ACYCLIC MATCHINGS

NOGA ALON, C. KENNETH FAN, DANIEL KLEITMAN, AND JOZSEF LOSONCZY

ABSTRACT. The purpose of this note is to give a constuctive proof of a conjecture in [1] concerning the existence of acyclic matchings.

1. Main result

Let $B, D \subset \mathbb{Z}^n$. Assume that |B| = |D| and $0 \notin D$. A matching is a bijection $f: B \to D$ such that $b + f(b) \notin B$ for all $b \in B$. For any matching f, define $m_f: \mathbb{Z}^n \to \mathbb{Z}$ by $m_f(v) = \#\{b \in B \mid b + f(b) = v\}$. An acyclic matching is a matching f such that for any matching g such that $m_f = m_g$, we have f = g.

Theorem 1. There exists an acyclic matching.

This was first conjectured in [1]. The conjecure arises in the study of the problem, considered by Wakeford [2], of deciding which sets of monomials are removable from a generic homogeneous polynomial using a linear change of variables. For more details, see [1]. The following proof is constructive.

Proof. First totally order \mathbb{Z}^n so that if v > w then for any u, v + u > w + u (and hence for v > 0, v + u > u.) For instance, choose a basis and order lexicographically. Label the set B so that $b_1 < b_2 < b_3 < \cdots < b_m$.

We first consider the case where d > 0 for all $d \in D$.

Let $f(b_1)$ be the smallest $d \in D$ such that $b_1 + d \notin B$. Note that such a d always exists because $m = \#\{b_1 + d \mid d \in D\} > \#\{b \mid b > b_1, b \in B\} = m - 1$.

Next, let $f(b_2)$ be the smallest $d \in D \setminus \{f(b_1)\}$ such that $b_2 + d \notin B$. Such a d exists for virtually the same reason we are able to define $f(b_1)$.

Next, let $f(b_3)$ be the smallest $d \in D \setminus \{f(b_1), f(b_2)\}$ such that $b_3 + d \notin B$. Again, such a d exists for virtually the same reason we are able to define $f(b_1)$ and $f(b_2)$.

Continue in this manner until f is defined on all of B.

We claim that f is acyclic.

To see this, let g be a matching such that $m_f = m_q$.

If $f \neq g$, then there must be a smallest v such that

$$\{b \in B \mid b + f(b) = v\} \neq \{b \in B \mid b + g(b) = v\}.$$

Let b be the smallest element of $\{b \in B \mid b + g(b) = v\} \cap \{b \in B \mid b + f(b) = v\}^c$.

The first and third authors were supported in part by a USA-Israel BSF grant.

The second author was supported in part by a National Science Foundation postdoctoral fellowship.

2 NOGA ALON, C. KENNETH FAN, DANIEL KLEITMAN, AND JOZSEF LOSONCZY

Note that f(b) > g(b) since otherwise b + f(b) < b + g(b) = v contradicts our choice of v.

On the other hand, if f(b) > g(b), we must have some b' < b for which f(b') = g(b), since otherwise f would not have been constructed according to our recipe. But since $g(b') \neq f(b')$ (because g(b) = f(b')), we have b' + f(b') < v again contradicting our choice of v.

This impossibility implies that f = g.

For the general case, we partition D into D^+ and D^- so that $D^+ = \{d \in D \mid d > 0\}$. We now construct a matching f by using the above recipe twice, once for D^+ and $\{b_{|D^-|+1}, \ldots, b_m\}$ and once for D^- and $\{b_1, \ldots, b_{|D^-|}\}$. (For the latter assignment, we use the opposite ordering of \mathbb{Z}^n .)

We claim that f is acyclic. To see this note that any matching g with $m_f = m_g$ must satisfy $D^- = \{g(b_1), \ldots, g(b_{|D^-|})\}$. This is because $\sum_{k=1}^{|D^-|} b_k + f(b_k)$ is an absolute minimum for $\sum_{k=1}^{|D^-|} b_k + h(b_k)$ over all matchings h with equality if and only if $D^- = \{h(b_1), \ldots, h(b_{|D^-|})\}$. Acyclicity now follows from the argument given in the case where all $d \in D$ are positive.

2. Final Remarks

It is worth noting that the number of matchings may be exactly one, for instance, in the case m = 1, or, less trivially, if n = 1 and $B = D = \{1, 2, 3, ..., m\}$.

The result in [1] is not entirely superseded by theorem 1 since in [1] a connection with hyperplanes is given.

Finally, we remark that throughout we could have replaced \mathbb{Z} by \mathbb{Q} or \mathbb{R} .

References

- [1] C. K. Fan and J. Losonczy, *Matchings and Canonical Forms in Symmetric Tensors*, Advances in Mathematics, to appear.
- [2] E. K. Wakeford, On Cannonical Forms, Proc. London Math. Soc., 2, 18 (1918-19), 403-410.

DEPARTMENT OF MATHEMATICS, RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL

E-mail address: noga@math.tau.ac.il

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138 E-mail address: ckfan@math.harvard.edu

DEPARTMENT OF MATHEMATICS, M. I. T., CAMBRIDGE, MA 02139 *E-mail address:* djk@math.mit.edu

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139 *E-mail address*: jozsef@math.mit.edu