills condition (F∗),
the scheduling problem of minimizing

∑
f(Ci) and the scheduling problem of minimizing

max f(Ci) both possess polynomial time approximation schemes. The running time of these
PTAS is O(n), where the hidden constant depends exponentially on the reciprocal value of the
desired precision.

Note that the time complexity of this PTAS is essentially best possible for strongly NP-
complete scheduling problems: Clearly, one cannot do better than linear in the number of
jobs. Moreover, the existence of a PTAS whose running time is also polynomial in the
reciprocal value of the precision for a strongly NP-complete problem would imply P = NP ;
cf. page 141 of Garey and Johnson [9].

An argument that is completely symmetric to the proof of Theorem 1.1 will yield a
corresponding theorem for the maximization problems (I’) and (II’).

Theorem 1.2 For every non-negative concave function f that fulfills condition (F∗), the
scheduling problem of maximizing

∑
f(Ci) and the scheduling problem of maximizing

min f(Ci) both possess a polynomial time approximation scheme with linear running time.
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The reader may want to verify that the functions f(x) = x, f(x) = xp, and f(x) = max{1, x}
as introduced in Examples 1–3 above are convex and satisfies condition (F∗), and that the
function f(x) = x in Example 4 is concave and fulfills condition (F∗). Hence, our Theo-
rems 1.1 and 1.2 immediately imply the existence of a PTAS for the scheduling problems in
Examples 1–4.

Our approximation scheme generalizes the schemes of Sahni [16] and of Hochbaum and
Shmoys [12], and in fact it strongly builds on their ideas. However, there are several differences
where a major one is dealing with so-called small jobs, i.e. jobs whose processing times are
smaller than a certain data-dependent threshold. The algorithms in [16, 12] first remove these
small jobs, then solve the remaining problem to get an intermediate auxiliary schedule, and
at last greedily add the small jobs to the intermediate schedule. A similar approach provably
does not help in proving Theorems 1.1 and 1.2 (see Example 3.1 in Section 3). Instead, we
will find a way of merging the small jobs into packages of reasonable size and then work on
with these packages.

Organization of the paper. In Section 2 we construct a polynomial time approximation
scheme for scheduling problems (I) where the non-negative, convex function f fulfills property
(F∗). Section 3 shows how to extend these results to scheduling problems (II), (I’), and (II’).
Section 4 discusses property (F∗), and it investigates the relationship between the existence
of a PTAS and the worst case behavior of the LPT rule. Finally, Section 5 contains the
conclusion.

2 A Generic Polynomial Time Approximation Scheme

Throughout this section, we will deal with an instance I with m machines, n jobs with job pro-
cessing times p1, . . . , pn, and the objective of minimizing

∑m
i=1 f(Ci) where the non-negative

convex function f satisfies (F∗). Our first goal will be to prove some simple combinatorial
observations. Let

L =
1
m

n∑
j=1

pj (1)

denote the average load of the m machines.

Observation 2.1 If a job Jj has length pj ≥ L, then there exists an optimum schedule in
which job Jj is the only job assigned to its machine.

Proof. Suppose that in some optimum schedule, job Jj is assigned together with some other
jobs to machine M1. Then the completion time C1 of machine M1 fulfills C1 = pj + ∆ with
∆ > 0. Moreover, there exists a machine, say M2, whose completion time C2 is strictly less
than L. But now since ∆ ≤ C2 − C1 then

f(C1) + f(C2) ≥ f(C1 −∆) + f(C2 + ∆) (2)

holds by the convexity of the function f . Hence, moving all jobs except Jj from M1 to M2

cannot increase the objective function.
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With the help of Observation 2.1 we may iteratively assign the very large jobs whose
length is ≥ L: While there is a job whose length is larger than the current average load, we
assign this job to a machine and remove both the job and the machine from the setting. Note
that in doing this, both the optimal algorithm and the iterative process assign the large jobs
to separate machines. Thus, we may assume without loss of generality that in the end no job
has length larger than the average load. More specifically, from a given PTAS for the case
where none of the jobs has length larger than the average, we can generate a PTAS for the
general case, by assigning the large jobs to separate machines and applying the PTAS on the
remaining jobs and machines.

Hence, from now on we may (and will) assume that no job has processing time greater or
equal to L.

Observation 2.2 If no job has processing time greater or equal to L, then there exists an
optimum schedule in which all machine completion times Ci, 1 ≤ i ≤ m, fulfill 1

2L < Ci < 2L.

Proof. Among all optimum schedules, consider a schedule that minimizes the auxiliary
function

∑m
i=1C

2
i . We claim that in this optimum schedule 1

2L < Ci < 2L holds for all
machine completion times.

First suppose that Ci ≥ 2L holds for some machine Mi. Similarly as in the proof of
Observation 2.1, moving an arbitrary job from Mi to the machine with smallest completion
time cannot increase the convex objective function, but does decrease the auxiliary function;
a contradiction. Next suppose that Ci ≤ 1

2L holds for some machine Mi. Consider another
machine Mj with Cj > L. In case Mj processes some job whose processing time is smaller
than Cj − Ci, then moving this job from Mj to Mi decreases

∑m
i=1C

2
i but does not increase

the convex objective function; another contradiction. Otherwise, Mj must process at least
two jobs with processing times ≥ Cj − Ci > Ci. Swapping one of these jobs with the set of
jobs processed on Mi again decreases

∑m
i=1C

2
i and does not increase the objective function;

this is the final contradiction.

2.1 The transformed instance

In this section, we introduce a so-called transformed instance that is a kind of rounded version
of the original instance I, and that can easily be solved in polynomial time. Indeed, let λ be
some fixed positive integer λ. Then the transformed instance I#(λ) of scheduling instance I
is defined as follows:

• For every job Jj in I with pj > L/λ, instance I#(λ) contains a corresponding job J#
j

whose processing time p#
j equals pj rounded up to the next integer multiple of L/λ2.

Note that for the rounded processing time pj ≤ p#
j ≤ (λ+ 1)pj/λ holds.

• Let S denote the total processing time of the jobs in I whose processing times are not
greater than L/λ, and let S# denote the value of S rounded up to the next integer
multiple of L/λ. Then instance I#(λ) contains S#λ/L new jobs, each of length L/λ.
Clearly, the total number of jobs cannot increase and hence is bounded by n.

• The number of machines remains the same as in instance I.
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Note that in instance I#(λ), the processing times of all jobs are integer multiples of L/λ2.
Let L# = 1

m

∑n
j=1 p

#
j denote the average load of the machines in the transformed instance.

By construction,

L ≤ L# . (3)

Since in I all jobs had lengths smaller than L (and since L is an integer multiple of L/λ2),
by the construction also all jobs in I#(λ) have lengths smaller than L. From now on, jobs
(in instance I and in instance I#(λ)) with processing times > L/λ will be called big jobs,
and jobs with processing times ≤ L/λ will be called small jobs.

Observation 2.3 In I#(λ), no job has processing time greater or equal to L#. There exists
an optimum schedule in which all machine completion times fulfill 1

2L
# < C#

i < 2L#.

We now show two alternative methods to find an optimal solution for instance I#(λ) in
polynomial time. The first method (cf. Theorem 2.4) is based on simple dynamic program-
ming and is fairly easy to implement. Its time complexity is a polynomial whose exponent
depends on λ. The second method (cf. Theorem 2.5) is a more efficient but also more complex
algorithm which is based on integer linear programming in a fixed dimension [14].

First, observe that all jobs in I#(λ) have processing times of the form kL/λ2 with λ ≤
k ≤ λ2. We use the following notation to represent the input and the assignments of jobs to
machines: The input jobs are represented as a vector ~n = (nλ, . . . , nλ2), where nk denotes
the number of jobs whose processing time equals kL/λ2. Notice that n =

∑λ2

k=λ nk. An
assignment to a machine is a vector ~u = (uλ, . . . , uλ2), where uk is the number of jobs
of length kL/λ2 assigned to that machine. The length of assignment ~u, denoted C(~u), is∑λ2

k=λ uk · kL/λ2. Denote by U the set of all assignment vectors ~u with 1
2L

# < C(~u) < 2L#.
It is easy to see that each assignment ~u ∈ U consists of at most 2λ jobs and that therefore
|U | ≤ λ4λ holds. By Observation 2.3, when searching for an optimum schedule we only need
to consider assignment vectors in U .

First we describe the dynamic programming approach. Let V be the set of vectors cor-
responding to subsets of the input, i.e. V = {~v : ~0 ≤ ~v ≤ ~n}. For every ~v ∈ V and for every
i, 0 ≤ i ≤ m, we denote by Val(i, ~v) the total cost of the optimum assignment of the jobs
in ~v to i machines that only uses assignments from U ; in case no such assignment exists,
Val(i, ~v) = +∞. It is easy to see that Val(·, ·) satisfies the following recurrence:

Val(0,~0) = 0
Val(1, ~v) = f(C(~v)) if ~v ∈ U
Val(1, ~v) = +∞ if ~v 6∈ U

and for i ≥ 2

Val(i, ~v) = min
~v≥~u∈U

{f(C(~u)) + Val(i− 1, ~v − ~u)}

For computing the value of a pair (i, ~v), we need to look at no more than |U | possible
assignments, and for each such assignment we do a constant amount of work. Thus, the
total running time of the resulting dynamic programming algorithm is O(m · |V | · |U |). Since
|V | =

∏r
k=1(nk + 1) ≤ nλ2

, we have proved the following theorem.
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Theorem 2.4 For any constant λ ≥ 1, an optimal solution for the instance I#(λ) of problem
P | · |

∑
f(Ci) can be computed in polynomial time O(mnλ

2
).

The second method to solve instance I#(λ) is by using integer linear programming (ILP)
with a fixed number of variables (cf. Lenstra [14]). As before, U is the set of possible
assignments to a machine. For each vector ~u ∈ U , denote by x~u the numbers of machines that
were assigned ~u. In these terms, a feasible solution to the problem is a non-negative integer
vector ~X such that

∑
~u∈U x~u = m, (i.e. m machines are used) and such that

∑
~u∈U x~u · ~u = ~n

(i.e. all jobs were assigned). An optimum solution is given by the following integer system:

min
∑
~u∈U

x~u · f(C(~u))

subject to∑
~u∈U

x~u = m

∑
~u∈U

x~u · ~u = ~n

x~u ≥ 0 ∀ ~u ∈ U

Notice that the dimension of this integer linear program is |U | ≤ λ4λ and that the number of
constraints is |U |+ λ2− λ+ 2, i.e. two constants that do not depend on the input. The time
complexity of Lenstra’s algorithm [14] is exponential in the dimension of the program but
polynomial in the logarithms of the coefficients. Therefore, its running time is O(logO(1) n)
where the hidden constant depends exponentially on λ. Since the program (ILP) can be
constructed in O(n) time, we arrive at the following theorem.

Theorem 2.5 For any constant λ ≥ 1, an optimal solution for the instance I#(λ) of problem
P | · |

∑
f(Ci) can be computed in time O(n).

2.2 Transformed instance versus original instance

In this section, we study the relationships between schedules for instance I and schedules for
instance I#(λ).

Lemma 2.6 Let Σ be a schedule for instance I with machine completion times Ci, where
1
2L < Ci < 2L. Then there exists a schedule Σ# for instance I#(λ) with machine completion
times C#

i , where

Ci −
1
λ
L ≤ C#

i ≤ λ+ 1
λ

Ci +
1
λ
L (4)

Proof. In schedule Σ, replace every big job Jj by its corresponding job J#
j in I#(λ). This

may increase some machine completion times by a factor of at most (λ + 1)/λ, but it never
can decrease a machine completion time. Next, rearrange on every machine Mi the jobs in
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such a way that the small jobs are processed in the end, and let si denote their total size.
Clearly,

∑m
i=1 si = S. There exist integer multiples s#

i of L/λ for 1 ≤ i ≤ m, such that

|si − s#
i | ≤ L/λ and

m∑
i=1

s#
i = S#. (5)

Removing the small jobs from the current schedule and putting s#
i λ/L jobs of length L/λ

instead of them on machine Mi yields the desired schedule Σ#.

Lemma 2.7 Let Σ# be a schedule for instance I#(λ) with machine completion times C#
i ,

where 1
2L

# < C#
i < 2L#. Then there exists a schedule Σ for instance I with machine

completion times Ci where

λ

λ+ 1
C#
i −

2
λ
L ≤ Ci ≤ C#

i +
1
λ
L. (6)

Moreover, such a schedule Σ can be computed in O(n) time.

Proof. In schedule Σ#, replace every big job J#
j by its corresponding job Jj in I. This

cannot increase the machine completion times; any machine completion time that is decreased
is decreased by at most a factor of λ/(λ + 1). Next, let s#

i denote the number of jobs of
length L/λ that are processed on machine Mi in schedule Σ#; rearrange on every machine
the jobs in such a way that these small jobs are processed in the end. Below, we will show
how to partition the small jobs in instance I into m parts S∗1 , . . . , S

∗
m such that the total size

of the jobs in part S∗i is between (s#
i − 2)L/λ and (s#

i + 1)L/λ. Then replacing on every
machine Mi the s#

i jobs of length L/λ by the small jobs in S∗i yields the desired schedule
that fulfills inequality (6).

In order to construct the partition S∗1 , . . . , S
∗
m, one proceeds as follows. In the first

partitioning step, greedily assign to every set S∗i a number of small jobs from I until the total
size of assigned jobs exceeds (s#

i − 2)L/λ. Note that the total size of jobs assigned to S∗i is
bounded by (s#

i − 1)L/λ. Since

m∑
i=1

(s#
i − 1)L/λ ≤ S# −mL/λ ≤ S, (7)

one can complete the first partitioning step without running out of jobs. In the second
partitioning step, greedily add the remaining small jobs to the sets S∗i , but without letting
the total size assigned to S∗i exceed (s#

i + 1)L/λ. It can be easily shown that indeed all small
jobs are assigned in the second partitioning step.

2.3 The approximation scheme

Finally, we will put everything together and derive the desired PTAS. Consider some fixed
real number ε, 0 < ε < 1. Let δ > 0 be a real number that fulfills

f(y) ≤ (1 +
ε

3
)f(x) for all x, y ≥ 0 with (1− δ)x ≤ y ≤ (1 + δ)x. (8)
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Note that by condition (F∗) such a δ always exists. Define a positive integer λ∗ := d5/δe. For
a given instance I of P | · |

∑
f(Ci), the approximation scheme performs the following three

Steps (S-1) through (S-3).

(S-1) Compute the instance I#(λ∗) from I.

(S-2) Solve instance I#(λ∗) to optimality; call the resulting schedule Σ#.

(S-3) Transform schedule Σ# into a schedule Σ for the original instance I as de-
scribed in the proof of Lemma 2.7.

It is straightforward to perform Step (S-1) in linear time. By Theorem 2.5 and by Lemma 2.7,
also Steps (S-2) and (S-3) can be implemented in O(n) time.

Now let Opt denote the value of the objective function in the optimum schedule of I, let
Opt

# denote the value of the objective function for the optimum schedule of I#(λ∗), and let
Approx denote the value of the objective function of the schedule for I that is computed in
Step (3). First, we claim that

Opt
# ≤ (1 +

ε

3
)Opt (9)

holds: Indeed, by Observation 2.2, there exists an optimum schedule for I whose machine
completion times Ci fulfill 1

2L < Ci < 2L. Then by Lemma 2.6, there exists a schedule for
I#(λ∗) with machine completion times C#

i such that

|Ci − C#
i | ≤

1
λ∗
Ci +

1
λ∗
L ≤ 3

λ∗
Ci ≤ δCi. (10)

By (8), f(C#
i ) ≤ (1 + ε

3)f(Ci). Summing up this inequality over all machines, one gets that
the objective value of the schedule for I#(λ∗) in Lemma 2.6 is at most (1 + ε

3)Opt. This
implies the correctness of (9).

Next, we claim that

Approx ≤ (1 +
ε

3
)Opt

#. (11)

Indeed, by Observation 2.3, there exists an optimum schedule for I#(λ∗) whose machine
completion times C#

i fulfill 1
2L

# < C#
i < 2L#. Then by Lemma 2.7, there exists a schedule

for the original instance I with machine completion times Ci such that

|Ci − C#
i | ≤

1
λ∗ + 1

C#
i +

2
λ∗
L ≤ 1

λ∗
C#
i +

2
λ∗
L# ≤ 5

λ∗
C#
i ≤ δC#

i . (12)

Similarly as above, inequality (8) now yields the correctness of (11). Finally, combining
inequalities (9) and (11) yields that

Approx ≤ (1 +
ε

3
)2 ·Opt ≤ (1 + ε)Opt. (13)

Summarizing, the procedure (S-1) through (S-3) finds in polynomial time a schedule for I
whose objective value is at most a factor of (1 + ε) away from the optimum. This completes
the proof of Theorem 1.1 for problem P | · |

∑
f(Ci).
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3 Discussion of the PTAS

In this section, we explain how to carry over the PTAS in Section 2 from problem (I) to
problems (II), (I’) and (II’).

First let us take a look at problem (II), i.e. minimizing maxmi=1 f(Ci). It is easy to see
that an analogous statement as in Observation 2.2 still holds true for problem (II), i.e. there
is an optimum schedule in which all Ci are between 1

2L and 2L. The transformed instance is
formulated as in Section 2.1 and solved in O(n) time similarly as in Theorem 2.5. The only
difference is that one has to use a slightly different objective function in the integer linear
program (ILP):

min z

subject to∑
~u∈U

x~u = m

∑
~u∈U

x~u · ~u = ~n

x~u ≤ m · y~u

z ≥ y~u · f(C(~u))

0 ≤ x~u, x~u integer ∀ ~u ∈ U

y~u ∈ {0, 1} ∀ ~u ∈ U

The 0-1 variables y~u indicate whether the assignment ~u is used (y~u = 1) or not (y~u = 0).
In case the assignment ~u is used, then the term y~u · f(C(~u)) contributes to the objective
function. Finally, the arguments in Section 2.3 can be used to show that Steps (S-1)–(S-3)
yield a (1 + ε)-approximation algorithm.

For the maximization problems (I’) and (II’), again a statement as in Observation 2.2 holds
true, i.e. there always is an optimum schedule in which all Ci are between 1

2L and 2L (recall
that now we are dealing with concave functions). The transformed instance is formulated as
in Section 2.1. It can be solved (with an appropriately modified objective function) in O(n)
time via Lenstra’s algorithm as in Theorem 2.5. Similarly as in Section 2.3, one can argue
that Steps (S-1)–(S-3) always yield a schedule that is at most a factor of (1 − ε) away from
the optimum. The details are left to the reader. This completes the proof of Theorem 1.2.

Finally, let us show that a straightforward application of the methods of Sahni [16] and
of Hochbaum and Shmoys [12] cannot yield a proof of Theorems 1.1 and 1.2. This method
in [16, 12] first removes the small jobs that are smaller than some threshold τ , then solves
the remaining problem to get an intermediate schedule, and at last greedily adds the small
jobs to this intermediate schedule.

Example 3.1 Consider an instance with m = 3 machines, 6 jobs with lengths 13, 9, 9, 6, 6, 6
and 10/τ tiny jobs, each of length τ/2; note that the overall length of the tiny jobs is 5.
The objective is to minimize

∑
C2
i . It is straightforward to verify that the optimum schedule
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assigns to every machine a total processing time of 18: three jobs of length 6 to machine M1,
two jobs of length 9 to machine M2, and the remaining jobs to machine M3. The optimum
objective value equals 972. If one removes the tiny jobs, then the unique optimum schedule
for the jobs 13, 9, 9, 6, 6, 6 is to assign 13 and 6 to machine M1, 9 and 6 to M2, and 9 and 6
to M3. No matter, how one adds the tiny jobs to this intermediate schedule, one can never
reach a schedule with objective value better than 9731

2 .

4 Approximation schemes, condition (F∗), and the LPT

In this section, we investigate the scheduling problem (I), i.e. problem P | · |
∑
f(Ci). We

discuss the impact of property (F∗) for functions on the approximability behavior of problem
P | · |

∑
f(Ci). Moreover, we discuss the relationship between the existence of a PTAS and

the worst case behavior of the LPT rule.
First, let us consider the function f(x) = 2x, x ∈ IR+

0 . It can easily be seen that function
2x is non-negative and convex, but does not satisfy property (F∗). Hence, the following
result demonstrates that our main result in Theorem 1.1 does not hold true without imposing
condition (F∗).

Observation 4.1 Unless P = NP , the problem P | · |
∑

2Ci does not allow a polynomial time
approximation algorithm with finite performance guarantee. Especially, the problem does not
allow a PTAS.

Proof. Suppose that there exists a polynomial time approximation algorithm with finite
performance guarantee ρ > 1. Define an integer α = dlog2 ρe+ 2. For an integer Z and for a
set z1, . . . , zn of positive integers with

∑n
j=1 = 2Z, it is NP-complete to decide whether the

zj can be partitioned into two sets whose elements sum up to Z (see Garey and Johnson [9]).
Define a corresponding scheduling instance with m = 2 machines and n jobs Jj , 1 ≤ j ≤ n,

with lengths pj = αzj . It is easy to see that exactly one of the following two cases holds:
(i) The zj can be partitioned into two sets whose elements sum up to Z and, hence, the
optimum objective value equals 2αZ+1. (ii) The zj can not be partitioned into two sets whose
elements sum up to Z and, hence, the optimum objective value is at least 2αZ+α. Since the
approximation algorithm could distinguish between these two cases in polynomial time, it
would be able to solve the NP-complete partition problem in polynomial time. The claim
follows.

Note that the non-approximability result in Observation 4.1 does not only rely on the ex-
ponential growth rate of function 2x: An analogous statement can be proved e.g. for function
f(x) = (x − 1)2. We do not know whether Theorem 1.1 still holds true without imposing
convexity of function f .

Next let us discuss the relationship between the existence of an approximation scheme
for a scheduling problem, and between the behavior of the LPT rule (cf. Section 1.1) for this
problem. We offer the following conjecture.

Conjecture 4.2 Let f be a non-negative, convex function IR+
0 → IR+

0 and let P |·|
∑
f(Ci) be

the corresponding scheduling problem. Then the following three statement are all equivalent.
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(i) P | · |
∑
f(Ci) possesses a polynomial time approximation algorithm with finite perfor-

mance guarantee.

(ii) For P | · |
∑
f(Ci), the LPT rule has finite performance guarantee.

(iii) P | · |
∑
f(Ci) possesses a PTAS.

We are able to prove this conjecture for the case where f is not only convex but also satisfies
property (F∗). In this case, Theorem 1.1 implies the truth of (iii) and (i), and the following
observation yields the truth of (ii).

Observation 4.3 Let f be a non-negative, convex function IR+
0 → IR+

0 that satisfies property
(F∗). Then the LPT rule for problem P | · |

∑
f(Ci) has finite performance guarantee.

Proof. Let L = 1
m

∑n
j=1 pj . Since the LPT rule assigns every job with processing ≥ L to its

own machine, we may assume by arguments that are similar to those applied at the beginning
of Section 2 that no job has processing time greater or equal to L. Next, it can be shown that
in the schedule produced by LPT, every machine completion time Ci fulfills 1

2L < Ci < 2L.
By Observation 2.2, an analogous inequality holds for the machine completion times in an
optimum schedule. Consequently, every machine completion time in the LPT schedule is
at most a factor 4 away from the corresponding machine completion time in the optimum
schedule.

Now consider condition (F∗) with ε = 1: We get that there exists a δ > 0, such that
for all y ≤ (1 + δ)x the inequality f(y) ≤ 2f(x) holds. Define k as the smallest integer that
fulfills (1 + δ)k ≥ 4. Then for all y ≤ 4x the inequality f(y) ≤ 2kf(x) holds. Combining this
inequality with the above discussion on the LPT schedule, one gets that the LPT algorithm
indeed has finite performance guarantee 2k.

For general functions f , the worst case behavior of the LPT rule does not seem to be
a good indicator for the approximability of a scheduling problem: It is easy to find non-
convex functions f for which problem P | · |

∑
f(Ci) possesses a PTAS or is even solvable in

polynomial time, whereas the LPT rule does not have finite performance guarantee; take e.g.
f(x) = ln(1+x). Moreover, there exist non-convex functions f for which problem P |·|

∑
f(Ci)

does not possesse a PTAS (unless P=NP) whereas the LPT rule does have finite performance
guarantee; take e.g. the function f with f(1) = 1 and f(x) = 2 for x 6= 1.

5 Conclusion

We have shown that for a large set of scheduling problems on parallel machines whose objec-
tive functions solely depend on the machine completion times, there exist polynomial time
approximation schemes. The running times of our algorithms are linear in the number of jobs
and machines. Our result covers as special cases the approximation schemes of Sahni [16],
Hochbaum and Shmoys [12], Alon, Azar, Woeginger, and Yadid [1], and Woeginger [17].

We pose as an open problem to derive similar results for scheduling problems on parallel
machines whose objective functions solely depend on the job completion times.
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