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Abstract

A graph G is (a, b)-choosable if for any assignment of a list of a colors to each
of its vertices there is a subset of b colors of each list so that subsets corresponding
to adjacent vertices are disjoint. It is shown that for every graph G, the minimum
ratio a/b where a, b range over all pairs of integers for which G is (a, b)-choosable is
equal to the fractional chromatic number of G.

1 Introduction

Let G = (V,E) be a graph with vertex set V and edge set E, and let L(v) be a list

of allowed colors assigned to each vertex v ∈ V . We say that G is L-list-colorable if

there exists a coloring c(v) of the vertices of G such that c(v) ∈ L(v) for all v ∈ V and

c(u) 6= c(v) for all edges uv ∈ E. Thus, list colorings are restricted types of proper vertex

colorings. If G is L-list-colorable for every list assignment such that |L(v)| = k for all

v ∈ V , then G is called k-choosable. The choice number, ch(G), is the smallest integer k

for which G is k-choosable.

More generally, we say that G is (a, b)-choosable for some integers a and b, a ≥ 2b > 1,

if, for any assignment of lists with |L(v)| = a for all v ∈ V , there are subsets C(v) ⊂ L(v)

with |C(v)| = b such that C(u) and C(v) are disjoint for all pairs of adjacent vertices u

and v.
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The concepts of list colorings and choosability were introduced in the 1970s by Viz-

ing [9] and independently by Erdős, Rubin and Taylor [4]. Those early papers give an

interesting introduction to the topic, including a lot of results and many open problems.

Forgotten for more than a decade, some of the questions raised already in the seventies

have been answered recently; see [2] for a survey and [7], [8] for more recent results and

references. Still, a lot of intriguing open problems remain open, and in particular very

little is known about the relationship between (a, b)-choosability and (c, d)-choosability

where (a, b) 6= (c, d). Erdős, Rubin and Taylor raised the following question.

Problem 1.1 If G is (a, b)-choosable, does it follow that G is (am, bm)-choosable for

every m ≥ 1 ?

Motivated by this problem, we consider the set

CH(G) := {(a, b) : G is (a, b)-choosable}

and define the choice ratio

chr(G) := inf{a/b : (a, b) ∈ CH(G)}.

Our aim is to prove that chr(G) equals the so-called fractional chromatic number of G, a

well-studied concept in polyhedral combinatorics, defined as follows. Denoting by S(G)

the collection of all independent vertex sets in G, a fractional coloring is a mapping

ϕ : S(G)→ <≥0

such that ∑
S∈S(G)
v∈S

ϕ(S) ≥ 1 , ∀ v ∈ V. (1)

The fractional chromatic number, denoted χ∗(G), is the solution of the linear program (1)

with objective function

min
∑

S∈S(G)

ϕ(S). (2)

Certainly, the minimum remains unchanged if the range of ϕ is restricted to the closed

interval [0, 1]. Note further that the chromatic number χ(G) is obtained when we view

(1), (2) as a discrete optimization problem, i.e. with ϕ : S(G)→ {0, 1}.
While the choice number of a graph can be much larger than its chromatic number

(e.g. ch(Kn,n) = Θ(log n), cf. [4]), Gutner ([6], cf. also [2], Proposition 4.6) has proven

(using a different terminology) that the choice ratio chr(G) never exceeds the chromatic

number χ(G) of G. Here we prove the following stronger result.
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Theorem 1.2 The choice ratio of any graph G = (V,E) equals its fractional chromatic

number.

This result may be viewed as the pair of the two inequalities chr(G) ≥ χ∗(G) and χ∗(G) ≥
chr(G). In fact, the latter can also be strengthened, by showing that the infimum can be

replaced by minimum in the definition of chr(G).

Theorem 1.3 For every integer n there exists a number f(n) ≤ (n + 1)2n+2 such that

the following holds. For every graph G with n vertices and with fractional chromatic

number χ∗, and for every integer M which is divisible by all integers up to f(n), G is

(M,M/χ∗)-choosable.

We also note that for every G and M as above, M/χ∗ is an integer, as shown by the

observations in Section 2.

The paper is organized as follows. In the next section some known properties of the

fractional chromatic number are recalled, and in Section 3 two lemmas on partitions of

sequences and uniform hypergraphs are given. Theorems 1.2 and 1.3 are proved in Section

4. The proof of the former is probabilistic, while that of the latter combines some of the

techniques in [3] and in [2] with some additional ideas. Finally, in Section 5 we show

that every cycle of length 2t+ 1 is (2t+ 1, t)-choosable. This example indicates that the

smallest M for which G is (M,M/χ∗)-choosable may be much smaller than the bound

given in Theorem 1.3.

2 Some properties of χ∗

The linear inequalities (1) together with the conditions

ϕ(S) ≥ 0 , ∀ S ∈ S(G) (3)

describe a convex body P in <|S(G)| on which the objective function (2) attains its min-

imum at some (at least one) vertex. This vertex can be described as the intersection of

|S(G)| facets of P , all but at most n of which are of the form ϕ(S) = 0. Thus, there

exists a subfamily S0 ⊆ S(G), |S0| ≤ n, and positive reals {wS : S ∈ S0} such that

χ∗(G) =
∑
S∈S0

wS

where the wS are the solutions of the corresponding system of linear equations. This

implies, by Cramer’s rule, that all the wS are of the form pS/q, where the pS > 0 are

integers, and q is the absolute value of a determinant of an n by n matrix A with 0, 1

entries. The following bound on the absolute value of the determinant of such a matrix

is well known.
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Lemma 2.1 With the above notation, |detA| ≤ 2−n(n+ 1)(n+1)/2.

Proof. Embed the matrix A in the lower right corner of an (n + 1) by (n + 1) ma-

trix B whose first row is the all-1 vector and whose first column is the (column) vector

(1, 0, 0, . . . , 0). Note that the determinant detB of B equals that of A. Now, multiply

all the rows of B but the first one by 2, and subtract the first row from all the oth-

ers to get an (n + 1) by (n + 1) matrix C in which all entries are +1 or −1. Then

detC = 2ndetB = 2ndetA and, by Hadamard’s Inequality, |detC| ≤ (n + 1)(n+1)/2 as

needed. 2

Defining

p :=
∑
S∈S0

pS,

we have χ∗(G) = p/q with

p ≤ nq ≤ n2−n(n+ 1)(n+1)/2 ≤ (n+ 1)(n+1)/2.

Moreover, taking each S ∈ S0 with multiplicity pS, we obtain a collection {S1, S2, . . . , Sp}
of not necessarily distinct independent sets in G so that every vertex lies in precisely q of

those Si. Such a (multi)set of independent subsets provides an equivalent interpretation

of an optimal fractional coloring.

3 Uniform partitions

In the proof of Theorem 1.3 we shall need two lemmas which we present in this section.

The first one is the following simple observation.

Lemma 3.1 Let (ni : i ∈ I) be a sequence of positive integers, where each ni is at most

k. Let M and p be two integers and suppose that
∑
i∈I ni = M , that M/p is divisible by

all integers up to k, and that k · lcm(2, 3, . . . , k) ≤ M/p, where lcm(2, 3, . . . , k) denotes

the least common multiple of 2, 3, . . . , k. Then, there is a partition I = I1 ∪ I2 ∪ · · · ∪ Ip
of I into p pairwise disjoint sets such that for every j, 1 ≤ j ≤ p,

∑
i∈Ij ni = M/p.

Proof. Put m = lcm(2, 3, . . . , k). First, we shall construct a large number of pairwise

disjoint subsets Js of I so that
∑
i∈Js ni = m for every s, from which the classes of the

required partition will be created. As long as there are at least m/t numbers ni equal to

t for some t, 1 ≤ t ≤ k, among the elements ni which have not been used yet, form a new

subset consisting of the indices of m/t such elements and remove them from the sequence.

When this process terminates, we are left with at most m/t − 1 occurrences of t among
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the remaining elements, and hence the sum of all remaining elements is smaller than∑k
t=1(m/t)t = km ≤ M/p. All the other elements of the sequence have been partitioned

into subsets, in such a way that the sum of elements in each subset is precisely m. By

assumption, m divides M/p, hence r = M
mp

is an integer. Note that we have at least

(p − 1)r subsets Js as above, since the total sum of elements in these subsets is at least

M −M/p = (p− 1)rm. We can thus form from these subsets p− 1 collections consisting

of r subsets each, and take all the elements in the remaining subsets together with the

elements in no subsets as the final collection, completing the proof. 2

Remark. The assumption that M/p ≥ k · lcm(2, 3, . . . , k) can, in fact, be dropped, using

the argument in [3]. Since, however, this is not crucial here and makes the proof slightly

more complicated, we omit the details.

A hypergraph H = (X,F) is called `-uniform if each of its edges contains precisely `

vertices. If R is a subset of the vertex set of H, let HR denote the hypergraph with

vertex set R and edge set {F ∩ R : F ∈ F}. The hypergraph is (uniformly) reducible if

there is a two-coloring of its vertex set, X = R ∪ B, R ∩ B = ∅, so that the hypergraph

HR is `′-uniform for some 0 < `′ < `. Note that, in this case, the hypergraph HB is

(` − `′)-uniform. Huckemann, Jurkat and Shapley (cf. [5]; see also [1] for another proof

with a slightly worse estimate) proved that if ` ≥ (n + 1)(n+1)/2, then every `-uniform

hypergraph with n edges is reducible. Applying straightforward induction, this implies

the following.

Lemma 3.2 Let H = (X,F) be a uniform hypergraph with n edges. Then there is a

partition X =
⋃
i∈I Xi of X into pairwise disjoint sets such that HXi is ni-uniform and

ni ≤ (n+ 1)(n+1)/2 for every i ∈ I. 2

4 Proof of the main results

In this section we prove Theorems 1.2 and 1.3, the former in two parts. We begin with

the lower bound on chr(G).

Proof of the lower bound chr(G) ≥ χ∗(G).

Let (a, b) ∈ CH(G) be arbitrary. We have to show that χ∗(G) ≤ a/b. For this purpose

we define identical lists

L(v) := {1, 2, . . . , a}
for all v ∈ V . By assumption, some b-element subsets C(v) ⊂ L(v) can be chosen such

that C(u) ∩ C(v) = ∅ for all uv ∈ E. Set

Si := {v ∈ V : i ∈ C(v)}, i = 1, 2, . . . , a
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and, for every S ∈ S(G), define

ϕ(S) := ai/b

where ai is the number of occurrences of S in the multiset {S1, . . . , Sa}. By the conditions

on the subsets C(v), each of the a sets Si is independent, and each vertex appears in

precisely b of them. Thus, ϕ is a fractional coloring with value a/b. 2

We now turn to the proof of the converse inequality and to that of Theorem 1.3. Through-

out, we assume that a collection of a-element lists L(v) is given for the vertices v of the

graph G = (V,E), and denote

L :=
⋃
v∈V

L(v).

Moreover, based on the observations given in the preceding sections, we assume in either

case that χ∗(G) = p/q, q ≤ (n + 1)(n+1)/2, and that S1, S2, . . . , Sp ∈ S(G) are p (not

necessarily distinct) independent sets of G such that each vertex is contained in precisely

q of the Si. Though the assertion of Theorem 1.3 implies the required converse inequality,

nevertheless we include a separate proof of this converse since it is simpler and applies to

somewhat smaller values of a and b.

Proof of the upper bound chr(G) ≤ χ∗(G).

We have to show that for every ε > 0 there exists a pair (a, b) ∈ CH(G) such that

a ≤ (1 + ε)b ·χ∗(G). Consider a := (1 + ε)pm and b := qm, for m sufficiently large, where

we assume for simplicity (and without loss of generailty) that both a and b are integers.

Take a random partition

L = L1 ∪ · · · ∪ Lp

where Prob(i ∈ Lj) = 1/p for every 1 ≤ j ≤ p, independently for all i ∈ L. Noting that

p and n := |V | are fixed for any given G, it follows from well-known estimates on the

binomial distribution that, for each v ∈ V and each j ∈ {1, . . . , p},

|L(v) ∩ Lj| = m+ εm− o(m) (4)

holds with probability greater than 1− 1
np

for all sufficiently large m. Thus, with positive

probability, (4) holds simultaneously for all v and all j. Assuming that L1 ∪ · · · ∪ Lp is a

suitable partition of L satisfying |L(v)∩Lj| ≥ m for all v and j, we can choose m-element

subsets Cj(v) ⊆ L(v) ∩ Lj. Then, clearly, the b-element sets

C(v) :=
⋃

1≤j≤p
Cj(v)

satisfy the requirements for (a, b)-choosability, implying (a, b) ∈ CH(G). 2
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Proof of Theorem 1.3. Suppose thatM is divisible by all integers up to, say, (n+1)2n+2,

and consider the collection (L(v) : v ∈ V ) of lists with a = M colors each, assigned to the

vertices of G. LetH = (X,F) be the hypergraph whose vertex set is L, the set of all colors

in all the lists, and whose edge set is the set of the n lists L(v). Define k = (n+ 1)(n+1)/2.

By Lemma 3.2, the vertex set X can be partitioned into pairwise disjoint sets (Xi : i ∈ I),

such that HXi is ni-uniform, with ni ≤ k for every i.

The initial assumptions and the fact that p ≤ (n+1)(n+1)/2 imply that M/p is divisible

by all numbers up to k (since M is divisible by pr for all r ≤ k) and that M/p is bigger

than k · lcm(2, 3, . . . , k) (since M is divisible by pkr for all r ≤ k). Therefore, by Lemma

3.1, there is a partition I = I1 ∪ I2 ∪ · · · ∪ Ip such that
∑
i∈Ij ni = M/p for every j,

1 ≤ j ≤ p. Define, now, for each vertex v of G a subset C(v) of L(v) by

C(v) :=
⋃
{L(v) ∩Xi : i ∈ Ij for some j for which v ∈ Tj}.

There are precisely q values of j for which v is in Tj, and each such j contributes exactly∑
i∈Ij ni = M/p colors to C(v), giving a total of Mq/p = M/χ∗ colors for each vertex.

Since each color lies in the sets C(v) for all members v of some independent set in the

collection {S1, . . . , Sp}, it follows that the sets C(u) and C(v) are disjoint for each pair of

adjacent vertices u and v. This completes the proof of the theorem. 2

5 An example: odd cycles

We end this note by showing that for odd cycles C2r+1 the smallest value of M for

which the cycle is (M,M/χ∗)-choosable is not very large. It is immediately seen that

χ∗(C2r+1) = 2 + 1/r.

Proposition 5.1 Every odd cycle C2r+1 is (2r + 1, r)-choosable.

Proof. Let v1, . . . , v2r+1 be the vertices of the cycle C2r+1, and let (L(vi) : 1 ≤ i ≤ 2r+1)

be the collection of the (2r + 1)-element lists of allowed colors assigned to the vertices.

Denote by S := {f1, . . . , ft} :=
⋂
vi∈V L(vi) the intersection of all these lists. Clearly,

t ≤ 2r + 1 by the assumption |L(vi)| = 2r + 1. First, we generate new lists L′(vi) :=

L(vi) \ {fi} for i = 1, . . . , t and L′(vi) := L(vi) for t < i ≤ 2r+ 1. Note that the new lists

have at least 2r elements each, and that no color belongs to all of them. Next, we orient

the edges of C2r+1 clockwise, to obtain a directed cycle.

Now, we can choose r colors for every vertex in the following way. Take an arbitrary

color f appearing in one of the lists and consider the subgraph Gf of C2r+1 induced by

all vertices which contain f in their lists. Every such subgraph is the union of directed

paths, therefore contains an independent set Sf such that every v ∈ V (Gf ) either is in
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Sf or has its successor in Sf . We choose the color f for all vertices of Sf , and delete f

from all lists. If we have already chosen r colors for a vertex, we remove this vertex from

the graph. In this way we delete a color f from the list of a vertex v only if we choose f

either for v itself or for its successor. Thus, we can choose r colors for every vertex. 2

By the same argument, the following more general assertion can also be proved.

Proposition 5.2 The cycle C2r+1 is (2t+ 1, t)-choosable for every t, 1 ≤ t ≤ r.

The condition t ≤ r above is necessary, by the inequality chr(G) ≥ χ∗(G).
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