
Packing and Covering Dense Graphs

Noga Alon ∗ Yair Caro † Raphael Yuster ‡

Abstract

Let d be a positive integer. A graph G is called d-divisible if d divides the degree of each vertex

of G. G is called nowhere d-divisible if no degree of a vertex of G is divisible by d. For a

graph H, gcd(H) denotes the greatest common divisor of the degrees of the vertices of H. The

H-packing number of G is the maximum number of pairwise edge disjoint copies of H in G.

The H-covering number of G is the minimum number of copies of H in G whose union covers

all edges of G. Our main result is the following:

For every fixed graph H with gcd(H) = d, there exist positive constants ε(H) and N(H)

such that if G is a graph with at least N(H) vertices and has minimum degree at least (1 −
ε(H))|G|, then the H-packing number of G and the H-covering number of G can be computed

in polynomial time. Furthermore, if G is either d-divisible or nowhere d-divisible, then there is

a closed formula for the H-packing number of G, and the H-covering number of G.

Further extensions and solutions to related problems are also given.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise noted. For the

standard graph-theoretic terminology the reader is referred to [1]. Let H be a graph without

isolated vertices. An H-covering of a graph G is a set L = {G1, . . . , Gs} of subgraphs of G, where

each subgraph is isomorphic to H, and every edge of G appears in at least one member of L. The

H-covering number of G, denoted by C(H,G), is the minimum cardinality of an H-covering of G.

An H-packing of a graph G is a set L = {G1, . . . , Gs} of edge-disjoint subgraphs of G, where each

subgraph is isomorphic to H. The H-packing number of G, denoted by P (H,G), is the maximum

cardinality of an H-packing of G. G has an H-decomposition if it has an H-packing which is
∗Department of Mathematics, Tel-Aviv University, Israel, e-mail: noga@math.tau.ac.il. Research supported in

part by a USA Israeli BSF grant and by a grant from the Israel Science Foundation.
†Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: zeac603@uvm.haifa.ac.il
‡Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il

1

also an H-covering. Recently, exact formulas for P (H,Kn) and C(H,Kn) have been obtained, for

n ≥ n(H) [3, 4]. A main tool which is used in both these papers is the result of Gustavsson [10]

concerning the decomposition of dense graphs. In case the graph G is not complete, it is known

that computing P (H,G) and C(H,G) is, in general, NP-Hard, as shown by Dor and Tarsi [7]. The

purpose of this paper is to extend Gustavsson’s result, and the above mentioned results for Kn

and show that if the graph G is very dense, then the H-packing and H-covering numbers of G

can be determined in polynomial time, and in many cases, these numbers can be given by a closed

formula. To describe our results we need the following definitions. A graph G is called d-divisible

if the degree of each vertex of G is a multiple of d. G is called nowhere d-divisible if no vertex of

G has degree which is a multiple of d. Note that regular graphs are either d-divisible or nowhere

d-divisible for every d. Also note that every graph is 1-divisible. For a graph H let gcd(H) denote

the greatest common divisor of the degrees of the vertices of H. For example, gcd(C4) = 2, whereas

gcd(T) = 1 for every tree T . Our main results are the following:

Theorem 1.1 (Packing Dense Graphs) Let H be a graph with h edges, and let gcd(H) = d.

Then there exist N = N(H), and ε = ε(H) such that if G = (V,E) is a graph with n > N(H)

vertices and δ(G) > (1−ε(H))n, then P (H,G) can be determined in polynomial time. Furthermore,

if G is either d-divisible or nowhere d-divisible then,

P (H,G) = b
∑
v∈V αv
2h

c,

where αv is the degree of vertex v, rounded down to the closest multiple of d. The r.h.s. of this

formula should be reduced by 1 if G is d-divisible and 0 < |E| mod h ≤ d2/2.

Theorem 1.2 (Covering Dense Graphs) Let H be a graph with h edges, and let gcd(H) = d.

Then there exist N = N(H), and ε = ε(H) such that if G = (V,E) is a graph with n > N(H)

vertices and δ(G) > (1 − ε(H))n, then C(H,G) can be determined in O(n2.5) time. Furthermore,

if G is either d-divisible or nowhere d-divisible then,

C(H,G) = d
∑
v∈V αv
2h

e,

where αv is the degree of vertex v, rounded up to the closest multiple of d. The r.h.s. of this

formula should be increased by 1 if G is d-divisible and h divides |E|+ d/2.

This paper is organized as follows. In section 2 we describe the tools and prove some lemmas

which will be used in the proofs of Theorems 1.1 and 1.2. In section 3 we prove Theorem 1.1. In

section 4 we prove Theorem 1.2. The final section contains results and extensions which solve some

2

variations of the packing and covering problems, among them are the leave and excess problems

(see, e.g. [6] pages 263-264 and pages 411-412, and [11, 12]), and the efficient 2-overlap covering

problem of Etzion [5, 2].

Throughout this sequel we use the notation e(G) to denote the number of edges of a graph G.

dG(v) denotes the degree of vertex v in G. For X ⊂ V , G[X] denotes the subgraph of G = (V,E)

induced by X.

2 Preparing the tools

As mentioned in the introduction, our main tool is the following result of Gustavsson [10]:

Lemma 2.1 (Gustavsson’s Theorem [10]) Let H be a graph with h edges. There exists N0 =

N0(H), and γ = γ(H) > 0, such that for all n > N0, if G is a graph on n vertices and m edges,

with δ(G) ≥ n(1− γ), gcd(H) | gcd(G), and h | m, then G has an H-decomposition. 2

It is worth mentioning that N0(H) in Gustavsson’s Theorem is a rather huge constant; in fact, it

is a highly exponential function of h. Also, the γ(H) is very small; in fact it is less than 10−24h−1.

Thus, the graph G needs to be large and dense, but it may still be far from being complete (i.e.,

Ω(n2) edges may be missing).

The following lemma is a cornerstone in the proofs of Theorems 1.1 and 1.2. In essence, it

shows that dense graphs contain sparse spanning subgraphs with predetermined degrees. In fact,

this lemma can be viewed as an approximate bounded-degree version of the f -Factor Theorem of

Tutte [13].

Lemma 2.2 Let d be a positive integer, and let G = (V,E) be a graph on n vertices with δ(G) ≥
n− n/(4d+ 2) + 2d+ 1. Let {νv | v ∈ V } be a set of positive integers not exceeding 2d whose sum

is even. Then G contains a spanning subgraph G∗ in which the degree of each vertex v is νv.

Proof: For i = 1, . . . , 2d + 1, let Ai be a (0-1)-sequence indexed by V , where Aiv = 1 if i ≤ νv,

and Aiv = 0 if i > νv. Clearly, A1 has all its elements equal to 1, while A2d+1 has all its elements

equal to 0. We call a sequence Ai odd if it contains an odd number of ones. Consider all the odd

sequences Ai for 2 ≤ i ≤ 2d, having at most n/2 elements equal to 1. We may pick from each such

sequence one location which is zero, such that no two sequences picked the same location. This

can be done since the number of sequences is at most 2d, while the number of zeroes in each is

at least n/2, and n/2 > 2d. We modify the location picked for Ai to 1, and the corresponding

location of A1 is set to 0. Now consider all the odd sequences Ai for 2 ≤ i ≤ 2d, having more

than n/2 elements equal to 1. We may pick from each such sequence one location which equals 1,

3

such that no two sequences picked the same location. We modify the location picked for Ai to 0,

and the corresponding location of A2d+1 is set to 1. This process guarantees that all the sequences

A2, . . . , A2d have an even number of ones. If A1 also has an even number of ones after the process

is completed, then so does A2d+1. Otherwise, both A1 and A2d+1 have an odd number of ones, and

the number of ones in A1 is at least n− 2d while the number of ones in A2d+1 is at most 2d. Since

n > 4d, we have a location which is 1 in A1 and 0 in A2d+1, so we may switch the value of this

location in both A1 and A2d+1, and we have that all sequences have an even number of ones.

We now wish to make the number of ones in any pair of sequences differ by at most 2, while

maintaining an even number of ones in each sequence. The following shifting procedure achieves

this. If the number of ones in Ai and Aj differ by more than two (assume Ai has more ones than

Aj), we have two locations that contain 1 in Ai and 0 in Aj . by switching the values in these

locations in both Ai and Aj , the number of ones in Aj is now closer to the number of ones in Ai,

and they still both have an even number of ones. We continue with this procedure until the number

of ones in any pair of sequences differ by at most 2.

The total number of ones in all the sequences is at least n, and therefore each sequence contains at

least n/(2d+ 1)− 2 ones. Also note that for each v ∈ V ,

2d+1∑
i=1

Aiv = νv.

We associate with each sequence Ai, a matching M i of G in the following way. The set of vertices

matched in M i is exactly the set of vertices which correspond to locations having the value 1 in

Ai. Furthermore, each pair of matchings is edge disjoint. We need to show that, indeed, we can

produce the set of matchings M1, . . . ,M2d+1. Assume that we have already produced M1, . . . ,M i.

We show how to produce M i+1. Let G′ be the subgraph of G obtained by deleting the edges of

M1 ∪ . . .∪M i, and then deleting the vertices whose corresponding location in M i+1 is 0. We need

to show that G′ has a perfect matching, since we can take such a matching as M i+1. Let r denote

the number of ones in Ai+1 (note that r ≥ n/(2d+1)−2 is even and is also the number of vertices of

G′). It suffices to show that δ(G′) ≥ r/2, since this guarantees the existence of a perfect matching.

Indeed,

δ(G′) ≥ r − 1− (n− 1− δ(G))− i ≥ r − n+ δ(G)− 2d ≥

r − n+ (n− n/(4d+ 2) + 2d+ 1)− 2d ≥ r − n/(4d+ 2) + 1 ≥ r/2.

The lemma now follows from the fact that the union of all the matchings is a spanning subgraph

G∗ of G with the property that each vertex v has degree νv in G∗. 2

4

3 Packing dense graphs

In this section we prove Theorem 1.1. Given H, we choose

N(H) = max{N0(H),
4d
γ(H)

, 1000h5}

where N0(H) and γ(H) are as in Lemma 2.1. We also choose

ε(H) = min{γ(H)
2

,
1

100d4
,

1
2h
}.

Now let G be a graph with n > N(H) vertices and δ(G) > (1 − ε(H))n. We need to show how

P (H,G) can be computed in polynomial time, and, moreover, supply a closed formula for P (H,G)

in case G is either d-divisible or nowhere d-divisible.

Let 0 ≤ b < 2h/d satisfy (
∑
v∈V αv)/d ≡ b mod (2h/d). Note that since d = gcd(H) and

since 2h is the sum of the degrees of the vertices of H, then 2h/d must be an integer. Also note

that
∑
v∈V (αv/d) is a sum of integers, and so b is well-defined. Define βv = dG(v) − αv. Clearly,

0 ≤ βv < d. It is important to observe that bd+
∑
v∈V βv is even since

(bd+
∑
v∈V

βv) mod 2 ≡ (
∑
v∈V

αv +
∑
v∈V

βv) mod 2 ≡ (
∑
v∈V

dG(v)) mod 2 ≡ 0 mod 2. (1)

The proof of Theorem 1.1 is split into several lemmas. It is convenient to dispose first of the easy

case where d = 1.

Lemma 3.1 If d = 1 then P (H,G) = b
∑

v∈V αv
2h c.

Proof: Delete from G a set of b/2 independent edges (b is even by (1) since βv = 0 for all v ∈ V).

The resulting graph G′ has δ(G′) ≥ δ(G)− 1 ≥ (1− γ(H))n, and satisfies the conditions of Lemma

2.1. Thus, G′ has an H-decomposition, so

P (H,G) ≥ (|E| − b/2)/h = b|E|/hc = b
∑
v∈V

αv/2hc.

Clearly, P (H,G) ≤ b|E|/hc for every graph G. 2

For the remainder of this section we assume d > 1. The next lemma establishes an upper bound

for P (H,G):

Lemma 3.2

P (H,G) ≤ b
∑
v∈V αv
2h

c.

5

Proof: Let L be an arbitrary H-packing of G. Let s denote the cardinality of L. Let G′ denote

the edge-union of all the members of L. G′ contains sh edges. Thus G∗ = G\G′ contains e(G)−sh
edges. The degree of each vertex in G′ is 0 mod d and so the degree of each vertex v in G∗ is

dG(v) mod d. Therefore, the number of edges in G∗ satisfies

e(G)− sh =
∑
v∈V βv + cd

2

for some non-negative integer c. In particular, e(G) ≡
∑

v∈V βv+cd

2 mod h. This implies that

2e(G)−
∑
v∈V βv

d
≡
∑
v∈V αv
d

≡ c mod
2h
d
.

Thus, we must have c ≥ b. Therefore,

s =
e(G)−

∑
v∈V βv+cd

2

h
≤
e(G)−

∑
v∈V βv+bd

2

h
= b

∑
v∈V αv
2h

c.

Since L was an arbitrary H-packing, we have that P (H,G) ≤ b
∑

v∈V αv
2h c. 2

Let X = {v ∈ V | βv > 0}. X contains all the vertices whose degree in G is not divisible by

d. Trivially, if G is nowhere d-divisible, then |X| = n. The next lemma supplies a lower bound for

P (H,G) in case X ≥ n/(10d3).

Lemma 3.3 If |X| ≥ n/(10d3) then P (H,G) ≥ b
∑
v∈V αv/(2h)c.

Proof: We start by choosing an arbitrary set B of b vertices of X. For each v ∈ B define

νv = d + βv. For each v ∈ X \ B define νv = βv. Our first goal is to show that there exists a

spanning subgraph of G[X], denoted by G∗, such that the degree of each vertex v in G∗ is exactly

νv. This is done by applying Lemma 2.2 to the graph G[X]. The conditions of the lemma are

satisfied since, using the facts that |X| ≥ n/(10d3), ε(H) ≤ 1/(100d4) and n ≥ 1000h5 > 1000d5,

we have that

δ(G[X]) ≥ |X| − ε(H)n ≥ |X| − |X|/(4d+ 2) + 2d+ 1.

Also, νv ≤ 2d− 1 and
∑
v∈X νv = bd+

∑
v∈V βv is an even number, by (1).

Using G∗ we now consider G′ = G \ E(G∗) (i.e. G′ is the spanning subgraph of G obtained by

deleting the edges of G∗). If v /∈ B, then the degree of v in G′ is αv. If v ∈ B then the degree of v

in G′ is αv − d. In any case, d | gcd(G′), and G′ has m edges where

m =
d

2
(
∑
v∈V αv
d

− b) ≡ 0 mod h.

Also note that

δ(G′) ≥ δ(G)−2d ≥ n(1−ε(H))−2d ≥ n(1−ε(H))− γ(H)
2

n = n(1−ε(H)− γ(H)
2

) ≥ n(1−γ(H)).

6

Thus, G′ satisfies the conditions of Lemma 2.1, and therefore G has an H-decomposition. This

means that

P (H,G) ≥ P (H,G′) =
m

h
=

d

2h
(
∑
v∈V αv
d

− b) = b
∑
v∈V αv
2h

c.

2

By Lemma 3.2 and Lemma 3.3 we have the following corollary:

Corollary 3.4 If |X| ≥ n/(10d3) then P (H,G) = b
∑

v∈V αv
2h c.

Corollary 3.4 proves Theorem 1.1 in case |X| ≥ n/(10d3). It includes the case where G is

nowhere d-divisible, and shows that even in case n/(10d3) ≤ |X| < n, there is also a closed formula

for P (H,G), and, in particular, an O(n2) algorithm, since in order to compute the formula, one

only needs to know the degree sequence of G.

For the remainder of this section we may and will assume that 0 ≤ |X| < n/(10d3). The next

lemma shows that in this case, an optimal H-packing of G may only leave a small fraction of the

edges unpacked.

Lemma 3.5 If |X| < n/(10d3), then |E| − h · P (H,G) ≤ n/(5d2).

Proof: Consider the subgraph of G induced by V \ X. This subgraph has minimum degree at

least n− ε(H)n− |X| ≥ (n− |X|)/2. Therefore, this subgraph contains a Hamiltonian cycle, and,

in particular, a set of dn/(20d3)e independent edges. Let G− be the subgraph obtained from G by

deleting this set of independent edges. Clearly, δ(G−) = δ(G) − 1, but X−, the set of vertices of

G− whose degree in not divisible by d satisfies |X−| = |X| + 2dn/(20d3)e ≥ n/(10d3). (We have

used here the fact that d > 1, since if d = 1 then, trivially, |X| = |X−| = 0.) We may now apply

Lemmas 3.2 and 3.3 to G−, and obtain by corollary 3.4 that

P (H,G−) = b
∑
v∈V αv − 2ddn/(20d3)e

2h
c.

Since every packing of G− is also a packing of G we have that

P (H,G) ≥ P (H,G−) = b2|E| −
∑
v∈X βv − 2ddn/(20d3)e

2h
c ≥

2|E| −
∑
v∈X βv − n/(10d2)− 2d

2h
− 1.

Thus,

|E| − h · P (H,G) ≤
∑
v∈X

βv/2 + n/(20d2) + d+ h ≤ d n

20d3
+

n

20d2
+ d+ h ≤ n

5d2
.

2

7

Consider an optimal packing of the edges of G with copies of H, and let G′ denote the spanning

subgraph of G consisting of the edges of all the copies of H in the optimal packing. Put G∗ = G\G′.
Obviously, the degree of each vertex v of V in G∗ satisfies dG∗(v) ≡ βv mod d. Our goal is to

determine the number of edges of G∗. For this purpose we need the following lemma:

Lemma 3.6 There exists a subgraph of G, denoted by G∗∗ which has the same number of edges as

G∗, each vertex v ∈ X satisfies dG∗∗(v) = βv, and each v ∈ V \X has dG∗∗(v) ∈ {0, d}.

Proof: Assume that there exists some vertex v ∈ V with dG∗(v) > d. Let D be a set of d

neighbors of v in G∗. The fact that δ(G) ≥ n − ε(H)n implies that there are at least n − dε(H)n

vertices which are neighbors, in G, of all the vertices of D. Thus, there is a set A ⊂ V \X, with

|A| ≥ n− |X| − dε(H)n where each a ∈ A is adjacent to all the vertices of D. According to Lemma

3.5, the number of edges of G∗ is at most n/(5d2). Thus, there are at most 0.4n/d2 non-isolated

vertices in G∗. Since n−|X|−dε(H)n−0.4n/d2 > 0, there is some a ∈ A which is an isolated vertex

of G∗, with the property that for each u ∈ D, (u, a) ∈ G. We may replace each edge (v, u) ∈ G∗

with the edge (u, a), and obtain a subgraph of G, with the same number of edges of G∗, each vertex

except a and v has the same degree in the modified graph as in G∗, The degree of v has decreased

by d, and the degree of a is now exactly d. By repeating this process as long as there is some vertex

with degree larger than d, we obtain, at the end of this process, the graph G∗∗. 2

The next four lemmas together supply an algorithm for computing P (H,G) in case |X| <
n/(10d3). The last one also proves the correctness of the algorithm. Let k(H,G) denote the

maximum number of edges in a subgraph S of G[X] having the property that each v ∈ X has

degree at most βv in S.

Lemma 3.7 There is a polynomial time algorithm which computes k(H,G).

Proof: We reduce the problem of computing k(H,G) to the problem of computing a maximum-

weight matching on a graph Y . We define Y as follows: For each edge e = (a, b) with a, b ∈ X
we create two vertices in Y which we call ae and be, and an edge (ae, be) connecting them, having

weight 1 in Y . For each vertex a ∈ X we create additional t = dG[X](a)−βv vertices in Y , denoted

by a1, . . . , at. We connect each vertex of the form ai to each vertex of the form ae with an edge

whose weight is 2 (thus, the degree of ai is dG[X](a), while the degree of ae is 1 + dG[X](a) − βv).
Note that the number of vertices of Y is O(n2), while the number of edges of Y is O(n3). We now

find a maximum-weight matching in Y . This can be done in O(n5 log n) time using the algorithm

presented in [9].

We claim that if M is a maximum-weight matching in Y , then every vertex of the form ai is

matched. If this were not the case, then all the dG[X](v) neighbors of ai in Y are matched. In

8

particular, there is some edge of the form (ae, be) which appears in M . This edge, whose weight is

1, can be deleted from M , and replaced by the edge (ai, ae) whose weight is 2, contradicting the

maximality of M . It now follows from the construction of Y and the maximality of M that the set

of edges e = (a, b) ∈ G[X] for which (ae, be) ∈M , forms a subgraph S of G[X] having the property

that each v ∈ X has degree at most βv in S, and that the number of edges of S is the maximum

possible, subject to these constraints. 2

Lemma 3.8 P (H,G) is at most the maximum possible value of

1
h

(|E| − 1
2

(b′d+
∑
v∈X

βv)), (2)

subject to the following constraints:

1. 0 ≤ b′ ≡ b mod (2h/d).

2. b′d ≥
∑
v∈X βv − 2k′, where 0 ≤ k′ ≤ k(H,G).

3. In case 1 ≤ b′ ≤ d it is also required that
∑
v∈X βv − 2k′ ≥ b′(d− b′ + 1).

This maximum can be computed in O(n) time (assuming all values except k′ and b′ are known).

Proof: Let k′ denote the number of edges of the graph G∗∗ of Lemma 3.6, in its part induced by

the vertices of X. Clearly, 0 ≤ k′ ≤ k(H,G). Since each vertex in V \X has degree divisible by d

in G∗∗, the sum of the degrees of the vertices of V \X in G∗∗ is b′d for some b′ ≥ 0. We claim that

b′ ≡ b mod (2h/d). This is because the sum of the degrees of G∗∗ or G∗ (it is the same by Lemma

3.6) is
∑
v∈X βv + b′d, the sum of the degrees of G′ is 2h ·P (H,G) (since it is an edge disjoint union

of an optimal packing) and thus∑
v∈X

βv + b′d+ 2hP (H,G) = 2|E| =
∑
v∈V

dG(v) =
∑
v∈V

(αv + βv). (3)

Using (3), the definition of b, and recalling that βv = 0 for v ∈ V \X we get that

b′ + (2h/d)P (H,G) =
∑
v∈V

αv/d ≡ b mod (2h/d).

It also follows from (3), that

P (H,G) =
1
h

(|E| − 1
2

(b′d+
∑
v∈X

βv)).

The sum of the degrees in G∗∗ between X and V \X is
∑
v∈X βv− 2k′, and therefore we must have

that b′d ≥
∑
v∈X βv−2k′. Finally, consider the case where 1 ≤ b′ ≤ d. There are at most b′(b′−1)/2

9

edges of G∗∗ with both endpoints in V \X. Thus, there are at least b′d− b′(b′ − 1) = b′(d− b′ + 1)

edges of G∗∗ between X and V \X. Hence we must have
∑
v∈X βv − 2k′ ≥ b′(d− b′ + 1).

We have proved that there exist b′ and k′ satisfying the constraints of the lemma, such that

P (H,G) = 1
h(|E| − 1

2(b′d +
∑
v∈X βv)). Hence, by trying all the possible combinations of b′ and

k′ satisfying the constraints, we have that P (H,G) is at most the maximum possible value of (2)

subject to the constraints. Computing this maximum can be done in O(n) time since 0 ≤ k′ ≤
k(H,G) = O(n) and for every possible value of k′ in this range, the minimum possible value of b′

satisfying the constraints can be found in constant time. 2

Our next goal is to show that the upper bound for P (H,G) computed in Lemma 3.8, is, in fact,

the exact value of P (H,G), or at most one greater than the exact value, and we can determine

which of these two options holds in polynomial time.

Lemma 3.9 Let k′ and b′ give the maximum to (2), subject to the constraints of Lemma 3.8. Then:

• There exists a subgraph G∗ of G in which every v ∈ X has degree βv, exactly b′ vertices of

V \X have degree d, and there are k′ edges in the subgraph of G∗ induced by X.

or else the following must hold:

• There exists a subgraph G∗ of G in which every v ∈ X has degree βv, exactly b′+2h/d vertices

of V \X have degree d, and there are k′ edges in the subgraph of G∗ induced by X.

If b′ ≥ d− 1 or b′ = 0 then the first case always holds, and if 1 ≤ b′ ≤ d− 2 then it can be verified

in polynomial time whether the first case holds.

Proof: Our first goal is to construct a subgraph S of G, on the vertices of X, which satisfies the

following three requirements:

1. S has k′ edges.

2. Each v ∈ X has degree at most βv in S.

3. βv − dS(v) ≤ b′ for each v ∈ X.

Clearly, the existence of S is a necessary condition if we wish for the first case in the lemma to

hold. Using Lemma 3.7 and the fact that 0 ≤ k′ ≤ k(H,G) we know that there exists graphs

which satisfy the first two requirements. Recall that βv ≤ d − 1. Thus, if b′ ≥ d − 1, then the

third requirement is nil, so S exists. If b′ = 0 then we know from the second constraint in Lemma

3.8 that βv = dS(v) for each graph which satisfies the first two requirements, so, once again, the

third requirement is nil, so S exists. However, if 1 ≤ b′ ≤ d − 2, the third requirement is not

nil. We can still, however, determine if S exists in polynomial time. This is done as follows: Let

10

s =
∑
v∈X βv − 2k′. According to the constraints in Lemma 3.8, and since b′ ≤ d− 2, we have

d(d− 2) ≥ b′d ≥
∑
v∈X

βv − 2k′ = s.

Thus, s is bounded by a constant. Thus, there are only at most |X|d(d−2) possible degree sequences

for S. We will try every possible degree sequence, and for each degree sequence, {S(v) | v ∈ X}
we can determine if S exists using the algorithm similar to the one in Lemma 3.7 (the difference is

that instead of requiring that each vertex have degree at most βv as in Lemma 3.7, we now require

that each vertex have degree exactly S(v). Clearly, the same weighted-matching algorithm solves

this problem). If at least one degree sequence is satisfied, then S exists. Otherwise, S does not

exist, so the first case in the lemma cannot hold. Note that the overall running time for detecting

the existence of S is O(nd(d−2) ·n5 log n), which is polynomial. In case S does not exist we can still

create a graph S which only satisfies the first two requirements.

For v ∈ X, define γv = βv − dS(v), and define s =
∑
v∈X γv =

∑
v∈X βv − 2k′. The graph S will be

the subgraph of G∗ induced by X. It remains to define the other edges of G∗. Let Z = {z1, . . . , zt}
be a set of new vertices. If S satisfies all three requirements then t = b′. If S satisfies only the first

two requirements then t = b′ + 2h/d (if b′ = 0 then Z = ∅). Note that, in any case, t ≥ γv for each

v ∈ V . This is because d = gcd(H) so H has at least d(d+1)/2 edges, and therefore h ≥ d(d+1)/2

so 2h/d ≥ d+ 1 > βv ≥ γv.
Let {v1, . . . , v|X|} be an ordering of X. For i = 1, . . . , |X| we perform the following process which

assigns edges between Z and X: The process assigns γvi edges between vi and Z in such a way that

after the assignment, the degrees of each pair of vertices of Z differ by at most 1. This can clearly be

done since γvi ≤ t. After the process ends, consider the graph T on the vertices X ∪Z obtained by

the union of S and the edges assigned between X and Z. T clearly satisfies the following properties:

1. Each v ∈ X has degree βv in T .

2. If t divides s then each zi has degree s/t in T . Otherwise, Exactly s mod t vertices of Z have

degree ds/te and the other t− (s mod t) vertices of Z have degree bs/tc.

Recall the second constraint in Lemma 3.8, which states that s ≤ b′d. Thus, s ≤ td and so s/t ≤ d,

and therefore no vertex of Z has degree greater than d in T .

Our next goal is to add to T edges between vertices of Z so that after this addition, the degree of

each vertex of Z will be exactly d. The sum of the degrees of the vertices of Z should therefore

be td after the addition, while the sum of the degrees of the vertices of Z in T is s prior to the

addition. Thus, it suffices to show that there exists a graph R on t vertices, with (td− s)/2 edges,

such that the degrees of each two vertices of R differ by at most one. In fact, in order to show that

11

R exists we only need to show that (td− s)/2 is an integer and that t(t− 1)/2 ≥ (td− s)/2 since it

is a well-known fact that the complete graph on t vertices contains a graph with t′ edges for every

0 ≤ t′ ≤ t(t−1)/2 where the degrees of any two vertices differ by at most 1. The fact that (td−s)/2
is an integer follows from (1), from the fact that t ≡ b mod (2h/d), and from the definition of s

which implies that s ≡
∑
v∈V βv mod 2. The fact that t(t− 1)/2 ≥ (td− s)/2 is proved as follows.

If t ≥ d + 1 then clearly t(t − 1)/2 ≥ (td − s)/2. If t ≤ d then also b′ ≤ d (in fact, t = b′ in this

case). We may therefore use constraint 3 in Lemma 3.8 which states that s ≥ b′(d − b′ + 1) and

thus

t(t− 1)/2 = b′(b′ − 1)/2 = (b′d− b′(d− b′ + 1))/2 ≥ (b′d− s)/2 = (td− s)/2.

After adding to T the required set of edges as described in the previous paragraph, we obtain a

graph T ′ on the vertices X ∪ Z , such that dT ′(v) = βv for v ∈ X and dT ′(z) = d for z ∈ Z. Our

goal in to embed T ′ into G, and this embedding clearly constitutes the graph G∗ in the statement

of the Lemma. We need to show that such an embedding can be done. Namely, we must assign

each zi ∈ Z to a vertex ui ∈ V \X, such that if (zi, v) ∈ T ′ where v ∈ X, then (ui, v) ∈ G, and if

(zi, zj) ∈ T ′ where j < i then (ui, uj) ∈ G. We will perform this assignment sequentially beginning

with z1. Assume that we have already mapped z1, . . . , zi to u1, . . . , ui respectively. We need to

show how zi+1 is mapped. We know exactly which neighbors ui+1 must have. This set of neighbors

contains at most d elements. Since δ(G) ≥ n− ε(H)n, there are at least n− dε(H)n− |X| − i > 0

candidates for the role of ui, so we pick one of them. 2

The following lemma completes the description of the algorithm, and proves its correctness:

Lemma 3.10 Let b′ maximize (2) subject to the constraints of Lemma 3.8. If the first case of

Lemma 3.9 holds for some k′ which satisfies the constraints together with b′, then

P (H,G) =
1
h

(|E| − 1
2

(b′d+
∑
v∈X

βv)).

Otherwise

P (H,G) =
1
h

(|E| − 1
2

(b′d+
∑
v∈X

βv))− 1.

We can verify whether there exists a k′ satisfying the first case of Lemma 3.9 in polynomial time.

Consequently, P (H,G) can be computed in polynomial time.

Proof: By Lemma 3.8, we can compute a pair (k′, b′) which maximizes (2) in O(n) time. Any

other pair which maximizes (2) has the same b′, but may have a different k′. As shown in the proof

of Lemma 3.8, all valid values of k′ achieving the maximum can be computed in O(n) time.

Consider first the case that for some maximizing pair (k′, b′), the first case of Lemma 3.9 holds. In

this case, G∗ is a subgraph of G having (b′d +
∑
v∈X βv)/2 edges, and having δ(G∗) ≤ d. Thus,

12

G′ = G \ G∗ has exactly |E| − (b′d +
∑
v∈X βv)/2 edges, and δ(G′) ≥ δ(G) − d ≥ n(1 − γ(H)).

The other divisibility conditions of Lemma 2.1 are also clearly satisfied by G′, so G′ has an H-

decomposition. Thus,

P (H,G) ≥ P (H,G′) =
1
h

(|E| − 1
2

(b′d+
∑
v∈X

βv)).

Since, by Lemma 3.8, P (H,G) cannot exceed (2), the last inequality is an equality.

Next, consider the case that for every maximizing pair (k′, b′) the first case of Lemma 3.9 does not

hold. This means that P (H,G) cannot reach the value of (2), since if it did, we would have, by

Lemma 3.6, a graph G∗∗ which does satisfy the first case of Lemma 3.9, a contradiction. Therefore,

P (H,G) ≤ 1
h

(|E| − 1
2

(b′d+
∑
v∈X

βv))− 1.

According to Lemma 3.9, there exists a subgraph G∗ of G with ((b′ + 2h/d)d+
∑
v∈X βv)/2 edges,

and having δ(G∗) ≤ d. Thus, G′ = G \G∗ has exactly |E| − ((b′+ 2h/d)d+
∑
v∈X βv)/2 edges, and

δ(G′) ≥ δ(G)− d ≥ n(1− γ(H)). As in the previous case, G′ has an H-decomposition by Lemma

2.1. Thus,

P (H,G) ≥ P (H,G′) =
1
h

(|E| − 1
2

((b′ + 2h/d)d+
∑
v∈X

βv)) =
1
h

(|E| − 1
2

(b′d+
∑
v∈X

βv))− 1.

Since the upper and lower bounds for P (H,G) coincide, the last inequality is an equality.

By Lemma 3.9, we can verify in polynomial time if a maximizing pair (k′, b′) satisfies the first case

of Lemma 3.9 or not. As all valid values of k′ can be computed in O(n) time, we can determine in

polynomial time if some maximizing pair satisfies the first case of Lemma 3.9. Thus, by computing

k(H,G) in O(n5 log n) time (Lemma 3.7), and then computing all maximizing pairs (k′, b′) in O(n)

time (Lemma 3.8) and applying Lemma 3.9 to each of them (if b′ ≥ d − 1 or b′ = 0 we do not

even need to apply the algorithmic part of Lemma 3.9 since we are guaranteed that the first case

of Lemma 3.9 holds), we get by the current Lemma that P (H,G) can be computed in polynomial

time 2

In case the graph G is d-divisible, Lemma 3.8 already establishes a closed formula for P (H,G).

Since in this case, X = ∅, and k(H,G) = 0, Lemma 3.8 states that P (H,G) is at most the maximum

possible value of |E|/h − b′d/(2h) subject to b′ ≡ b mod (2h/d) and b′ /∈ {1, . . . , d}. Lemmas 3.9

and 3.10 show that for these values of b′, P (H,G) is, in fact, exactly the maximum possible value

of |E|/h − b′d/(2h) subject to the above conditions on b′. Solving this, we get that b′ = b if

b /∈ {1, . . . , d} and b′ = b+ 2h/d if b ∈ {1, . . . , d}. In the first case

P (H,G) = |E|/h− bd/(2h) = b|E|/hc = b
∑
v∈V αv
2h

c.

13

In the second case,

P (H,G) = |E|/h− (b+ 2h/d)d/(2h) = |E|/h− bd/(2h)− 1 = b|E|/hc − 1 = b
∑
v∈V αv
2h

c − 1.

Note that, by the definition of b, 1 ≤ b ≤ d occurs if and only if 2|E|/d mod (2h/d) is in the range

1, . . . , d, which is equivalent to saying that 0 < |E| mod h ≤ d2/2. 2

4 Covering dense graphs

In this section we prove Theorem 1.2. Before we start with the proof, we need several definitions

and a lemma. Recall that a multigraph is a graph in which multiple edges and loops are allowed.

During the rest of this section, all multigraphs considered are assumed to have no loops. The degree

of a vertex v in a multigraph is defined as the number of edges incident with v, taking multiplicity

into account (i.e. an edge with multiplicity k contributes k to the degrees of its incident vertices).

For a multigraph M , let u(M) denote the underlying graph, where every edge only has multiplicity

one. The next lemma is crucial to our proof of Theorem 1.2.

Lemma 4.1 Let H be a graph with h ≥ 2 edges, and no isolated vertices. Then, if G is an n-vertex

graph with δ(G) ≥ (1− 1/(20h3))n, and G∗ is an n-vertex multigraph, with ∆(G∗) ≤ h, such that

u(G∗) is a subgraph of G, then there exists an n-vertex multigraph R with the following properties:

1. G∗ is a sub-multigraph of R, and u(R) is a subgraph of G. (One can imagine this as u(R)

being a sandwich between G and u(G∗)).

2. R \G∗ is a graph (i.e. the edges of R not belonging to G∗ have multiplicity one, or, in other

words, E(R \G∗) = E(u(R) \ u(G∗))).

3. ∆(R) ≤ 4h2.

4. R has an H-decomposition.

Proof: We shall prove the lemma by induction on e(G∗), the number of edges of G∗. In fact, we

will show that if e(G∗) = k, then one may construct R, having the properties guaranteed by the

lemma, with the additional requirements that

e(R) ≤ kh, (4)

and that for every vertex v,

dR(v) ≤ h · dG∗(v) + 3h2 ≤ h2 + 3h2 ≤ 4h2. (5)

14

The basis of the induction, k = 0, holds since in this case R = G∗ is the empty graph on n isolated

vertices, and all properties trivially hold. Now suppose e(G∗) = k+1. Put Gk = G∗\{(a, b)} where

(a, b) is an arbitrary edge of G∗. Since e(Gk) = k, we have, according to the induction hypothesis,

that there exists a multigraph Rk, with all the above properties, with respect to Gk and G.

If (a, b) ∈ Rk, we may take R = Rk, and we are done. Assume, therefore, that (a, b) /∈ Rk. Since

e(Rk) ≤ kh, and since k = e(Gk) ≤ nh/2 we have e(Rk) ≤ nh2/2. Thus, there are at least n/2

vertices with degree at most 2h2 in Rk. Since ∆(Rk) ≤ 4h2 we have, therefore, that there is a set

of vertices X, with |X| ≥ n/2 − 8h2 − 2, such that for every v ∈ X, dRk(v) ≤ 2h2, v 6= a, v 6= b,

(v, a) /∈ Rk and (v, b) /∈ Rk. We can find in X a large subset X ′ with the additional property that

every v ∈ X ′ is connected to both a and b in G. Since δ(G) ≥ n(1 − 1/(20h3)) there are at most

n/(10h3) vertices in G which are not connected to either a or b. Thus the desired X ′ contains

|X ′| ≥ |X|−n/(10h3) vertices. We claim that there is an independent set T ⊂ X ′ in Rk containing

t = |T | vertices, where |T |+2 is the number of vertices of H, and furthermore, T induces a complete

graph in G. Note first that G[X ′], has high minimum degree. Indeed, for v ∈ X ′,

dG[X′](v) ≥ |X ′| − n

20h3
≥ |X ′|(1− 1

4h3
)

where the last inequality uses the fact that |X ′| ≥ n/5. This, in turn, is true since

|X ′| ≥ |X| − n/(10h3) ≥ n/2− 8h2 − 2− n/(10h3) ≥ n/5

which follows from the facts that n ≥ 20h3, and that h ≥ 2. According to Turán’s Theorem,

G[X ′] contains a complete graph on a set Y of 4h3 vertices. It now suffices to show that Rk[Y]

contains the required independent subset T . Since H has no isolated vertices, it has at most 2h−2

vertices, and thus it suffices to show that Rk[Y] has an independent set of size 2h − 2. Since

∆(Rk[Y]) ≤ ∆(Rk[X]) ≤ 2h2, it is enough to show that |Y |/(2h2 + 1) ≥ 2h− 2. Indeed, this holds

since |Y | = 4h3. We have proved that the required set T exists. Note that the definitions of X and

X ′ imply that Z = T ∪ {a, b} is an independent set of Rk, with exactly the same cardinality as the

vertex-set of H, and G[Z] is a complete graph. We can now arbitrarily embed a copy of H on the

vertex set Z, such that (a, b) is an edge of this copy. Let F denote the set of edges of this copy.

Clearly, |F | = h and (a, b) ∈ F . Put R = Rk ∪ F . Our construction shows that:

1. G∗ is a sub-multigraph of R. (since Gk is a spanning sub-multigraph of Rk, and since

(a, b) ∈ R).

2. u(R) is a spanning subgraph of G, since u(Rk) is a spanning subgraph of G, and u(R) is

obtained from u(Rk) by adding a copy of H containing only edges of G, since these edges

belong to G[Z].

15

3. E(R \ G∗) = E(Rk \ Gk) ∪ (F \ {a, b}). This is an edge-disjoint union of two graphs, and

therefore R \G∗ is a graph, as required.

4. If v /∈ Z then dR(v) = dRk(v) ≤ h · dGk(v) + 3h2 ≤ h · dG∗(v) + 3h2. If v ∈ T then

dR(v) ≤ dRk(v) + h ≤ 2h2 + h ≤ h · dG∗(v) + 3h2. Finally, if v ∈ {a, b} then dR(v) ≤
dRk(v) + h ≤ h · dGk(v) + 3h2 + h = h · dG∗(v) + 3h2. In any case, we have shown that

dR(v) ≤ h · dG∗(v) + 3h2 for every vertex v, as required by (5).

5. R has an H-decomposition since Rk has an H-decomposition and since R = Rk ∪F where F

is a copy of H, and no edge of F appears in Rk.

6. e(R) = e(Rk) + h ≤ kh+ h = (k + 1)h, as required by (4).

This completes the induction step, and hence the proof. 2

Proof of Theorem 1.2 Given H, we choose

N(H) = max{N0(H),
8h2

γ(H)
, 1000h5}

where N0(H) and γ(H) are as in Lemma 2.1. We also choose

ε(H) = min{γ(H)
2

,
1

20h3
,

1
100d4

}.

Now let G be a graph with n > N(H) vertices and δ(G) > (1 − ε(H))n. We need to show how

C(H,G) can be computed in O(n2.5) time, and, moreover, supply a closed formula for C(H,G) in

case G is either d-divisible or nowhere d-divisible. There are many similarities between the proof

of the packing result in Section 3, and the proof here. Whenever we encounter such similarities, we

shall only note them, instead of reproving them.

Let 0 ≤ b < 2h/d satisfy (
∑
v∈V αv)/d ≡ −b mod (2h/d) (note the minus sign). As in Section

3, since 2h/d is always an integer, and since
∑
v∈V (αv/d) is a sum of integers, we have that b is

well-defined. Define βv = αv − dG(v). (recall that αv, in the covering case, is the degree of v

rounded up to the closest multiple of d). Note that 0 ≤ βv < d. A similar reasoning to the one

shown in Section 3 asserts that bd+
∑
v∈V βv is even. The proof of Theorem 1.2 is split into several

lemmas. We begin by proving a lower bound for C(H,G).

Lemma 4.2

C(H,G) ≥ d
∑
v∈V αv
2h

e.

Proof: Let L be an arbitrary H-covering of G. Let s denote the cardinality of L. Let G′ be the

n-vertex multigraph obtained by the edge-union of all the members of L. That is, an edge of G′

16

has multiplicity k if it appears in k members of L. Clearly, G′ contains sh edges. Since G is a

spanning subgraph of G′ (in fact, G = u(G′)), we may define the multigraph G∗ = G′ \ G. G∗

contains sh − e(G) edges. The degree of every vertex in G′ is 0 mod d and so the degree of every

vertex v in G∗ is (−dG(v)) mod d. Therefore, the number of edges in G∗ satisfies

sh− e(G) =
cd+

∑
v∈V βv

2

for some non-negative integer c. In particular, e(G) = (−
∑

v∈V βv+cd

2) mod h. This implies that

2e(G) +
∑
v∈V βv

d
=
∑
v∈V αv
d

= (−c) mod (2h/d).

Thus, we must have c ≥ b. Therefore,

s =
e(G) +

cd+
∑

v∈V βv
2

h
≥
e(G) +

bd+
∑

v∈V βv
2

h
= d

∑
v∈V αv
2h

e.

Since L was an arbitrary H-covering, we have C(H,G) ≥ d
∑

v∈V αv
2h e. 2

Let X = {v ∈ V | βv > 0}. X contains all the vertices whose degrees in G are not divisible by

d. Trivially, if G is nowhere d-divisible, then |X| = n. The next lemma supplies an upper bound

for C(H,G) in case X ≥ n/(10d3).

Lemma 4.3 If |X| ≥ n/(10d3) then C(H,G) ≤ d
∑
v∈V αv/(2h)e. Furthermore, there exists an

H-covering of G which obtains this upper bound, in which every edge of G is covered at most twice.

Proof: We start by choosing an arbitrary set B of b vertices of X. For each v ∈ B define

νv = d + βv. For each v ∈ X \ B define νv = βv. Exactly as in the proof of Lemma 3.3, we know

that there exists a spanning subgraph of G[X], denoted by G∗, such that the degree of each vertex

v in G∗ is exactly νv (recall that this is done by applying Lemma 2.2 to the graph G[X]). We shall

consider G∗ as an n-vertex subgraph of G by adding to G∗ n− |X| isolated vertices.

We now wish to apply Lemma 4.1 to G∗. (Although Lemma 4.1 assumes that G∗ is a multigraph,

we only use here the special case where G∗ is a graph). This can be done since ∆(G∗) ≤ 2d− 1 ≤
d(d+1)/2 ≤ h, since δ(G) ≥ (1−1/(20h3))n, and since G∗ is a subgraph of G. According to Lemma

4.1, there exists a spanning subgraph of G, denoted by R, which contains G∗, δ(R) ≤ 4h2, and

R has an H-decomposition. Let G′ be the spanning subgraph of G which is obtained by deleting

from G the edges of R which are not in G∗. We claim that d | gcd(G′). To see this, note that the

fact that R has an H-decomposition implies that d | gcd(R). Since the degree of each vertex v of

G∗ is βv mod d, it follows that the degree of v in R \G∗ is (−βv) mod d. Since the degree of v in

17

G is also (−βv) mod d, it follows that the degree of v in G′ is 0 mod d. Now we claim that e(G′) is

0 mod h. This is because e(R) = 0 mod h, and since, using the definition of b, we have

e(G′) = e(G)−e(R)+e(G∗) = e(G)−e(R)+
bd+

∑
v∈X βv

2
=
d

2
(
∑
v∈V αv
d

+ b))−e(R) ≡ 0 mod h.

Also note that

δ(G′) ≥ δ(G)− 4h2 ≥ (1− ε(H))n− 4h2 ≥ (1− γ(H))n,

where the last inequality follows from the facts that n ≥ 8h2/γ(H) and ε(H) ≤ γ(H)/2. Since,

also, n > N0(H), we have that G′ satisfies the conditions of Lemma 2.1, and therefore G′ has an

H-decomposition. The union of the H-decomposition of G′ and the H-decomposition of R yields a

covering of G in which all the edges of G, but the edges of G∗, are covered once. The edges of G∗

are covered twice. The overall number of copies of H in both decompositions is, therefore, exactly

(e(G) + e(G∗))/h. Thus,

C(H,G) ≤ e(G) + e(G∗)
h

=
e(G) + (bd+

∑
v∈X βv)/2

h
=

d

2h
(
∑
v∈V αv
d

+ b)) = d
∑
v∈V αv
2h

e.

2

By Lemma 4.2 and Lemma 4.3 we have the following corollary:

Corollary 4.4 If |X| ≥ n/(10d3) then C(H,G) = d
∑

v∈V αv
2h e. Furthermore, there exists an optimal

covering in which every edge is covered at most twice.

Corollary 4.4 proves Theorem 1.2 in case |X| ≥ n/(10d3). It includes the case where G is

nowhere d-divisible, and shows that even in case n/(10d3) ≤ |X| < n, there is also a closed formula

for C(H,G), and, in particular, an O(n2) algorithm, since in order to compute the formula, one

only needs to know the degree sequence of G.

For the remainder of this section we may and will assume that 0 ≤ |X| < n/(10d3). Consider

an optimal covering of the edges of G with copies of H, and let G′ denote the multigraph obtained

by the union of all the copies of H in the optimal covering. Clearly, G is a spanning subgraph of

G′. Put G∗ = G′ \ G. Note that G∗ may be a multigraph since there may be edges covered more

than twice in the optimal covering. Obviously, the degree of each vertex v of V in G∗ satisfies

dG∗(v) ≡ βv mod d. Our goal is to determine the number of edges of G∗. For this purpose we need

the following lemma:

Lemma 4.5 There exists a sub-multigraph of G′, denoted by G∗∗ which has the same number of

edges as G∗, each vertex v ∈ X satisfies dG∗∗(v) = βv, and each v ∈ V \X has dG∗∗(v) ≡ 0 mod d.

18

Proof: The proof is an analog to the proof of Lemma 3.6 in Section 3. In fact, it is simpler, since

we allow multiple edges in G∗∗, and we allow vertices of V \ X to have degrees larger than d (as

long as they are multiples of d). Thus, we do not need any sparsity requirements placed on G∗.

Hence we do not need an equivalent of Lemma 3.5 as we did in the proof of Lemma 3.6 (although

an equivalent of Lemma 3.5 does hold for the covering case as well). Considering these relaxations,

the details of the proof can be found in Lemma 3.6. 2

The next three lemmas together supply an algorithm for computing C(H,G) in case |X| <
n/(10d3). The last one also proves the correctness of the algorithm. Let k(H,G) denote the

maximum number of edges in a multigraph S on the vertices of X, where each edge of S is a copy

of an edge G, and each v ∈ X has degree at most βv in S.

Lemma 4.6 There is an algorithm whose running time is O(n2.5), which computes k(H,G).

Proof: We reduce the problem of computing k(H,G) to the problem of computing a maximum

matching on a graph Y . We define Y as follows: For each v ∈ X, create βv copies of v in Y , and

for each (u, v) ∈ G[X], connect every copy of v in Y to every copy of u in Y . Clearly, a maximum

matching in Y is equivalent to a multigraph S on the vertices of X with the maximum possible

number of edges, satisfying the required constraints. Note that Y has
∑
v∈X βv = O(n) vertices, so

we can compute k(H,G) in O(n2.5) time using the algorithm of Even and Kariv [8]. 2

Lemma 4.7 C(H,G) is at least the minimum possible value of

1
h

(|E|+ 1
2

(b′d+
∑
v∈X

βv)), (6)

subject to the following constraints:

1. 0 ≤ b′ ≡ b mod (2h/d).

2. b′d ≥
∑
v∈X βv − 2k′, where 0 ≤ k′ ≤ k(H,G).

3. In case b′ = 1 it is also required that
∑
v∈X βv − 2k′ ≥ d.

This minimum can be computed in O(n) time (assuming all values except k′ and b′ are known).

Proof: Let k′ denote the number of edges of the multigraph G∗∗ of Lemma 4.5, in its part induced

by the vertices of X. Clearly, 0 ≤ k′ ≤ k(H,G). Since each vertex in V \X has degree divisible by

d in G∗∗, the sum of the degrees of the vertices of V \X in G∗∗ is b′d for some b′ ≥ 0. We claim

that b′ ≡ b mod (2h/d). This is because the sum of the degrees of G∗∗ or G∗ (it is the same by

19

Lemma 4.5) is
∑
v∈X βv + b′d, the sum of the degrees of G′ is 2h · C(H,G) (since it is a union of

the members of an optimal covering) and thus

2hC(H,G)−
∑
v∈X

βv − b′d = 2|E| =
∑
v∈V

dG(v) =
∑
v∈V

(αv − βv). (7)

Using (7), the definition of b, and recalling that βv = 0 for v ∈ V \X we get that

(2h/d)C(H,G)− b′ =
∑
v∈V

αv/d ≡ −b mod (2h/d).

It also follows from (7), that

C(H,G) =
1
h

(|E|+ 1
2

(b′d+
∑
v∈X

βv)).

The sum of the degrees in G∗∗ between X and V \X is
∑
v∈X βv− 2k′, and therefore we must have

that b′d ≥
∑
v∈X βv − 2k′. Finally, consider the case where b′ = 1. In this case, there are no edges

of G∗∗ with both endpoints in V \X. Thus, there are at least d edges of G∗∗ between X and V \X.

Hence we must have
∑
v∈X βv − 2k′ ≥ d.

We have proved that there exist b′ and k′ satisfying the constraints of the lemma, such that

C(H,G) = 1
h(|E| + 1

2(b′d +
∑
v∈X βv)). Hence, by trying all the possible combinations of b′ and

k′ satisfying the constraints, we have that C(H,G) is at least the minimum possible value of (6)

subject to the constraints. Computing this minimum can be done in O(n) time since 0 ≤ k′ ≤
k(H,G) = O(n) and for every possible value of k′ in this range, the minimum possible value of b′

satisfying the constraints can be found in constant time. 2

We will now show that the lower bound for C(H,G) computed in Lemma 4.7, is, in fact, the

exact value of C(H,G).

Lemma 4.8 C(H,G) is equal to the minimum value of (6) subject to the constraints of Lemma

4.7.

Proof: Let b′ and k′ satisfy the constraints of Lemma 4.7, such that (6) is mimimal. According

to Lemma 4.6, and since 0 ≤ k′ ≤ k(H,G) we know there exists a multigraph S on the vertices of

X, which satisfies the following three requirements:

1. Each edge of S is a copy of an edge of G.

2. S has k′ edges.

3. Each v ∈ X has degree at most βv in S.

For v ∈ X, define γv = βv − dS(v), and define s =
∑
v∈X γv =

∑
v∈X βv − 2k′. Our next goal is to

create a multigraph G∗ on the vertices of V which has the property that each edge of G∗ is a copy

20

of an edge of G, Each v ∈ X has degree βv in G∗, and exactly b′ vertices of V \X have degree d,

while the other n− |X| − b′ vertices are isolated. The multigraph S will be the sub-multigraph of

G∗ induced by X. It remains to define the other edges of G∗. Let Z = {z1, . . . , zb′} be a set of new

vertices. (If b′ = 0, then Z = ∅, but in this case also γv = 0 for all v ∈ X by the constraints in

Lemma 4.7.)

Let {v1, . . . , v|X|} be an ordering of X. For i = 1, . . . , |X| we perform the following process which

assigns edges between Z and X: The process assigns γvi edges between vi and Z in such a way

that after the assignment, the degrees of each pair of vertices of Z differ by at most 1. Note that

the process may introduce multiple edges if some γvi is greater than b′. After the process ends,

consider the multigraph T on the vertices X ∪Z obtained by the union of S and the edges assigned

between X and Z. T clearly satisfies the following properties:

1. Each v ∈ X has degree βv in T .

2. If b′ divides s then each zi has degree s/b′ in T . Otherwise, Exactly s mod b′ vertices of Z

have degree ds/b′e and the other b′ − (s mod b′) vertices of Z have degree bs/b′c.

Recall the second constraint in Lemma 4.7, which states that s ≤ b′d. This implies that no vertex

of Z has degree greater than d in T .

Our next goal is to add to T edges between vertices of Z so that after this addition, the degree of

each vertex of Z will be exactly d. The sum of the degrees of the vertices of Z should therefore

be b′d after the addition, while the sum of the degrees of the vertices of Z in T is s prior to the

addition. Thus, it suffices to show that there exists a multigraph Q on b′ vertices, with (b′d− s)/2
edges, such that the degrees of each two vertices of Q differ by at most one. In fact, in order to

show that Q exists we only need to show that (b′d − s)/2 is a nonnegative integer and that, if

b′d > s then b′ > 1 (since for any b′ ≥ 2 there trivially exists a multigraph on b′ vertices containing

as many edges as we want, and with the property that the degrees of any two vertices differ by

at most one). The fact that b′d ≥ s follows from the second constraint of Lemma 4.7. The fact

that (b′d − s)/2 is an integer follows from the fact that bd +
∑
v∈V βv is even, from the fact that

b′ ≡ b mod (2h/d), and from the definition of s which implies that s ≡
∑
v∈V βv mod 2. Now if

b′ = 1 it follows from the third constraint in Lemma 4.7 that s ≥ d, so we must have that if b′d > s

then b′ > 1.

After adding to T the required set of edges as described in the previous paragraph, we obtain a

multigraph T ′ on the vertices X∪Z , such that dT ′(v) = βv for v ∈ X and dT ′(z) = d for z ∈ Z. Our

goal in to map the vertices of Z to vertices of V \X, such that if zi ∈ Z is mapped to some ui ∈ V \X
then for each (zi, v) ∈ T ′ where v ∈ X, then (ui, v) ∈ G, and that if (zi, zj) ∈ T ′ where j < i,

21

then (ui, uj) ∈ G. Such a mapping clearly constitutes the required multigraph G∗ (the vertices of

V \ (X ∪ {u1, . . . , ub′}) are the isolated vertices of G∗). The mapping can clearly be done in the

same manner shown in Lemma 3.9. (One should notice that the inequality n−dε(H)n−|X|− i > 0

used in Lemma 3.9 is valid here since i ≤ b′, and the minimum value of b′ satisfying the constraints

of Lemma 4.7 is clearly at most 2h/d+
∑
v∈X βv < 2h/d+ d|X| << n).

Having created G∗, we now apply Lemma 4.1 to G∗. The conditions of Lemma 4.1 are satisfied

since δ(G∗) ≤ d < h. Therefore, let R be the multigraph guaranteed by Lemma 4.1. Let G′ be

the subgraph of G obtained by deleting from G the edges of R which are not in G∗. By the same

arguments given in Lemma 4.3, we conclude that G′ satisfies the conditions of Lemma 2.1. (The

only difference is that we now use b′ instead of b but since b′ ≡ b mod (2h/d), all the arguments given

in Lemma 4.3 still hold). Thus, the union of the H-decomposition of G′ and the H-decomposition

of R is an H-covering of G. The number of elements in this covering is

(e(R) + e(G′))
h

=
|E|+ e(G∗)

h
=

1
h

(|E|+ 1
2

(b′d+
∑
v∈X

βv)).

2

By lemma 4.8, in order to compute C(H,G) we need only do the follwing: First, we compute

all the values of βv. This is done in linear time in ths size of G, namely in O(n2) time. We then

compute k(H,G) as shown in Lemma 4.6. This is done in O(n2.5) time. We now compute the

minimum of (6) subject to the constraints of Lemma 4.7. This is done in O(n) time as shown there.

This minimum is C(H,G), as proved in Lemma 4.8. The overall running time is, therfore, O(n2.5).

In case the graph G is d-divisible, Lemma 4.7 establishes a closed formula for C(H,G). Since

in this case, X = ∅, and k(H,G) = 0, Lemma 3.8 states that C(H,G) is at least the minimum

possible value of |E|/h+ b′d/(2h) subject to b′ ≡ b mod (2h/d) and b′ 6= 1. Lemma 4.8 shows that

C(H,G) is, in fact, exactly the minimum possible value of |E|/h + b′d/(2h) subject to the above

conditions on b′. Solving this, we get that b′ = b if b 6= 1 and b′ = b+ 2h/d if b = 1. In the first case

C(H,G) = |E|/h+ bd/(2h) = d|E|/he = d
∑
v∈V αv
2h

e.

In the second case,

C(H,G) = |E|/h+ (b+ 2h/d)d/(2h) = |E|/h+ bd/(2h) + 1 = d|E|/he+ 1 = d
∑
v∈V αv
2h

e+ 1.

Note that, by the definition of b, b = 1 occurs if and only if 2|E|/d ≡ −1 mod (2h/d), which is

equivalent to saying that h divides |E|+ d/2. 2

22

5 Concluding remarks, extensions and related problems

We begin this section with several remarks about Theorems 1.1 and 1.2.

1. Theorems 1.1 and 1.2 give a closed formula for computing the H-packing and H-covering

numbers of dense graphs G = (V,E) which are either d-divisible or nowhere d-divisible, for

every fixed graph H. Fixing H, in order to compute the formula, we only need to know

the degrees of G, and we therefore have a polynomial algorithm requiring only O(V 2) time,

which computes the H-packing and H-covering numbers of G. In case G is neither d-divisible

nor nowhere d-divisible, we can still compute the H-packing and H-covering numbers in

polynomial time. This fact should be compared with the result of Dor and Tarsi [7], mentioned

in the introduction, which implies in particular that for every fixed connected graph H with

at least three edges, it is NP-Hard to compute the H-Packing and H-Covering numbers of a

general input graph. Thus, there must be restrictions placed on the input graph G, in order

to obtain a closed formula, or a polynomial time algorithm.

2. If G only satisfies the density constraints, but is neither d-divisible nor nowhere d-divisible,

we can show that there may be large deviations from the closed formulas in Theorems 1.1

and 1.2. Let k be any positive integer, and consider, e.g. the packing formula of Theorem 1.1.

We shall construct an example of a dense graph G showing that, e.g. P (K3, G) differs from

the formula by at least k. Let s ≥ 6k be an even number. Let n be any odd integer satisfying

ε(K3)n ≥ s. Now let G be the n-vertex complete graph from which the edges of a complete

s-vertex graph have been deleted. Note that δ(G) = n − s ≥ (1 − ε(K3))n. s vertices of G

have degree n − s which is odd, while n − s vertices have degree n − 1 which is even. Since

d = gcd(K3) = 2, G is neither d-divisible nor nowhere d-divisible. If we apply the formula of

Theorem 1.1 to G we obtain the value (n2 − n− s2)/6. However, in any packing of G, every

vertex with degree n − s is incident with at least one uncovered edge, and no such edge is

counted twice, since any two vertices with degree n− s are not adjacent in G. Thus,

P (K3, G) ≤ e(G)− s
3

=
n2 − n− s2

6
− s

6
≥ n2 − n− s2

6
− k.

Note that in our example k can even be as large as ε(K3)n/6, i.e. a linear function of n.

Similar examples for any other graph H with gcd(H) ≥ 2 can also be easily constructed.

Analogous examples achieving values which are arbitrary larger than the covering formula of

Theorem 1.2 can also be constructed. Finally, recall that if gcd(H) = 1, then every graph is

d-divisible, and therefore Theorems 1.1 and 1.2 do not impose any divisibility restrictions on

G.

23

3. The algorithm we have presented for computing P (H,G) for general dense graphs, runs in

polynomial time, but the degree of the polynomial is not small (it is at least 5). It would be

interesting to decide whether there exists an algorithm which is considerably faster. Such an

algorithm would probably need to avoid the application of the maximum weighted matching

algorithm that we have used.

We now turn our attention to related problems and extensions of Theorems 1.1 and 1.2.

1. Let L be a maximum packing of H in G. The leave-graph of L is the graph induced by all

the edges of G that are not covered by a member of L. The structure of the leave-graph of

H in G = Kn has been studied in [6, 11] and all known results are for special cases of H.

The proof of Theorem 1.1 constructs a maximum packing, where the leave graph, denoted

by G∗ in the proof, has, in certain cases, an imposed degree constraint. Namely, in case G

is nowhere d-divisible, each vertex v ∈ V must have degree νv in the leave-graph (recall the

definition of νv in the proof of Lemma 3.3). In case G is d divisible, we also know the exact

degree sequence of the leave-graph, i.e b vertices with degree d and n− b vertices with degree

0 (except for the special case where 1 ≤ b ≤ d in which case there are b+ 2h/d vertices with

degree d and n− b− 2h/d vertices with degree 0). Since these are the only restrictions placed

on G∗ in the proof, any spanning subgraph of G realizing these degree requirements forms

a leave-graph. Consequently, Theorem 1.1 completely solves the leave-graph problem for all

graphs G which are either d-divisible or nowhere d-divisible. In particular, the structure of

the leave-graphs for Kn is determined, provided n is large enough.

2. Let L be a minimum covering of H in G. The excess-graph of L is the multigraph induced by

the edges of G which appear in more than one copy of L. The multiplicity of an edge in the

excess-graph is one less than the number of copies of L in which it appears. The structure

of the excess-graph of H in G = Kn has been studied in [6, 12] and all known results are for

special cases of H. As in the case of the leave-graph, the proof of Theorem 1.2 constructs a

minimum covering, where the excess-graph, denoted by the multigraph G∗ in the proof, has an

imposed degree constraint, in case G is either d-divisible or nowhere d-divisible. These degree

constraints are completely determined in the theorem, and any multigraph which meets these

degree constraints is a valid excess-graph. Consequently, Theorem 1.2 completely solves the

excess-graph problem for all graphs G satisfying the conditions of the theorem. In particular,

the structure of the excess-graphs for Kn is determined, provided n is large enough.

3. The overlap of an H-covering L of G is defined as the maximum number of appearances of

an edge in members L. It is known [2] that if n ≥ n(H), then there exists an H-covering of

24

Kn with overlap at most 2. Etzion [2] has conjectured that CO(H,Kn)− C(H,Kn) ≤ c(H)

where CO(H,G) is the minimum number of copies in an H-covering of G with overlap 2, and

c(H) is a constant depending only on H. This conjecture has been solved in [4]. Theorem

1.2 shows that Etzion’s conjecture is also valid for many graphs which are not complete. To

see this, note that, by Corollary 4.4, CO(H,G) = C(H,G) in case at least n/(10d3) vertices

are not divisible by d, which includes the case where G is nowhere d-divisible. Also, the

multigraph T ′ constructed in Lemma 4.8 can, in fact, be a graph, if, say, X = ∅ and if we

allow b′ to be larger than d (as in the proof of the lemma 3.9). This can be done by adding

2h/d to b′ in case 1 ≤ b′ ≤ d. This addition still maintains the constraints of Lemma 4.7.

The effect of adding 2h/d to b′ is an increase of h to the number of edges of G∗ and, thus,

the covering obtained is one greater than the optimal, but has the advantage that every edge

is covered at most twice. It follows that CO(H,G) ≤ C(H,G) + 1 in case G is d-divisible.

This clearly solves and sharpens the problem posed by Etzion, and extends it to a large class

of graphs G.

6 Acknowledgment

The authors wish to thank Alex Rosa for his encouragement.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.

[2] Y. Caro, Y. Roditty and Y. Schonheim, Covering the edges of the complete graph with minimum

overlap, submitted.

[3] Y. Caro and R. Yuster, Packing graphs: The packing problem solved, Elect. J. of Combin. 4

(1997), #R1.

[4] Y. Caro and R. Yuster, Covering graphs: The covering problem solved, submitted.

[5] Y. Caro and R. Yuster, Efficient covering designs of the complete graph, Elect. J. of Combin.

4 (1997), #R10.

[6] C.J. Colbourn and J.H. Dinitz, CRC Handbook of Combinatorial Design, CRC press 1996.

[7] D. Dor and M. Tarsi, Graph decomposition is NPC - A complete proof of Holyer’s conjecture,

Proc. 20th ACM STOC, ACM Press (1992), 252-263.

25

[8] S. Even and O. Kariv, An O(n2.5) algorithm for maximum matching in general graphs, Proc.

16th IEEE FOCS, (1975), 100-112.

[9] Z. Galil, S. Micali and H.N. Gabow, An O(EV log V) algorithm for finding a maximal weighted

matching in general graphs, Siam J. Comput. 15 (1986), 120-130.

[10] T. Gustavsson, Decompositions of large graphs and digraphs with high minimum degree, Doc-

toral Dissertation, Dept. of Mathematics, Univ. of Stockholm, 1991.

[11] D.G. Hoffman, C.C. Lindner, M.J. Sharry and A.P. Street, Maximum packing of Kn with

copies of K4 \ {e}, Aeq. Math. 51 (1996), 247-269.

[12] C.C Lindner and A.P. Street, Simple maximum coverings of Kn with copies of K4 \ {e}, Aeq.

Math. 52 (1996), 284-301.

[13] W.T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.

26

