ACYCLIC MATCHINGS

NOGA ALON, C. KENNETH FAN, DANIEL KLEITMAN, AND JOZSEF LOSONCZY

Abstract. The purpose of this note is to give a constuctive proof of a conjecture in [1] concerning the existence of acyclic matchings.

1. Main result

Let $B, D \subset \mathbb{Z}^{n}$. Assume that $|B|=|D|$ and $0 \notin D$. A matching is a bijection $f: B \rightarrow D$ such that $b+f(b) \notin B$ for all $b \in B$. For any matching f, define $m_{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ by $m_{f}(v)=\#\{b \in B \mid b+f(b)=v\}$. An acyclic matching is a matching f such that for any matching g such that $m_{f}=m_{g}$, we have $f=g$.

Theorem 1. There exists an acyclic matching.
This was first conjectured in [1]. The conjecure arises in the study of the problem, considered by Wakeford [2], of deciding which sets of monomials are removable from a generic homogeneous polynomial using a linear change of variables. For more details, see [1]. The following proof is constructive.

Proof. First totally order \mathbb{Z}^{n} so that if $v>w$ then for any $u, v+u>w+u$ (and hence for $v>0, v+u>u$.) For instance, choose a basis and order lexicographically.

Label the set B so that $b_{1}<b_{2}<b_{3}<\cdots<b_{m}$.
We first consider the case where $d>0$ for all $d \in D$.
Let $f\left(b_{1}\right)$ be the smallest $d \in D$ such that $b_{1}+d \notin B$. Note that such a d always exists because $m=\#\left\{b_{1}+d \mid d \in D\right\}>\#\left\{b \mid b>b_{1}, b \in B\right\}=m-1$.

Next, let $f\left(b_{2}\right)$ be the smallest $d \in D \backslash\left\{f\left(b_{1}\right)\right\}$ such that $b_{2}+d \notin B$. Such a d exists for virtually the same reason we are able to define $f\left(b_{1}\right)$.

Next, let $f\left(b_{3}\right)$ be the smallest $d \in D \backslash\left\{f\left(b_{1}\right), f\left(b_{2}\right)\right\}$ such that $b_{3}+d \notin B$. Again, such a d exists for virtually the same reason we are able to define $f\left(b_{1}\right)$ and $f\left(b_{2}\right)$.

Continue in this manner until f is defined on all of B.
We claim that f is acyclic.
To see this, let g be a matching such that $m_{f}=m_{g}$.
If $f \neq g$, then there must be a smallest v such that

$$
\{b \in B \mid b+f(b)=v\} \neq\{b \in B \mid b+g(b)=v\} .
$$

Let b be the smallest element of $\{b \in B \mid b+g(b)=v\} \cap\{b \in B \mid b+f(b)=v\}^{c}$.

[^0]Note that $f(b)>g(b)$ since otherwise $b+f(b)<b+g(b)=v$ contradicts our choice of v.

On the other hand, if $f(b)>g(b)$, we must have some $b^{\prime}<b$ for which $f\left(b^{\prime}\right)=g(b)$, since otherwise f would not have been constructed according to our recipe. But since $g\left(b^{\prime}\right) \neq f\left(b^{\prime}\right)$ (because $g(b)=f\left(b^{\prime}\right)$), we have $b^{\prime}+f\left(b^{\prime}\right)<v$ again contradicting our choice of v.

This impossibility implies that $f=g$.
For the general case, we partition D into D^{+}and D^{-}so that $D^{+}=\{d \in D \mid d>0\}$. We now construct a matching f by using the above recipe twice, once for D^{+}and $\left\{b_{\left|D^{-}\right|+1}, \ldots, b_{m}\right\}$ and once for D^{-}and $\left\{b_{1}, \ldots, b_{\left|D^{-}\right|}\right\}$. (For the latter assignment, we use the opposite ordering of \mathbb{Z}^{n}.)

We claim that f is acyclic. To see this note that any matching g with $m_{f}=$ m_{g} must satisfy $D^{-}=\left\{g\left(b_{1}\right), \ldots, g\left(b_{\left|D^{-}\right|}\right)\right\}$. This is because $\sum_{k=1}^{\left|D^{-}\right|} b_{k}+f\left(b_{k}\right)$ is an absolute minimum for $\sum_{k=1}^{\left|D^{-}\right|} b_{k}+h\left(b_{k}\right)$ over all matchings h with equality if and only if $D^{-}=\left\{h\left(b_{1}\right), \ldots, h\left(b_{\left|D^{-}\right|}\right)\right\}$. Acyclicity now follows from the argument given in the case where all $d \in D$ are positive.

2. Final remarks

It is worth noting that the number of matchings may be exactly one, for instance, in the case $m=1$, or, less trivially, if $n=1$ and $B=D=\{1,2,3, \ldots, m\}$.

The result in [1] is not entirely superseded by theorem 1 since in [1] a connection with hyperplanes is given.

Finally, we remark that throughout we could have replaced \mathbb{Z} by \mathbb{Q} or \mathbb{R}.

References

[1] C. K. Fan and J. Losonczy, Matchings and Canonical Forms in Symmetric Tensors, Advances in Mathematics, to appear.
[2] E. K. Wakeford, On Cannonical Forms, Proc. London Math. Soc., 2, 18 (1918-19), 403-410.
Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

E-mail address: noga@math.tau.ac.il
Department of Mathematics, Harvard University, Cambridge, MA 02138
E-mail address: ckfan@math.harvard.edu
Department of Mathematics, M. I. T., Cambridge, MA 02139
E-mail address: djk@math.mit.edu
Department of Mathematics, M.I.T., Cambridge, MA 02139
E-mail address: jozsef@math.mit.edu

[^0]: The first and third authors were supported in part by a USA-Israel BSF grant.
 The second author was supported in part by a National Science Foundation postdoctoral fellowship.

