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Abstract

We consider powers of regular graphs defined by the weak graph product and give a character-
ization of maximum-size independent sets for a wide family of base graphs which includes, among
others, complete graphs, line graphs of regular graphs which contain a perfect matching and Kneser
graphs. In many cases this also characterizes the optimal colorings of these products.

We show that the independent sets induced by the base graph are the only maximum-size
independent sets. Furthermore we give a qualitative stability statement: any independent set of
size close to the maximum is close to some independent set of maximum size.

Our approach is based on Fourier analysis on Abelian groups and on Spectral Techniques. To this
end we develop some basic lemmas regarding the Fourier transform of functions on {0, . . . , r− 1}n,
generalizing some useful results from the {0, 1}n case.

1 Introduction

Consider the following combinatorial problem:
Assume that at a given road junction there are n three-position switches that control the red-

yellow-green position of the traffic light. You are told that whenever you change the position of all
the switches then the color of the light changes. Prove that in fact the light is controlled by only one
of the switches.

The above problem is a special case of the problem we wish to tackle in this paper, characterizing
the optimal colorings and maximal independent sets of products of regular graphs. The configuration
space of the switches described above can be modeled by the n-fold product of K3. Let us begin by
defining the weak graph product of two graphs.

The weak product of G and H, denoted by G×H is defined as follows: the vertex set of G×H is
the Cartesian product of the vertex sets of G and H. Two vertices (g1, h1) and (g2, h2) are adjacent
in G×H if g1g2 is an edge of G and h1h2 is an edge of H. The “times” symbol, ×, is supposed to be
reminiscent of the weak product of two edges: | × − = ×. In this paper “graph product” will always
mean the weak product.
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In the first part of the paper we consider the interesting special case of the product of complete
graphs on r > 2 vertices,

G = Kn
r = ×n

j=1Kr.

We then discuss a more general setting, considering other r-regular graphs as well.
When G = Kn

r , we identify the vertices of G in the obvious way with the elements of Zn
r . Recalling

the definition of the product, two vertices are adjacent in G iff the corresponding vectors differ in
every coordinate. Clearly one can color G with r colors by choosing a coordinate i and coloring every
vertex according to its ith coordinate. The following theorem asserts that if r > 2 then these are the
only r-colorings. Here, and in what follows, we denote by |H| the number of vertices of a graph H.

Theorem 1.1 Let G = Kn
r , and assume r ≥ 3. Let I be an independent set with |I| = |G|/r. Then

there exists a coordinate i ∈ {1, . . . , n} and k ∈ {0, . . . , r − 1} such that

I = {v : vi = k}.

Consequently, the only colorings of G by r colors are those induced by colorings of one of the factors
Kr.

Greenwell and Lovász [18] proved the above theorem (and actually, a somewhat stronger statement)
more than a quarter of a century ago. See also [28] for a similar result. The novelty in this paper
is the proof we supply that uses Fourier analysis on the group Zn

r . Our approach also allows us to
deduce a stability version of the above theorem:

Theorem 1.2 For every r ≥ 3 there exists a constant M = M(r) such that for any ε > 0 the
following is true. Let G = Kn

r . Let J be an independent set such that |J |
|G| = 1

r − ε. Then there exists

an independent set I with |I|
|G| = 1

r such that |J4I|
|G| < Mε.

Here “4” denotes the symmetric difference. What the above theorem tells us is (in conjunction
with Theorem 1.1) that any independent set that is close to being of maximum-size is close to being
determined by one coordinate. We do not know of any purely combinatorial proof of this result.

The results in both theorems above can be extended to other base graphs. Let α(G) denote the
maximum possible size of an independent set in a graph G. The following observation determines
α(Hn) for any vertex transitive base graph H, in terms of α(H) and |H|.

Proposition 1.3 For any vertex transitive graph H and for any integer n ≥ 1, if G = Hn then

α(G)
|G|

=
α(H)
|H|

.

After the simple proof of this proposition (some special cases of which are proved in [12]), we will pro-
vide some examples showing that the above equality does not necessarily hold without the transitivity
assumption.

The relevance of graph eigenvalues to independent sets in graphs is well known and can be traced
back to the old result that the independence number of any regular graph H on r vertices in which the
eigenvalues of the adjacency matrix are µ1 ≥ µ2 · · · ≥ µr, is at most −rµr/(µ1 − µr). A proof of this
fact, as well as of the related results on the connection between the Shannon capacity of a graph and
its eigenvalues, can be found in [26]. This bound is tight for many graphs H including, for example,
complete graphs and the Petersen graph. It turns out that the results in Theorem 1.1 and in Theorem
1.2 can be extended to any connected non-bipartite regular base graph H for which the above bound
is tight.
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Theorem 1.4 Let H be a connected d-regular graph on r vertices and let d = µ1 ≥ µ2 ≥ · · · ≥ µr be
its eigenvalues. If

α(H)
r

=
−µr

d− µr
(1)

then for every integer n ≥ 1,
α(Hn)

rn
=

−µr

d− µr
.

Moreover, if H is also non-bipartite, and if I is an independent set of size −µr

d−µr
rn in G = Hn, then

there exists a coordinate i ∈ {1, 2, . . . , n} and a maximum independent set J in H, such that

I = {v ∈ V (H)n : vi ∈ J}.

Remark: Note that for any H and n, χ(Hn) = χ(H). If H satisfies the conditions of the last
Theorem and if, in addition, χ(H) = r

α(H) then every optimal coloring of Hn is induced by a coloring
of one of the multiplicands, since it is a partition of Hn into maximum-size independent sets. Such a
partition can only be consistent if each color class is induced by the same coordinate. The assumption
χ(H) = r

α(H) holds for many of the interesting classes of graphs to which Theorem 1.4 applies, see
Subsection 5.1.

Theorem 1.5 Let H be a d-regular, connected, non-bipartite graph on r vertices, let d = µ1 ≥ µ2 ≥
· · · ≥ µr be its eigenvalues and suppose its independence number satisfies (1). Then, there exists a
constant M = M(H) such that for any ε > 0 the following holds. Let G = Hn and let I be an
independent set such that |I|

|G| = α(H)
|H| − ε. Then there exists an independent set I ′ with |I′|

|G| = α(H)
|H|

such that |I′4I|
|G| < Mε.

The rest of this paper is organized as follows. Section 2 is devoted to Fourier analysis of Zn
r ,

where we set up some of the necessary tools. We continue in Section 3 with the proofs of several
lemmas regarding Boolean functions on Zn

r . In Section 4 we present the proofs of Theorem 1.1 and
Theorem 1.2, and suggest a conjecture that strengthens Theorem 1.2 and offers a characterization
of all independent sets that occupy a constant proportion of G = Kn

r . We also briefly consider
the case of infinite dimensional products. Section 5 contains the proof of Proposition 1.3 and the
proofs of Theorems 1.4 and 1.5, together with some related examples. These proofs are based on
spectral techniques. Although the proofs of Theorems 1.1 and 1.2 can be obtained as special cases, as
the eigenvectors of Cayley graphs of Abelian groups (and in particular, of complete graphs) are the
characters of the corresponding groups, we believe that presenting them separately is instructive. It
is interesting to note that the approach in Section 5 suggests that many tools of Harmonic Analysis
hold for general tensor products of some fixed orthogonal set of vectors, and not only for characters.
Although this fact is not difficult and its proof essentially amounts to a change of basis, it seems very
powerful and may well lead to additional interesting consequences. The final section 6 contains some
concluding remarks.

2 Fourier Analysis on Zn
r

In this section we describe all the necessary background concerning discrete Fourier analysis. In
addition, we present two extensions of known results for functions f : {0, 1}n → {0, 1} to the equivalent
results for functions f : Zn

r → {0, 1}. The first, Lemma 2.2, is a generalization of the Bonami-Beckner
hyper-contractive estimate, and the second, Lemma 2.4, is a generalization of a result proved in [17]
regarding functions whose Fourier representation is concentrated on subsets of size≤ 1. We believe that
these generalizations may find further uses. The proofs of these Lemmas are presented in Section 3.
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2.1 Background and Lemmas

Let r > 2 and G = {0, . . . , r − 1}n = Zn
r . Here is some notation we shall use: Let 0̄ = (0, 0, . . . , 0),

1̄ = (1, 1, . . . , 1), and ei = (0, . . . , 1, . . . , 0), the unit vector with 1 at the ith coordinate. For S ∈ G let

|S| = |{i : Si 6= 0}|.

We will occasionally refer to the “levels” of {0, . . . , r− 1}n : The 0-level contains only 0̄, the kth level
all S such that |S| = k.

We think of G both as an Abelian group and as a probability space endowed with the uniform
(product) measure µ. For any function f : G → C Let∫

G
f(S)dS

def
=

1
|G|

∑
S∈G

f(S).

For any such function f we define the p-norm of f :

‖f‖p =
(∫

|f(S)|p
)1/p

.

The inner product between two functions f and g is

〈f, g〉 =
∫

G
f(S)g(S)dS =

1
|G|

∑
S∈G

f(S)g(S).

We now wish to consider the dual group to G, the group of characters, whose elements form an
orthonormal basis for the space of complex-valued functions on G. For any S ∈ G let uS : G → C be
defined by

uS(T ) = e
2πi〈S,T 〉

r

where 〈S, T 〉 =
∑n

i=1 SiTi mod r. It is easy to verify the following properties of the characters:

• They indeed form a group, and the mapping S 7→ uS is a homomorphism from G to the multi-
plicative group of roots of unity:

uSuT = uS+T

and
u−T = u−1

T = uT .

• Since the sum of the roots of unity is 0 we have that for S 6= 0̄,
∑

T∈G uS(T ) = 0. Of course
u0̄ ≡ 1, hence 1

|G|
∑

T∈G u0̄(T ) = 1.

• It follows that the characters form an orthonormal basis:

〈uS , uT 〉 = δS,T .

• Every function f : G → C has a unique expansion of the form f =
∑

f̂(S)uS , where f̂(S) =
〈f, uS〉 = 1

|G|
∑

T∈G f(T ) · uS(T ).
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• From orthonormality we get that for any two functions f, g

〈f, g〉 =
∑

f̂(S)ĝ(S),

and in particular we get Parseval’s identity -

‖f‖2
2 = 〈f, f〉 =

∑
|f̂(S)|2.

The usage of Fourier analysis in the study of Boolean functions and various questions in combi-
natorics and computer science has seen much success in the last fifteen years, see for example [4],
[8], [11], [16],[17], [21], [22], [24], [29]. All the above examples deal with problems set in {0, 1}n. In
contrast there are relatively few combinatorial papers dealing with Zn

r that use Fourier analysis. Some
examples of the latter can be found in [6], [5], [27].

A central tool that appears in almost every one of the aforementioned works that deal with {0, 1}n

is a hyper-contractive estimate due, independently, to Beckner and Bonami, [7], [9]. One version of
the Bonami-Beckner inequality that is often used is the following (see also [10]):

Lemma 2.1 (Beckner (1975), Bonami (1970)) Let f : {0, 1}n → R be a function that is a linear
combination of {uT : |T | ≤ k}. Let p > 2. Then

‖f‖p ≤ (
√

p− 1)k‖f‖2.

Bonami and Beckner actually proved the dual version of the above Lemma, which is equivalent to it.
Here we will need a more general version dealing with functions on Zn

r . On the other hand, as we do
not need optimal constants or a statement regarding all p-norms, we will make do with the following
statement. Recall that |T | = |{i : Ti 6= 0}|.

Lemma 2.2 For every r ≥ 2 there exists C > 0 such that the following holds. Let G = Zn
r and

f : G → C be a function whose Fourier transform is concentrated on the first k + 1 levels, that is, f
is a linear combination of {uT : |T | ≤ k}. Then

‖f‖4 ≤ Ck‖f‖2.

We will use this inequality in the proof of Lemma 2.4 below.
The following two lemmas give conditions on the Fourier transform of Boolean functions f under

which f may be determined or approximated by a function depending on only one coordinate, a
“dictator”.

Lemma 2.3 Let f : Zn
r → {0, 1} be such that all its Fourier transform is concentrated on the first two

levels:
|S| > 1 ⇒ f̂(S) = 0.

Then f is either constant or depends on precisely one coordinate.

The following lemma is a stability version of the above which ultimately enables us to deduce Theorem
1.2 and Theorem 1.5. The special case of this lemma with G = {0, 1}n is stated and proven in [17].

Lemma 2.4 Let r ≥ 2 and let C = C(r) be the constant from Lemma 2.2. Let K = 2 + 32C8. Then
for any ε > 0 the following holds: let f : Zn

r → {0, 1} be a function such that Pr[f = 1] = α and
furthermore assume that ∑

|S|>1

|f̂(S)|2 = ε.
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Then there exists a function g : Zn
r → {0, 1} which depends on at most one coordinate such that

‖f − g‖2
2 <

K

α− α2 − ε
ε.

Remark: Note that under the above assumptions ε ≤ α− α2, because α− α2 − ε =
∑

|S|=1 |f̂(S)|2.

3 Generalizing the Boolean Inequalities

In this section we prove several lemmas regarding Boolean functions on Zn
r . The first, Lemma 2.2,

generalizes a hyper-contractive estimate due to Beckner and Bonami [7, 9]. Lemma 2.4 then gener-
alizes a result of Friedgut Kalai and Naor [17] regarding functions whose Fourier representation is
concentrated on the levels 0 and 1. We begin by proving Lemma 2.2.
Proof of Lemma 2.2: Following the original proofs of Beckner and Bonami we will prove the dual
statement formalized in Claim 3.1 below, using induction on the dimension. For 0 < ε < 1 and

f(s) =
r−1∑
j=0

aje
2πijs

r : {0, . . . , r − 1} → C

define

Tδf(s) = a0 + δ(
r−1∑
j=1

aje
2πijs

r ).

By abuse of notation we will also denote T⊗n
δ by Tδ: for any function f : {0, . . . , r − 1}n → C let

Tδf =
∑

f̂(S)δ|S|uS .

Claim 3.1 For every r ≥ 2 there exists 0 < δ < 1 such that for every f : {0, . . . , r − 1}n → C

‖Tδf‖4 ≤ ‖f‖2.

Remarks: This claim immediately implies Lemma 2.2 with C = 1/δ. Indeed,

‖f‖4 = ‖Tδ(Tδ−1f)‖4 ≤ ‖Tδ−1f‖2 =
( ∑
|S|≤k

δ−2|S||f̂(S)|2
)1/2

≤ (1/δ)k
( ∑
|S|≤k

|f̂(S)|2
)1/2

= (1/δ)k‖f‖2.

Furthermore, we interpret Claim 3.1 as saying that ‖Tδ‖ = 1 as an operator from L4 to L2. As observed
by Bonami and Beckner, for the class of operators defined by integration against a kernel (such as
Tδ) one has multiplicativity of operator norms. (This can be proven rather easily using Minkowski’s
inequality.) Therefore one can now use induction on the dimension, and it suffices to prove the one-
dimensional statement.
Proof of claim: Fix r ≥ 2. Let ω = e

2πi
r and let f(s) =

∑r−1
j=0 ajω

sj . Clearly we may assume that
a0 = 1 and that |a1| ≥ |aj | for j ≥ 1. Furthermore, since replacing ai by |ai| does not change the
norms of neither f nor Tδf , we may assume that the ai’s are non-negative reals.

Let 1 > δ > 0 and Tδf(s) =
∑r−1

j=0 bjω
sj . Then b0 = a0 = 1 and bj = δaj for j ≥ 1. A simple

calculation gives

[Tδf(s)]2 =
∑

j

[∑
k

bkbj−k

]
ωsj .
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We then have the following:

‖Tδf‖4
4 = ‖[Tδf ]2‖2

2 =
∑

j

[∑
k

bkbj−k

]2

whereas
‖f‖4

2 =
(∑

a2
j

)2
.

Denote a1 = a and b1 = b = δa. Then

1 + a2 + a4 ≤ ‖f‖4
2

and, recalling that b1 = b ≥ bj for j ≥ 1,

‖Tδf‖4
4 ≤ 1 + K[b2 + b3 + b4] ≤ 1 + Kδ[a2 + a3 + a4]

where K is some constant depending on r (but not on f .) Hence what we need to show is that for
sufficiently small δ

1 + Kδ[a2 + a3 + a4] ≤ 1 + a2 + a4

holds for all values of a, or equivalently, that

(1−Kδ)a2 −Kδa + (1−Kδ) > 0.

The discriminant of this quadratic equation is

4K2δ2 − (1−Kδ)2

which is negative for sufficiently small values of δ, which proves the assertion of the lemma.

We now turn to the proof of Lemma 2.3, which is a softened version of Lemma 2.4.
Proof: The function f is of the form

f(S) = a0 +
n∑

j=1

r−1∑
k=1

aj,ke
2πiSjk

r .

Since f is Boolean we have f = f2. From the uniqueness of the Fourier expansion we may compare

the coefficients of e
2πiSj1

k

r e
2πiSj2

l

r in f and f2 and deduce that if j1 6= j2 then

aj1,kaj2,l = 0.

Therefore there must exist one coordinate, say, jl such that if j 6= jl then aj,k = 0 for all k. Hence f
is of the form

f(S) = a0 +
r−1∑
k=1

ake
2πiSlk

r .
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Finally we turn to the proof of Lemma 2.4. Our proof follows the lines of one of the proofs presented
in [17].

Proof of Lemma 2.4: To begin we may assume that ε ≤ 1
4C8 where C is the constant from

Lemma 2.2. If this assumption fails then letting K = 2 + 32C8, makes finding a Kε-approximation of
f trivial. Let

fS =
∑
|T |≤1

f̂(T )uT and fL =
∑
|T |>1

f̂(T )uT .

(S and L stand for small and large)
If fS were Boolean, then the lemma would follow easily. We will show that the same is true for fS

that is close to being Boolean. Let us consider the following function, h, that we use to measure, in a
sense, how far fS is from being Boolean:

h = f2
S − fS .

Note that if fS were Boolean then h would be identically 0.
We start by computing ĥ(S) on the second level. Let i 6= j. Then

ĥ(k1ei + k2ej) = f̂2
S(k1ei + k2ej)− f̂S(k1ei + k2ej) = 2f̂(k1ei)f̂(k2ej), (2)

where we have used the fact that f̂S is 0 on the second level. The following lemma shows that the L2

norm of h is small,

Lemma 3.2 Let C be the constant from Lemma 2.2 and let λ = 32C8. Then

E(|h|2) ≤ λε.

Assuming Lemma 3.2 it is now easy to prove that the dictator-approximation of f guaranteed by
Lemma 2.4 can be obtained from f by “truncating and rounding”:

Corollary 3.3 There exists 1 ≤ j ≤ n such that the for the function g′, defined as follows,

g′(x) = f̂(0̄) +
r−1∑
k=1

f̂(kej)e
2πikxj

r (3)

it is true that ‖g′ − f‖2
2 ≤ ε

(
1 + λ

2(α−α2−ε)

)
.

This corollary now implies Lemma 2.4. It is not hard to see that if g(y) is the function obtained by
rounding g′ to 0 or 1 according to the majority value of f(x) over all {x|xj = yj} then ‖g − f‖2

2 ≤
2‖g′ − f‖2

2 ≤
K

α−α2−ε
ε.

Proof of corollary: Denote ai =
∑r−1

k=1 |f̂(kei)|2. Since E(|h|2) =
∑
|ĥ(T )|2 we have, by summing

only over T of the form T = k1ei + k2ej and using (2)

∑
i<j

aiaj =
∑
i<j

[
r−1∑
k=1

|f̂(kei)|2
][

r−1∑
k=1

|f̂(kej)|2
]
≤ E(|h|2)

4
≤ λ

4
ε. (4)

We also know that f̂(0̄) = α and that
∑
|f̂(T )|2 = α. This means that∑
i

ai = α− α2 − ε.
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Let j be the index for which aj is maximal.(∑
i

ai

)2

≤
∑

i

a2
i +

λ

2
ε ≤ aj ·

∑
i

ai +
λ

2
ε

which means, dividing by
∑

i ai = α−α2 − ε, that aj ≥ α−α2 − ε
(
1 + λ

2(α−α2−ε)

)
. This means that

‖g′‖2
2 = aj +α2 ≥ α− ε

(
1 + λ

2(α−α2−ε)

)
hence most of f ’s L2 norm comes from the Fourier transform

of g′, implying the corollary.

Proof of Lemma 3.2 : We first show that h is ‘mostly’ smaller than O(
√

ε), and then use a
concentration of measure argument to show that it cannot be much larger on the rest of the domain.

Recall that fS = f − fL and that f2 − f = 0 so

h = (fS)2 − fS = (f − fL)2 − (f − fL) = f2
L + fL(1− 2f)

Let k = 2C4, and set Z = {x ∈ Zn
r | |fL(x)| ≤ k

√
ε}. Since ‖fL‖2

2 ≤ ε, a Markov argument implies
Prx [Z] ≥ 1− 1/k2. Additionally, for every x ∈ Z, |h(x)| ≤ 2 |fL(x)| ≤ 2k

√
ε. (Here we have used our

assumption that ε < 1/k2 = C−8/4, see the first sentence of the proof.)
How can E(|h|2) be much larger than ε? Only if most of the contribution to this expectation

comes from values of x outside Z, where h obtains values much larger than
√

ε. We next use the
hyper-contractive estimate (Lemma 2.2) to show that this cannot happen; intuitively because having
only low Fourier frequencies means |h| is fairly ‘concentrated’ around its expectation.

For convenience of notation let X = E(|h|2) and Y = E(|h|4), and denote p = Prx [x 6∈ Z] ≤ 1
k2 .

For every function h, it is true that X ≤
√

Y . Since the Fourier support of h is only on the first two
levels, Lemma 2.2 implies that

√
Y ≤ C4X. Thus,

X = E(|h|2) = (1− p) · E(|h(x)|2
∣∣ x ∈ Z) + p · E(|h(x)|2

∣∣x 6∈ Z)

≤ (1− p)4k2ε + p
√

E(|h(x)|4 | x 6∈ Z)

≤ 4k2ε + p

√
Y

p

≤ 4k2ε +
√

pC4X ≤ 4k2ε +
1
2
X

Thus, X ≤ 8k2ε = 32C8ε.

4 Independent sets in Kn
r

In this section we prove Theorems 1.1 and 1.2. Let G = Kn
r . Identify the vertices of G with the

elements of Zn
r . Let D = (Zr \ 0)n. Recall that two vertices u, v ∈ Zn

r are adjacent iff u − v ∈ D. G
is thus the Cayley graph of Zn

r with the elements of D as generators, and letting d = |D| = (r − 1)n

we have that the graph G is d regular. Aside from its group structure we will also think of Zn
r as a

measure space with the uniform (product) measure, which we shall denote by µ.
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For any i between 1 and n and any 0 ≤ k ≤ r − 1, the set V k
i = {v | vi = k} is an example of a

large independent set, µ(V k
i ) = 1/r. (Although the measure notation is unusual in the combinatorial

setting, it will blend in well with our analytical methods in the sequel.) We first observe that this is
the maximum size that an independent set can attain.

Claim 4.1 If I is an independent set in G then µ(I) ≤ 1/r.

We now prove the claim by a simple combinatorial argument. However, it is interesting to note
that the claim will also follow easily from the analytical proof of Theorem 1.1 that we present below.
Proof of Claim: We will partition the graph into disjoint cliques of size r. The claim will then follow
from the fact that I can intersect every clique in at most one vertex.

Let ī = (i, i, . . . , i) ∈ Zn
r , and let K =

{
0̄, 1̄, 2̄, ..., (r − 1)

}
. The claim is proven by observing that

v + K is a clique for any v ∈ Zn
r and that

Zn
r =

⋃
(v2,..,vn)∈Zn−1

r

((0, v2, .., vn) + K).

(Note that this is the partition of Zn
r into cosets of the subgroup K.)

Proposition 1.3, proved in Section 5, generalizes the above claim for arbitrary regular vertex transitive
graphs.

Theorems 1.1 and 1.2 will follow from the next Lemma, that is inspired by observations of H̊astad
[19], and is also a special case of the basic spectral approach described in Section 5.

Lemma 4.2 Let I ⊂ Zn
r be an independent set in G, and let f : Zn

r → {0, 1} be its indicator function,
i.e. f(x) = 1 iff x ∈ I. Then, ∑

S

∣∣∣f̂(S)
∣∣∣2( −1

r − 1

)|S|
= 0

Proof: For any τ ∈ D define fτ (x) = f(x+ τ). Since I is an independent set, always fτ (x) · f(x) = 0,
so 〈f, fτ 〉 = 0. Define

A(f) =
1
d

∑
τ∈D

fτ .

A is the averaging operator, replacing f(x) by the average of f on the neighbors of x. The above
implies that (and indeed is equivalent to):

〈f,A(f)〉 = 0. (5)

Let us now compute the Fourier transform of A(f) in terms of the Fourier transform of f . Recall
that for S ∈ Zn

r we denote |S| = |{ i |Si 6= 0}|,

Claim 4.3

Â(f)(S) = f̂(S)
(

−1
r − 1

)|S|
.

10



Proof: We first claim that f̂τ (S) = f̂(S)uτ (S). Indeed,

f̂τ (S) =
∫

f(x + τ)uS(x)dx =
∫

f(x)uS(x− τ)dx =
∫

f(x)uS(x)uS(τ)dx = f̂(S)uτ (S).

Recall that D = {1, .., r − 1}n, d = |D|, and denote ω = e2πi/r. We have

Â(f)(S) =
1
d

∑
τ∈D

f̂τ (S) =
1
d
f̂(S)

∑
τ∈D

uτ (S)

=
1
d
f̂(S)

n∏
j=1

r−1∑
k=1

ωkSj

=
1
d
f̂(S)

∏
j:Sj=0

(r − 1)
∏

j:Sj 6=0

(−1) = f̂(S)
(

−1
r − 1

)|S|
where in the last equality we have used d = (r − 1)n. The proof of the lemma is now completed by
orthogonality, writing

0 = 〈f,A(f)〉 =
∑
S

f̂(S)Â(f)(S) =
∑
S

∣∣∣f̂(S)
∣∣∣2( −1

r − 1

)|S|

Proof of Theorems 1.1 and 1.2:
Denote α = µ(I). Now, from Parseval we have∑

|f̂(S)|2 = α.

Also,

f̂(0̄) =
∫

f(x)dx = α.

Hence ∑
S 6=0̄

|f̂(S)|2 = α− α2 (6)

and subtracting |f̂(0)|2 = α2 from the identity of Lemma 4.2,

∑
S 6=0̄

|f̂(S)|2
(

−1
r − 1

)|S|
= −α2. (7)

Comparing (6) and (7) now yields valuable information on the Fourier transform of f . It is
convenient to interpret this information via the following probability distribution: Let T be a random
variable taking values in G \ 0̄ with

Pr[T = S] =
|f̂(S)|2

α− α2
.

Let

X = X(T ) =
(

−1
r − 1

)|T |
.

11



Then (7) now gives that

E(X) =
−α2

α− α2
=

−α

1− α
.

We now break our analysis into three cases

• α > 1/r. We will see that this cannot happen, which implies Claim 4.1.

• α = 1/r. The analysis of this case will imply Theorem 1.1.

• α = 1/r − ε. This case leads to the Proof of Theorem 1.2.

For all three cases it is important to note that for all T , X(T ) = X ≥ −1
r−1 with equality iff |T | = 1.

1. Let α > 1/r. Then E(X) = −α
1−α < −1

r−1 . However this is impossible, because X ≥ −1
r−1 . Hence if

I is an independent set then µ(I) ≤ 1/r. Thus we have just proven Claim 4.1 (again).

2. Next, if α = 1/r then E(X) = −1
r−1 which implies that X ≡ −1

r−1 meaning that all the support
of |f̂(S)|2 must be concentrated on uS with |S| = 1. Hence f has all its Fourier transform
concentrated on the first two levels. According to Lemma 2.3 this implies that f depends on
one coordinate only, and hence, since f is not constant, it is the indicator function of Sl = k for
some l and k, as asserted by Theorem 1.1.

3. Finally we analyze the case where α is slightly less than 1/r. This means that E(X) is very
close to −1

r−1 , its minimal value. Observing that for S, |S| > 1,

X(S) ≥ −1
(r − 1)3

>
−1

r − 1
,

this implies that almost all the weight of |f̂(S)|2 is concentrated on S, |S| ≤ 1.

Formally, let

Y = X +
1

r − 1
≥ 0.

When Y > 0 then Y ≥ −1
(r−1)3

+ 1
r−1 = r(r−2)

(r−1)3
. Hence, by Markov’s inequality,

Prob[Y > 0] ≤ E(Y ) · (r − 1)3

r(r − 2)
. (8)

Now, if α > 1/r − ε then

E(Y ) = E(X) +
1

r − 1
<

εr2

(r − 1)(rε + r − 1)

which, using (8) together with r ≥ 3, implies

Prob[Y > 0] ≤ εr

rε + r − 1
· (r − 1)2

(r − 2)
≤ 2rε. (9)

Recalling that

Y (S) > 0 iff X(S) >
−1

r − 1
iff |S| > 1

12



the upshot of (9) is that ∀ε > 0 and for every independent set I with µ(I) > 1/r − ε we have∑
|S|>1

|f̂(S)|2 = (α− α2)Prob[Y > 0] ≤ 2ε

where f is the characteristic function of I. We now deduce directly from Lemma 2.4 that
there is some ‘dictator’ function g that depends on at most one coordinate, and such that
‖f − g‖2

2 < K
α−α2−ε

· 2ε = O(ε). (Here, if ε is not sufficiently small, g ≡ 0 is also a possibility,
but if ε is such that ‖f‖2

2 −
K

α−α2−ε
· 2ε > 0 then g must be a dictator.)

4.1 Infinite Weak Products

Let A be an infinite set and consider G = ×AKr, the infinite weak product of Kr. Let µ be the product
measure on A, the measure generated by the cylinders of finite codimension. The set {uS}|S|<∞ is a
basis for the measurable functions, hence the same proof technique as before yields the following:

Theorem 4.4 Let I ⊆ ×A Kr be a measurable independent set with µ(I) = 1/r. Then there exists
j ∈ A and a set J ⊂ G of the form

J = {S : Sj = k}

with
µ(J4I) = 0.

Remarks:

• Alternatively one can deduce the infinite dimensional statement from the finite case using the
stability statement of Theorem 1.2. It seems impossible to make this deduction directly without
the stability theorem.

• In [18], an example due to Pósa is presented that shows, using ultra-filters, an optimal coloring
of G which is not of the form σ(S) = Sj . Of course, the color classes thus formed must be
non-measurable.

4.2 Large Independent Sets in Weak Products

Theorem 1.1 gives a complete characterization of independent sets of measure 1/r. Theorem 1.2 also
characterizes independent sets of size close to 1/r. A natural question is whether smaller independent
sets, of size, say, 1/(100r) still have some simple structure. It seems quite hopeless to approach this
question using traditional combinatorial arguments. We now present a conjecture regarding such sets,
that may be susceptible to Fourier methods.

Let us start with an example. Consider G = ×nK3 over vertices {0, 1, 2}n. Let

I = {S : at least two of the three coordinates S1, S2, S3 are equal to 0}.

Clearly, if S, T ∈ I then they must agree on one of the first three coordinates, hence I is an independent
set, with µ(I) = 7/27. A naive conjecture would be that any reasonably large independent set is
similarly determined by few coordinates. However, this is clearly too strong an assumption, since a
random subset of I is also an independent set. Moreover, this problem does not go away if we consider
only maximal independent sets (with respect to containment). Indeed consider any ‘nice’ independent
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set I0, e.g., the one above with the following incremental modification. At each step select some
random vertex v ∈ {0, 1, 2}n and let It be an arbitrarily chosen maximal independent set containing
(It−1 ∪ {v}) \ Γ(v) where Γ(v) are the neighbors of v in G. By definition, at each step It remains a
maximal independent set, and after sufficiently many steps its size is still about half that of I, and it
certainly is not determined by only a few coordinates.

Thus, we conjecture that every large independent set is close to being contained in a set determined
by few coordinates. Sets of the form {S : Sj = k} are sometimes referred to as dictatorships (dictated
by the jth coordinate.) Analogously, we call S a k-junta if its characteristic function depends on at
most k different coordinates.

Conjecture 4.5 There exists a function M = M(r, α, ε) (note that M does not depend on n!), such
that for every integer r ≥ 3 and for every α > 0 if I ⊆ Kn

r is an independent set with µ(I) > α then
for any ε > 0 there is an M -junta J which is itself an independent set such that

µ(I \ J) < ε

i.e. I is almost contained in a junta-type independent set.

We believe that this conjecture, if proven, may be quite useful in resolving the hardness of approximate-
coloring 3-colorable graphs, an infamously open hardness of approximation problem. We outline the
connection roughly as follows. Following the PCP approach we begin with some NP-hard constraint
satisfaction problem (CSP) and construct from a given CSP instance a 3-colorable graph. This graph
would consist of many copies of (K3)n that are further interconnected, such that each copy represents
a variable in the CSP taking values in {1, .., n}. One would use the above conjecture to prove that
a given coloring of this graph corresponds, in each copy of (K3)n, to a ‘commitment’ assigning some
constant number of values in [n] to that variable (these are the coordinates of the junta). Then, the
structure of the graph would be used to show that these values must satisfy the constraints of the
CSP we started out with.

This scheme has been successfully used with similar approximation problems such as vertex-
cover [14], where similarly structured graphs containing many interconnected copies of {0, 1}n have
been constructed, and combinatorial statements regarding the ‘juntativity’ of subsets of {0, 1}n were
essential. One must add that it is not altogether clear how to construct such a reduction and such
a graph in the 3-colorability case, so proving the above conjecture is by no means the last step of
completing such a proof.

Just as the generalization of the results from [17], which characterize Boolean functions that are
close to dictatorships, are essential for proving Theorem 1.2, we believe that for the proof of the above
conjecture it will be necessary to generalize the junta-type results of [11] and [22]. First steps towards
this goal appear in [13].

5 Independent Sets in Hn

We begin this section with the simple proof of Proposition 1.3. Let H be a vertex-transitive graph on a
set V = {v1, . . . , vr} of r vertices, let A be the automorphism group of H, and let S be an independent
set of maximum size in G = Hn. Let a1, a2, . . . , an be n random elements of A, where each ai is chosen,
randomly, independently and uniformly, among the members of A. For each i, 1 ≤ i ≤ r, let xi be
the random vertex of G given by xi = (a1(vi), a2(vi), . . . , an(vi)). It is easy to see that xi is uniformly
distributed among all vertices of G. Therefore, the expected size of the intersection S ∩ {x1, . . . , xr}
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is precisely |S| r
|G| . Note, however, that the induced subgraph of G on {x1, . . . , xr} is a copy of H, and

therefore the size of the intersection is at most α(H) for every choice of a1, a2, . . . , an. We conclude
that |S| r

|G| ≤ α(H), and as |S| = α(G) this implies that

α(G)
|G|

≤ α(H)
|H|

,

as needed.

Remark: The transitivity assumption is needed in the above proposition, that is, its assertion fails for
some connected regular base graphs H. Indeed, consider, for example, the following d-regular graph
H. Its vertex set is the disjoint union of three sets, A,B and C, where |A| = |B| = d and |C| = d + 1.
Let a, b, c1, c2 be distinguished elements of the corresponding sets, and let the edge set of H consist of
all edges between A and B except ab, all internal edges in C except c1c2, and the two additional edges
ac1 and bc2. It is easy to check that α(H) = d + 1. For each n ≥ 1, let mn = α(Hn)/|Hn| denote the
maximum possible measure of an independent set in Hn. Thus m1 = d+1

3d+1 . We claim that for n > 1,

mn ≥
d

3d + 1
+

d

3d + 1
mn−1.

To prove this claim, note that the set of vertices of Hn whose first coordinate is a member of A (with
all possible extensions to the rest of the coordinates), together with the set of all vertices of Hn whose
first coordinate is in C−{c1}, with the last n−1 coordinates belonging to a maximum size independent
set in Hn−1, form an independent set in Hn. This proves the claim and implies that

mn ≥
d

3d + 1
+ (

d

3d + 1
)2 + · · ·+ (

d

3d + 1
)n−1 + (

d

3d + 1
)n−1 d + 1

3d + 1
.

For any fixed d, the above lower bound tends to d
2d+1 as n tends to infinity, showing that the graph

H does not satisfy the assertion of Proposition 1.3.

We proceed with the proofs of Theorems 1.4 and 1.5. These are based on some basic facts about
graph eigenvalues and eigenvectors. The relation between the spectral properties of a graph and its
structural properties has been studied extensively, c.f., e.g., [1], [23] and its references.

The adjacency matrix of a graph H = (V,E) is the matrix A = (au,v)u,v∈V , in which au,v = 1 if
uv ∈ E and au,v = 0 otherwise. This matrix is symmetric and hence has real eigenvalues µ1 ≥ . . . ≥ µr

(called the eigenvalues of H) and an orthonormal basis of eigenvectors u1, . . . , ur. If H is connected
and d-regular, then µ1 = d, and the corresponding (normalized) eigenvector is u1 = 1√

r
(1, 1, . . . , 1)t.

By the Perron-Frobenius Theorem d ≥ |µi| for all i, and µ2 < d iff H is connected, whereas µr > −d
iff H is non-bipartite. Note that the trace of A is 0, as H has no loops, and therefore if H has edges,
then µ1 is strictly positive and µr is strictly negative.

The adjacency matrix of the weak power Hn of H is the tensor n-th power of A. Its eigenvalues
are all products

∏n
i=1 µg(i), as g ranges over all rn functions mapping {1, 2, . . . , n} into {1, 2, . . . , r}.

The corresponding orthonormal basis of eigenvectors is obtained by taking all tensor products of the
eigenvectors ui.

Lemma 5.1 Let G = (V,E) be a D-regular, connected graph on m vertices, let D = λ1 ≥ λ2 ≥ . . . ≥
λm be its eigenvalues, and let v1, v2, . . . , vm be the corresponding orthonormal basis of eigenvectors,
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where v1 = 1√
m

(1, 1, . . . , 1)t. Let I be an independent set in G, let f be its characteristic function, and
suppose f =

∑m
i=1 civi.

(i) The size of I satisfies

|I| ≤ −λmm

D − λm
, (10)

and equality holds if and only if f is a linear combination of the eigenvectors corresponding to the
eigenvalues λ1 and λm.
(ii) If

∑
i:λi 6=λ1,λm

c2
i = δm and λ = min{λi : λi 6= λm} then

δ ≤ (D − λm)
(λ− λm)

|I|
m

(
−λm

D − λm
− |I|

m

)
. (11)

Proof: Let A be the adjacency matrix of G. Since f is the characteristic vector of an independent
set, f tAf = 0. As the vectors vi form an orthonormal basis, f tAf =

∑m
i=1 c2

i λi,
∑m

i=1 c2
i = f tf =∑

v∈V f2(v) = |I|, and c1 = f tv1 = |I|/
√

m. It thus follows that

0 = f tAf =
m∑

i=1

c2
i λi = Dc2

1 +
m∑

i=2

c2
i λi ≥ D

|I|2

m
+ λm

m∑
i=2

c2
i = D

|I|2

m
+ λm

(
|I| − |I|2

m

)
.

Therefore,

−λm|I| ≥
|I|2

m
(D − λm),

implying (10). Moreover, equality holds if and only if ci = 0 whenever λi is neither D = λ1 nor λm.
This establishes the assertion of part (i).

The proof of part (ii) is very similar. Here

0 = f tAf =
m∑

i=1

c2
i λi = D

|I|2

m
+ λm

(
|I| − |I|2

m
− δm

)
+

∑
i:λi 6=λ1,λm

c2
i λi

≥ D
|I|2

m
+ λm

(
|I| − |I|2

m
− δm

)
+ δmλ.

Therefore,

(D − λm)|I|
(

−λm

D − λm
− |I|

m

)
= −λm|I| −

D − λm

m
|I|2 ≥ δm(λ− λm),

implying (11).

Proof of Theorem 1.4: Put G = Hn and let m = rn be the number of vertices of G. By the
discussion preceding Lemma 5.1, the eigenvalues of G are all products of eigenvalues of H and the
corresponding eigenvectors are the tensor products of the eigenvectors of H. In particular, the largest
eigenvalue of G is its degree λ1 = D = dn, and its smallest (most negative) eigenvalue is λm = µrd

n−1.
Therefore, by Lemma 5.1, part (i),

α(G) ≤ −λmm

D − λm
=

−µrd
n−1rn

dn − µrdn−1
=
−µrr

n

d− µr
,
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as needed. Moreover, if I is an independent set of size −µrrn

d−µr
in G then, by Lemma 5.1 part (i),

the characteristic function f of I is a linear combination of the eigenvectors corresponding to the
eigenvalues λ1 and λm. Since H is connected and non-bipartite the multiplicity of the eigenvalue
λ1 = dn of G is one, and its only eigenvector is the vector 1

rn/2 (1, 1, . . . , 1)t obtained by taking the
tensor n-th power of the first eigenvector of H. Similarly, the only eigenvectors corresponding to
the smallest eigenvalue λm = µrd

n−1 are the tensor products of one eigenvector of H corresponding
to its smallest eigenvalue, with n − 1 copies of the vector 1√

r
(1, 1, . . . 1)t. Let u1, u2, . . . , ur be an

orthonormal basis of eigenvectors of H, where ui corresponds to the eigenvalue µi. In particular,
u1 = 1√

r
(1, 1, . . . 1)t. For each sequence S ∈ {1, 2, . . . , r}n, let vS denote the tensor product

∏n
i=1 uSi .

Define, also |S| = |{i : Si 6= 1}|. In addition, if |S| = 1, let i(S) denote the unique index i such that
Si 6= 1. The vectors vS form an orthonormal basis of eigenvectors of G, and by the above discussion the
vector f is a linear combination of vectors vS with |S| ≤ 1. Let f =

∑
|S|≤1 αSvS be this combination.

Imitating the proof of Lemma 2.3 we next show that since f is Boolean, all the vectors S for which
|S| = 1 and αS 6= 0 have the same value of i(S). Indeed, since f is Boolean, f2 = f . However,
f2 =

∑
S,S′ αSαS′vSvS′ , where here vSv′S denotes the vector whose coordinates are the products of the

corresponding coordinates of vS and vS′ . It is easy to check that if |S| = |S′| = 1 and i(S) = i(S′),
then vSvS′ is a linear combination of the vectors vT with i(T ) = i(S) and the constant vector. It is also
easy to check that for the unique sequence S = 1 = (1, 1, . . . , 1), and for any S′ with |S′| = 1, v1vS′ is
a scalar multiple of vS′ . On the other hand, if |S| = |S′| = 1 and i(S) 6= i(S′), then vSvS′ is a multiple
of the vector vT , where T coincides with S in coordinate number i(S), with S′ in coordinate number
i(S′), and with both in all other coordinates (in which they are both 1). In particular, |T | = 2. By the
unique representation of f as a linear combination of the members of the basis vS , it thus follows that
all vectors S for which αS 6= 0 and |S| = 1 have the same value of i(S). In other words, f is determined
by a single coordinate, that is, there is a coordinate i such that for each vertex x = (x1, x2, . . . , xn) of
Hn, x lies in I depending only on the value of xi. It follows that all the vertices that appear in the
i-th coordinate of members of I form an independent set of H, and as this set has to be of maximum
size, the assertion of the second part of Theorem 1.4 follows.

Proof of Theorem 1.5: Let f be the characteristic vector of I, put D = dn, m = rn and let
λ1 = D ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of G. Define also λ = min{λi : λi 6= λm}. Let u1, . . . , ur

as well as {vS : S ∈ {1, 2, . . . , r}n } be, as in the previous proof, the eigenvectors of H and of G,
respectively. Let f =

∑
cSvS be a representation of f as a linear combination of the vectors vS , and

define δ by
δm =

∑
|S|>1

c2
S .

By Lemma 5.1, part (ii), we conclude that

δ ≤ (D − λm)
(λ− λm)

|I|
m

ε. (12)

It is not difficult to express λ as the minimum between three possible eigenvalues of G. If µ = min{µi :
µi > µr}, then λ = min{µdn−1, µrµ2d

n−2, µ3
rd

n−3}. In any case, since µ2 < d and µr > −d, there
exists some η = η(H) > 0, (which depends only on the base graph H, and not on n), such that
λ = (µr + η)dn−1. Substituting in (12) and recalling that D = dn and λm = µrd

n−1 we conclude that

δ ≤ (d− µr)
η

|I|
m

ε.
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Now, for any function g let (ĝ) be the vector of coefficients of its expansion according to the characters
uS described in Section 2, and (ḡ) the vector of coefficients of its expansion according to the set vS .
Since each of these two sets is, up to a multiplicative constant, an orthonormal basis the transformation
between these two expansions is norm-preserving up to a multiplicative constant:

m‖(ĝ)‖2
2 = ‖(ḡ)‖2

2.

Furthermore, what is crucial to us, is that this transformation is norm-preserving levelwise: for any
0 ≤ k ≤ n the l2 norm of ĝ on the k’th level is precisely

√
m times the l2 norm of ḡ on the k’th level:

m
∑
|S|=k

|ĝ(S)|2 =
∑
|S|=k

|ḡ(S)|2.

This is true because for any such k

Span({uS : |S| = k}) = Span({vS : |S| = k}),

giving a simultaneous level-wise decomposition of the space of functions into orthogonal subspaces.
Returning to our function f we perform this change of basis, and express f as a linear combination

of the characters uS and conclude that

∑
|S|>1

|f̂(S)|2 =

∑
|S|>1 c2

S

m
=

δm

m
≤ (d− µr)

η

|I|
m

ε.

The desired result now follows from Lemma 2.4.

5.1 Examples

There are various examples of graphs H which satisfy the assumptions of Theorems 1.4 and 1.5.
These include complete graphs, line graphs of regular graphs which contain a perfect matching, Kneser
graphs, some strongly regular graphs and appropriate classes of random regular graphs. Here are the
details.

• Let k ≥ 3 and let G = (V,E) be a k-regular graph on n vertices which contains a perfect
matching, i.e., a set of n/2 pairwise disjoint edges. The line graph L(G) of G has a vertex for
every edge of G and two vertices of L(G) are adjacent if as edges of G they share a vertex. By
definition, L(G) is a d = 2(k − 1)-regular graph on r = nk/2 vertices. Since an independent
set in L(G) corresponds to a matching in G we have that α(L(G)) = n/2. As noted by A.
Hoffman, the smallest eigenvalue of the adjacency matrix AL(G) of L(G) is easy to compute.
Let B = (bv,e) be the vertex-edge incidence matrix which is defined as bv,e = 1 iff v ∈ e. Then
AL(G) = BT B − 2I. Since BT B is positive semidefinite, all its eigenvalues are non-negative.
Hence , the eigenvalues of AL(G) are ≥ −2. Moreover, we have that the rank of BT B satisfies
r(BT B) = r(B) ≤ |V (G)| < |E(G)|. So, BT B has at least one 0 eigenvalue. This implies that
the smallest eigenvalue of AL(G) is µr = −2. Now it is easy to check that L(G) satisfies the
assumptions of Theorems 1.4 and 1.5. If, in addition, G is class 1-Vizing (that is, it is k-edge
colorable), then H = L(G) satisfies the assumption in the remark following Theorem 1.4, and
hence any optimal coloring of Hn is determined by one of the factors.
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• Let t, k be two positive integers, t > 2k. The Kneser graph K(t, k) is the graph whose vertices
are all k-subsets of a t-element set, where two vertices are adjacent iff the corresponding sets
are disjoint. The number of vertices of this graph is clearly r =

(
t
k

)
, and it is well known that

its eigenvalues are all numbers of the form (−1)j
(
t−k−j
k−j

)
, for j ∈ {0, 1, . . . , k} (see, e.g., [26] for

a proof.) In particular, the largest eigenvalue is the degree of regularity d = µ1 =
(
t−k
k

)
and

the smallest is µr = −
(
t−k−1
k−1

)
. The independence number of K(t, k) is the maximum possible

cardinality of an intersecting family of k-subsets of a t-element set. This maximum is determined
by the Erdős-Ko-Rado Theorem [15], and is the number of all k-sets containing a single element,
that is (

t− 1
k − 1

)
=

(
t−k−1
k−1

)(
t
k

)(
t−k
k

)
+
(
t−k−1
k−1

) =
−µrr

d− µr
.

Therefore, for each admissible t and k, H = K(t, k) satisfies the assumptions of Theorems 1.4
and 1.5. In particular, K(5, 2), which is the Petersen graph, satisfies these assumptions.

• Let a be an even integer and let q = pa be a prime power which is congruent to 1 modulo 4 so
that −1 is a square in the finite field GF (q). Let Pq be the graph whose vertices are all elements
of GF (q) and two vertices are adjacent if and only if their difference is a quadratic residue in
GF (q). This graph is usually called the Paley graph. It is easy to see that Pq is d = (q − 1)/2-
regular. To compute the eigenvalues of Pq one can use the fact that it is strongly regular, i.e., the
number of common neighbors of any two vertices of it has the same value- (q − 5)/4 if they are
adjacent, and the same value- (q−1)/4 if they are not. This implies that the smallest eigenvalue
of the adjacency matrix of Pq is µq = −(

√
q + 1)/2 (see, e.g., [23]). It is easy to see that all

elements of the subfield GF (
√

q) ⊂ GF (q) are quadratic residues in GF (q). This implies that
for every quadratic non-residue β ∈ GF (q) all elements of any multiplicative coset βGF (

√
q)

form an independent set of size
√

q. Hence for this graph we get

α(Pq) =
√

q =
(
√

q + 1)/2
(q − 1)/2 + (

√
q + 1)/2

q =
−µq

d− µq
q.

The graph Pq also satisfies the condition in the remark following Theorem 1.4. Indeed, it is easy
to see that the sets {α + βGF (

√
q) : α ∈ GF (

√
q) } form a partition of of its set of vertices into√

q independent sets.

• Another construction of a strongly regular graph which satisfies the assumptions of Theorems
1.4 and 1.5 is due to Delsarte and Goethals and to Turyn (see, e.g., [23]). Let q be a prime
power and let V (H) be the elements of the two dimensional vector space over GF (q). Thus H
has r = q2 vertices. Partition the q + 1 lines through the origin of the space into two sets P and
N , where |P | = k. Two vertices x and y of the graph H are adjacent if x− y is parallel to a line
in P . It is easy to check that H is d = k(q − 1)-regular. Since all the points on any line from P
form an independent set in H we have α(H) ≥ q, and χ(H) ≤ q. It is known that the smallest
eigenvalue of H is µr = −k. Therefore, by Lemma 5.1, we obtain that

q ≤ α(H) ≤ −µr

d− µr
r =

k

k(q − 1) + k
q2 = q,

showing that H satisfies the assumtions of Theorems 1.4 and 1.5, as well as that of the remark
between them.
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• Let k ≥ 3 be a fixed integer, let r be an integer divisible by k, and let d < r(k − 1)/k be
another integer, divisible by k − 1. Let H be a random k-colorable graph obtained as follows.
The vertex set of H is the union of k pairwise disjoint sets A1, A2, . . . , Ak, each of size r/k. The
edges of H are the union of d

k−1

(
k
2

)
random matchings Mijs, where for 1 ≤ i < j ≤ k, and

1 ≤ s ≤ d/(k − 1), Mijs is a random perfect matching between Ai and Aj . The resulting graph
H is obviously d-regular, and it is not difficult to see that −d/(k− 1) is an eigenvalue of it with
multiplicity at least k − 1. In fact, each vector which is constant on the members of each Ai,
where the sum of these k constants is 0, is an eigenvector of this eigenvalue. As shown in [3],
for any fixed k, and all d > d0(k) and r > r0(k, d), all the other eigenvalues of H besides d and
−d/(k− 1) are in absolute value at most O(

√
d) with high probability. It follows that with high

probability H satisfies the assumptions of Theorems 1.4 and 1.5, as well as the assumption in
the remark between them. Another, similar class of graphs satisfying these assumptions can be
constructed by replacing each bipartite graph between Ai and Aj in the construction above by
an appropriate d/(k − 1)-regular pseudo-random graph. We omit the detailed description.

6 Concluding Remarks

• The weak product considered here is similar to the AND product considered in the definition
of the Shannon capacity of graphs. The n-th AND power of an undirected graph H = (V,E)
is the graph denoted by H∧n whose vertex set is V n in which distinct vertices (x1 . . . xn) and
(x′1 . . . x′n) are connected if {xi, x

′
i} ∈ E for all i ∈ {1, 2, . . . , n} such that xi 6= x′i. The Shannon

capacity of H is the limit of (α(H∧n) )1/n, as n tends to infinity. Although the definition here is
very similar to that of a weak product, the investigation of the independence numbers of these
powers is far more complicated than that of the independence numbers in weak powers. In fact,
even the Shannon capacity of a cycle of length 7 is not known. See [26], [2] and their references
for more details.

• The n-th (sparse) power of an undirected graph H = (V,E), denoted here by H∗n, is the graph
whose vertex set is V n in which distinct vertices (x1 . . . xn) and (x′1 . . . x′n) are connected iff there
exists a single index i such that xj = x′j for all j 6= i and xi and x′i are connected in H. There
are several papers dealing with the asymptotic behaviour of the independence number of H∗n,
for a fixed graph H. See, e.g., [20] and its references. In particular, it is known that for every
fixed graph H, the limit limn7→∞

α(H∗n)
|V |n exists, and is at least 1/χ(H) and at most the reciprocal

of the fractional chromatic number of H. Moreover, for every Cayley graph of an Abelian group
this limit is precisely the reciprocal of the fractional chromatic number of G.

• Most of the results proved here can be extended to independent sets in weak products of different
regular factors Hi, and there is no need to assume all the factors are identical. We omit the
detailed statements of the corresponding results.

• The assumptions in Theorems 1.4 and 1.5 that the base graph H is connected and non-bipartite
are essential. Indeed, if H is either disconnected or bipartite, then Hn has many connected
components, and as in each of them one can choose a maximum independent set separately, no
single coordinate can determine the membership in a maximum independent set of Hn. Moreover,
if H is bipartite then so is Hn, and as it is regular, its independence number is precisely half the
number of vertices. There are many maximum size independent sets. In fact, if J is a maximum
size independent set in H, |J | = |H|/2, and A ⊂ {1, 2, . . . , n} is any set of odd size, then the set

I = {(x1, . . . , xn) : |{i : i ∈ A and xi ∈ J}| > |A|/2}
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is a maximum size independent set in Hn. Therefore, there are no uniqueness or stability results
in this case. In case H is disconnected, one can consider each component separately, and use
the assertions of Theorems 1.4 and 1.5 for products of possibly distinct factors to obtain some
information about the structure of maximum and near maximum independent sets in Hn.

• The proof of Theorem 1.5 works even if the set I considered is not independent, but contains
a small number of edges. Indeed, the assertion of Lemma 5.1, part (ii), holds, with an extra
constant factor, even if the induced subgraph of G on I contains some δm(λ − λm)/4 edges.
This can be used to obtain results about colorings of Hn in which the number of monochromatic
edges is relatively small.

• The proof of Theorem 1.5 is based on the fact that a change of basis enables us to prove
several results from discrete Harmonic Analysis for general tensor products of an arbitrary fixed
orthogonal basis, and not only for characters. We believe that this simple fact is likely to lead
to additional interesting consequences.

Note added in proof: In a recent paper [25], Larose and Tardif study the structure of maximum
independent sets in graph powers. They prove Proposition 1.3, and describe an example of vertex
transitive graphs H for which the assertion of Theorem 1.4 fails.
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