ON THE DISCREPANCY OF COMBINATORIAL RECTANGLES

NOGA ALON, BENJAMIN DOERR, TOMASZ ŁUCZAK, AND TOMASZ SCHOEN

ABSTRACT. Let \mathcal{B}_n^d denote the family which consists of all subsets $S_1 \times \cdots \times S_d$, where $S_i \subseteq [n]$, and $S_i \neq \emptyset$, for $i = 1, \ldots, d$. We compute the L_2 -discrepancy of \mathcal{B}_n^d and give estimates for the L_p -discrepancy of \mathcal{B}_n^d for $1 \leq p \leq \infty$.

1. INTRODUCTION

For a family of subsets \mathcal{H} of a finite set Ω , a colouring $\chi : \Omega \to \{-1, 1\}$, and $A \in \mathcal{H}$, let $\chi(A) = \sum_{a \in A} \chi(a)$. Then, for $1 \leq p < \infty$, we set

disc_p(
$$\mathcal{H}, \chi$$
) = $\left(\frac{1}{|\mathcal{H}|} \sum_{A \in \mathcal{H}} |\chi(A)|^p\right)^{1/p}$,

while for $p = \infty$

$$\operatorname{disc}_{\infty}(\mathcal{H},\chi) = \operatorname{disc}(\mathcal{H},\chi) = \max\left\{|\chi(A)| \colon A \in \mathcal{H}\right\}.$$

The L_p -discrepancy $\operatorname{disc}_p(\mathcal{H})$ of \mathcal{H} , where $1 \leq p \leq \infty$, is defined as the minimum value of $\operatorname{disc}_p(\mathcal{H}, \chi)$ over all possible colourings $\chi : \Omega \to \{-1, 1\}$. We shall sometimes call the L_{∞} -discrepancy just the discrepancy and write $\operatorname{disc}(\mathcal{H})$ instead of $\operatorname{disc}_{\infty}(\mathcal{H})$.

In this note we study the L_p -discrepancy of the family \mathcal{B}_n^d of boxes (or combinatorial rectangles,) which consists of all sets of type $S_1 \times S_2 \times \cdots \times S_d$, where $\emptyset \neq S_i \subseteq [n] = \{1, 2, \ldots, n\}$, for $i = 1, 2, \ldots, d$. We compute the L_2 -discrepancy of \mathcal{B}_n^d precisely and estimate disc_p(\mathcal{B}_n^d) for all $p, 1 \leq p \leq \infty$.

Date: November 17, 2001.

¹⁹⁹¹ Mathematics Subject Classification. 11K38, 05D40.

Key words and phrases. discrepancy, probabilistic method.

The first author was partially supported by a USA-Israeli BSF grant, by the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. The third author was partially supported by KBN grant 2 P03A 021 17.

Theorem 1. For every $d, n \ge 1$ we have

disc₂(
$$\mathcal{B}_n^d$$
) = $\left[\left(\frac{2^n}{2^n - 1} \right) \left(\frac{n + \frac{1}{2}(1 - (-1)^{n+1})}{4} \right) \right]^{d/2}$.

Theorem 2. Let $d, n \ge 1$. Then, for $1 \le p < \infty$,

$$8^{-d/2} n^{d/2} \le \operatorname{disc}_p(\mathcal{B}_n^d) \le p^7 2^{-d/2} (n+1)^{d/2}, \qquad (1)$$

for $p \geq 2$,

$$\operatorname{disc}_p(\mathcal{B}_n^d) \ge \operatorname{disc}_2(\mathcal{B}_n^d) \ge 2^{-d} n^{d/2},$$

while for the L_{∞} -discrepancy of \mathcal{B}_n^d we have

$$8^{-d/2} n^{(d+1)/2} \le \operatorname{disc}(\mathcal{B}_n^d) \le 2^{-d/2+1} \sqrt{d} (n+1)^{(d+1)/2} \,. \tag{2}$$

In the special case d = 2, Theorem 2 improves the bound

$$\frac{1}{15}n^{3/2} - \frac{4}{5}n \le \operatorname{disc}(\mathcal{B}_n^2) \le 2n^{3/2} \tag{3}$$

proven in [1]. Using the method presented in this note one can get a further improvement (for large n) of the lower bound in (3) to $(1/\sqrt{8\pi} + o(1))n^{3/2}$.

2. L_2 -discrepancy

Let \mathcal{H} be a family of subsets of a finite abelian group G. We say that \mathcal{H} is shift-invariant if for every $A \in \mathcal{H}$ and $g \in G$ we have also $g + A \in \mathcal{H}$. In this section we compute $\operatorname{disc}_2(\mathcal{H})$ for any shift-invariant family \mathcal{H} of subsets of G. Since, clearly, the family of boxes \mathcal{B}_n^d , considered as a family of subsets of \mathbb{Z}_n^d , is shift-invariant, Theorem 1 will follow.

For $A \in \mathcal{H}$ and $g \in G$ we set

$$\nu_A(g) = |\{(e, e') \in A \times A \colon e - e' = g\}|,$$

and

$$\nu(g) = \sum_{A \in \mathcal{H}} \nu_A(g).$$

Lemma 3. Let \mathcal{H} be a shift-invariant family of subsets of a finite abelian group G and $\chi: G \to \{-1, +1\}$. Then

$$\sum_{A \in \mathcal{H}} \chi^2(A) = \frac{1}{|G|} \sum_{g,g' \in G} \chi(g) \chi(g') \nu(g - g') \,.$$

Proof. Let $A \in \mathcal{H}$. Then

$$\sum_{g \in G} \chi^2(A+g) = \sum_{g \in G} \left(\sum_{a \in A} \chi(a+g)\right)^2$$
$$= \sum_{g \in G} \sum_{a,a' \in A} \chi(a+g)\chi(a'+g)$$
$$= \sum_{g,g' \in G} \chi(g)\chi(g')\nu_A(g-g').$$

Since \mathcal{H} is shift-invariant, we get

$$|G| \sum_{A \in \mathcal{H}} \chi^2(A) = \sum_{A \in \mathcal{H}} \sum_{g \in G} \chi^2(A+g)$$
$$= \sum_{g,g' \in G} \chi(g)\chi(g') \sum_{A \in \mathcal{H}} \nu_A(g-g')$$
$$= \sum_{g,g' \in G} \chi(g)\chi(g')\nu(g-g'),$$

which completes the proof.

Proof of Theorem 1. Let $\chi_0 : \mathbb{Z}_n^d \to \{-1, +1\}$ be a "chessboard colouring" of \mathbb{Z}_n^d , i.e., $\chi_0(x_1, \ldots, x_d) = -1$, or 1, if the sum $\sum_{i=1}^d x_i$ is odd, or even, respectively. We shall show that for an arbitrary colouring $\chi : \mathbb{Z}_n^d \to \{-1, +1\}$ of \mathbb{Z}_n^d ,

$$\operatorname{disc}_2(\mathcal{B}_n^d, \chi) \ge \operatorname{disc}_2(\mathcal{B}_n^d, \chi_0),$$

and compute

$$\operatorname{disc}_2(\mathcal{B}_n^d, \chi_0) = \operatorname{disc}_2(\mathcal{B}_n^d).$$

For a given $\mathbf{g} = (g_1, \dots, g_d) \in \mathbb{Z}_n^d$, let

$$\operatorname{ind}(\mathbf{g}) = |\{i \in [d] : g_i = 0\}|.$$

Notice that

$$\nu(\mathbf{g}) = n^d 2^{d(n-2) + \operatorname{ind}(\mathbf{g})}.$$

For every $\mathbf{h} = (h_1, \ldots, h_d) \in \mathbb{Z}_n^d$, and $I \subseteq [d]$, define

$$\mathcal{C}(\mathbf{h}, I) = \{\mathbf{h}' = (h'_1, \dots, h'_d) \in \mathbb{Z}_n^d \colon h_i = h'_i \text{ for } i \in I\}$$
$$= \{\mathbf{h}' \in \mathbb{Z}_n^d \colon \mathbf{h}'|_I = \mathbf{h}|_I\}.$$

From Lemma 3 it follows that

$$\sum_{A \in \mathcal{B}_n^d} \chi^2(A) = 2^{d(n-2)} \sum_{i=0}^d 2^i \sum_{\substack{\mathbf{g}, \mathbf{g}' \in \mathbb{Z}_n^d, \\ \operatorname{ind}(\mathbf{g}-\mathbf{g}')=i}} \chi(\mathbf{g}) \chi(\mathbf{g}')$$
$$= 2^{d(n-2)} \sum_{\mathcal{C}(\mathbf{h},I)} \left(\sum_{\mathbf{g} \in \mathcal{C}(\mathbf{h},I)} \chi(\mathbf{g})\right)^2, \tag{4}$$

where the sum is taken over all families $\mathcal{C}(\mathbf{h}, I)$. Indeed, observe that every term $\chi(\mathbf{g})\chi(\mathbf{g}')$, with $\mathbf{g} \neq \mathbf{g}'$, appears in the last double sum of (4) $2^{\operatorname{ind}(\mathbf{g}-\mathbf{g}')+1}$ times, and every term $\chi^2(\mathbf{g})$ appears 2^d times. Separating the summands with I = [d] we get

$$\sum_{A \in \mathcal{B}_n^d} \chi^2(A) = 2^{d(n-2)} \sum_{\mathbf{g} \in \mathbb{Z}_n^d} \chi^2(\mathbf{g}) + 2^{d(n-2)} \sum_{\substack{\mathcal{C}(\mathbf{h},I)\\I \neq [d]}} \left(\sum_{\mathbf{g} \in \mathcal{C}(\mathbf{h},I)\\ \mathbf{g} \in \mathcal{C}(\mathbf{h},I)} \chi(\mathbf{g})\right)^2$$
$$= 2^{d(n-2)} n^d + 2^{d(n-2)} \sum_{\substack{\mathcal{C}(\mathbf{h},I)\\I \neq [d]}} \left(\sum_{\substack{\mathbf{g}|_I = \mathbf{h}|_I\\I \neq [d]}} \chi(\mathbf{g})\right)^2.$$

Now let us consider two cases. If n is even, then, clearly,

$$\sum_{A \in \mathcal{B}_n^d} \chi^2(A) \ge 2^{d(n-2)} n^d.$$

On the other hand, for every $I \subseteq [d]$, $I \neq [d]$, and every **h**,

$$\sum_{\mathbf{g}\in\mathcal{C}(\mathbf{h},I)}\chi_0(\mathbf{g})=0$$

so, if n is even,

$$[\operatorname{disc}_2(\mathcal{B}_n^d)]^2 = [\operatorname{disc}_2(\mathcal{B}_n^d, \chi_0)]^2 = \left(\frac{2^n}{2^n - 1}\right)^d \left(\frac{n}{4}\right)^d.$$

If n is odd, then for every $I \subseteq [d]$ and $\mathbf{h} \in \mathbb{Z}_n^d$

$$\left|\sum_{\mathbf{g}|_{I}=\mathbf{h}|_{I}}\chi(\mathbf{g})\right| \geq 1.$$

Furthermore, it is not hard to see that each such sum equals one for the colouring χ_0 . Hence

$$\sum_{A \in \mathcal{B}_n^d} \chi^2(A) \ge \sum_{A \in \mathcal{B}_n^d} \chi_0^2(A) = 2^{d(n-2)} n^d + 2^{d(n-2)} \sum_{\substack{C(\mathbf{h},I)\\I \neq [d]}} 1$$
$$= 2^{d(n-2)} n^d + 2^{d(n-2)} \sum_{i=0}^{d-1} \binom{d}{i} n^i = 2^{d(n-2)} \sum_{i=0}^d \binom{d}{i} n^i$$
$$= 2^{d(n-2)} (n+1)^d.$$

Consequently, for odd n we have

$$[\operatorname{disc}_2(\mathcal{B}_n^d)]^2 = \left(\frac{2^n}{2^n - 1}\right)^d \left(\frac{n+1}{4}\right)^d$$

and the assertion follows.

The above proof of Theorem 1 has a combinatorial flavour but one can explore the fact that \mathcal{B}_n^d is a "product family" using an algebraic argument. Below we sketch such an alternative proof of Theorem 1 for the case in which n is even.

Let $\chi : V \mapsto \{-1, 1\}$ be a colouring of the set of vertices of a hypergraph $\mathcal{H} = (V, E)$. Denote by $B = (B_{e,v})_{e \in E, v \in V}$ the incidence matrix of \mathcal{H} in which $B_{e,v} = 1$ if and only if $v \in e$. It is easy to see that then

$$[\operatorname{disc}_2(\mathcal{H},\chi)]^2 = \frac{1}{|E|} \chi^T B^T B \chi.$$

This implies that if the smallest eigenvalue of $B^T B$ is λ and |V| = n, then

$$[\operatorname{disc}_2(\mathcal{H},\chi)]^2 \ge \frac{1}{|E|}\lambda n,$$

and equality holds if and only if there is an eigenvector of $B^T B$ corresponding to the smallest eigenvalue with $\{-1, 1\}$ -coordinates.

If $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_d$ are *d* hypergraphs, where $\mathcal{H}_i = (V_i, E_i)$, then the product of $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_d$ is the hypergraph \mathcal{H} whose set of vertices is the Cartesian product $\prod_{i=1}^d V_i$ and whose set of edges are all Cartesian products $\prod_{i=1}^d e_i$, for each choice of $e_i \in E_i$. It is not difficult to check that if B_i is the incidence matrix of H_i and B is the incidence matrix of H, then $B^T B$ is the tensor product of the matrices $B_i^T B_i$. Therefore, the set of all eigenvalues of $B^T B$ is the set of all products $\prod_{i=1}^d \mu_i$ where μ_i ranges over all eigenvalues of $B_i^T B_i$. In particular, the smallest eigenvalue of $B^T B$ is $\prod_{i=1}^d \lambda_i$, where λ_i is the smallest eigenvalue of $B_i^T B_i$, and the tensor product of any d vectors v_i , where v_i is an eigenvector corresponding to the smallest eigenvalue of $B_i^T B_i$,

is an eigenvector of B^TB , corresponding to its smallest eigenvalue. We have thus proved the following.

Lemma 4. Let $\mathcal{H}_i = (V_i, E_i)$, $i = 1, \ldots, d$ be hypergraphs, and suppose λ_i is the smallest eigenvalue of $B_i^T B_i$, where B_i is the incidence matrix of H_i . Let \mathcal{H} be the product of all hypergraphs \mathcal{H}_i , and let n_i denote the number of vertices of \mathcal{H}_i . Then

$$\operatorname{disc}_{2}(\mathcal{H},\chi) \geq \left[\frac{1}{\prod_{i=1}^{d} |E_{i}|} \prod_{i=1}^{d} \lambda_{i} n_{i}\right]^{1/2}.$$
(5)

Moreover, if for each *i* there is an eigenvector of $B_i^T B_i$ corresponding to the smallest eigenvalue with $\{-1, 1\}$ -coordinates, then (5) holds with equality.

In particular, if for $1 \leq i \leq d$, $\mathcal{H}_i = \mathcal{B}_n^1$ is the hypergraph whose set of vertices is [n] and whose set of edges is the set of all nonempty subsets of [n], then $B_i^T B_i$ is an n by n matrix with each diagonal entry being 2^{n-1} and each other entry being 2^{n-2} . It follows that its smallest eigenvalue is $2^{n-1} - 2^{n-2} = 2^{n-2}$ (with multiplicity n - 1). Thus, by Lemma 4 (where here the product \mathcal{H} is \mathcal{B}_n^d , $n_i = n$, $\lambda_i = 2^{n-2}$ and $|E_i| = 2^n - 1$ for all i):

$$\operatorname{disc}_2(\mathcal{B}_n^d) \ge \left[\left(\frac{2^n}{2^n - 1} \right) \left(\frac{n}{4} \right) \right]^{d/2}$$

Moreover, equality holds for every even n, as in this case every $\{-1, 1\}$ -vector of length n whose sum of coordinates is 0, is an eigenvector of the smallest eigenvalue of $B_i^T B_i$.

3. L_p -discrepancy: the lower bound

Our proofs of the lower bounds in (1) and (2) rely on the following probabilistic theorem, proved by Szarek [3].

Lemma 5. Let a_1, \ldots, a_n be real numbers and let $\tilde{\epsilon}_1, \ldots, \tilde{\epsilon}_n$ denote independent identically distributed random variables such that

$$\Pr(\tilde{\epsilon}_i = 1) = \Pr(\tilde{\epsilon}_i = -1) = 1/2 \text{ for } i = 1, 2, \dots, n.$$

Set $X = \sum_{i=1}^{n} \tilde{\epsilon}_{i} a_{i}$. Then for the expectation $E |\tilde{X}|$ of $|\tilde{X}|$ we have

$$\mathbf{E} \left| \tilde{X} \right| \ge \frac{1}{\sqrt{2}} \left(\sum_{i=1}^{n} a_i \right)^{1/2}. \quad \Box$$

Let $\tilde{R} = \tilde{R}_n$ denote the random subset of [n], where each element of [n] is included in \tilde{R} independently with probability 1/2, or, equivalently, where each subset of [n] appears as \tilde{R} with probability 2^{-n} . The following corollaries are straightforward consequences of Lemma 5.

Corollary 6. Let a_1, \ldots, a_n be a sequence of real numbers and $\tilde{Y} = \sum_{i \in \tilde{R}} a_i$. Then

$$E|\tilde{Y}| = 2^{-n} \sum_{A \subseteq [n]} \left| \sum_{i \in A} a_i \right| \ge \frac{1}{\sqrt{8n}} \sum_{i=1}^n |a_i|$$

Proof. For every vector $\mathbf{e} = (\tilde{\epsilon}_1, \dots, \tilde{\epsilon}_n) \in \{-1, 1\}^n$ define $A_{\mathbf{e}} = \{i : \tilde{\epsilon}_i = 1\}$ and $A'_{\mathbf{e}} = \{i : \tilde{\epsilon}_i = -1\}$. Then, by the triangle inequality

$$\left|\sum_{i\in A_{\mathbf{e}}} a_i\right| + \left|\sum_{i\in A'_{\mathbf{e}}} a_i\right| \ge \left|\sum_{i=1}^n \tilde{\epsilon}_i a_i\right|.$$

As $\tilde{\epsilon}$ ranges over all 2^n members of $\{-1, 1\}^n$, $A_{\mathbf{e}}$, as well as $A'_{\mathbf{e}}$ range over all 2^n subsets of $\{1, 2, \ldots, n\}$. Thus, using Lemma 5 and Cauchy-Schwartz inequality we infer that

$$2E|\tilde{Y}| \ge E \Big| \sum_{i=1}^{n} \tilde{\epsilon}_{i} a_{i} \Big| \ge \frac{1}{\sqrt{2}} \left(\sum_{i=1}^{n} a_{i} \right)^{1/2} \ge \frac{1}{\sqrt{2n}} \sum_{i=1}^{n} |a_{i}|. \quad \Box$$

Remark. If $|a_1| = \cdots = |a_n| = 1$, then $\tilde{X} = \sum_{i=1}^n \tilde{\epsilon}_i a_i$ is asymptotically a normal random variable with standard deviation \sqrt{n} , and hence

$$E|\tilde{Y}| \ge \frac{1}{2} E|\tilde{X}| = \frac{1}{2} (1+o(1))\sqrt{n} \int_0^\infty \frac{2}{\sqrt{2\pi}} x e^{-x^2/2} dx$$

$$= (1+o(1))\sqrt{n/2\pi} .$$
(6)

Corollary 7. Let $\chi : [n]^d \to \{-1, 1\}$. Then for every ℓ , $0 \le \ell \le d$,

$$2^{-\ell n} \sum_{x_1 \in [n]} \cdots \sum_{x_{d-\ell} \in [n]} \sum_{A_{d-\ell+1} \subseteq [n]} \cdots \sum_{A_d \subseteq [n]} \left| \sum_{x_{d-\ell+1} \in A_{d-\ell+1}} \cdots \sum_{x_d \in A_d} \chi(x_1, x_2, \dots, x_d) \right| \ge 8^{-\ell/2} n^{d-\ell/2}$$

Proof. We use induction on ℓ . For $\ell = 0$ there is nothing to prove. In order to show the assertion for $\ell \geq 1$ it is enough to set for each $(d-\ell)$ -tuple $x_1, \ldots, x_{d-\ell}$ and all $A_{d-\ell+2}, \ldots, A_d \subseteq [n],$

$$a_i(x_1, \dots, x_{d-\ell}, A_{d-\ell+2}, \dots, A_d) = \sum_{x_{d-\ell+2} \in A_{d-\ell+2}} \cdots \sum_{x_d \in A_d} \chi(x_1, x_2, \dots, x_{d-\ell}, i, x_{d-\ell+2}, \dots, x_d),$$

and apply Corollary 6.

Proof of the lower bounds in Theorem 2. Note that for every family of sets \mathcal{H} and $1 \leq r \leq s \leq \infty$, we have

$$\operatorname{disc}_r(\mathcal{H}) \le \operatorname{disc}_s(\mathcal{H}).$$
 (7)

Now it is enough to observe that Corollary 7 applied with $\ell = d$, gives the required lower bound for $\operatorname{disc}_1(\mathcal{B}_n^d)$, and thus, for $\operatorname{disc}_p(\mathcal{B}_n^d)$ with $1 \leq p < \infty$. For $p \geq 2$ we get a slightly better lower bound, as in this case

$$\operatorname{disc}_p(\mathcal{B}_n^d) \ge \operatorname{disc}_2(\mathcal{B}_n^d) \ge 2^{-d} n^{d/2},$$

by Theorem 1.

In order to deal with $\operatorname{disc}(\mathcal{B}_n^d)$ note that Corollary 7 with $\ell = d - 1$ gives

$$2^{-(d-1)n} \sum_{A_2 \subseteq [n]} \cdots \sum_{A_d \subseteq [n]} \sum_{x_1 \in [n]} \left| \chi(\{x_1\} \times A_2 \times \cdots \times A_d) \right| \ge 8^{-(d-1)/2} n^{(d+1)/2}$$

Thus, there exist sets S_2, \ldots, S_d such that

$$\sum_{x_1 \in [n]} |\chi(\{x_1\} \times S_2 \times \dots \times S_d)| \ge 8^{-(d-1)/2} n^{(d+1)/2}.$$

Let S_1^{\pm} be the set of all $x_1 \in [n]$ for which

$$\pm \chi(\{x_1\} \times S_2 \times \dots \times S_d) > 0$$

Take as S_1 any of the sets S_1^- , S_1^+ , such that

$$\sum_{x_1 \in S_1} |\chi(\{x_1\} \times S_2 \times \dots \times S_d)| = |\chi(S_1 \times \dots \times S_d)|$$

$$\geq 8^{-(d-1)/2} n^{(d+1)/2}/2 > 8^{-d/2} n^{(d+1)/2}/2$$

The above holds for arbitrary $\chi : [n]^d \to \{-1,1\}$, so disc $(\mathcal{B}_n^d) \ge 8^{-d/2} n^{(d+1)/2}$.

Finally, from (6) we get $\operatorname{disc}(\mathcal{B}_n^2) \ge (1/\sqrt{8\pi} + o(1))n^{3/2}$.

4. L_p -DISCREPANCY – THE UPPER BOUND

Proof of the upper bounds in Theorem 2. Let us divide the set $[n] = \{1, 2, ..., n\}$ into $m = \lceil n/2 \rceil$ subsets, setting $P_i = \{2i - 1, 2i\}$ for $i = 1, 2, ..., \lfloor n/2 \rfloor$ and, if n is odd, $P_m = \{n\}$. Let also

$$\mathcal{P} = \{P_{i_1} \times \cdots \times P_{i_d}: 1 \le i_1, \dots, i_d \le m\}.$$

Hence, the family \mathcal{P} is a partition of the set $[n]^d$ into m^d boxes, each of at most 2^d elements.

Note that for each $P \in \mathcal{P}$ there exist two "natural" colourings $\chi_{\text{odd}}(P), \chi_{\text{even}}(P) : P \to \{-1,1\}$ which colour elements (x_1, \ldots, x_d) of P according to the parity of $\sum_{i=1}^d x_i$, so that no two points at Hamming distance one are coloured with the same colour. Let $\tilde{\chi} : [n]^d \to \{-1,1\}$ denote a random colouring of $[n]^d$ in which for each $P \in \mathcal{P}$ independently we choose with probability 1/2 one of the colourings $\chi_{\text{odd}}(P), \chi_{\text{even}}(P)$. Our aim is to show that with positive probability $\operatorname{disc}_p(\mathcal{B}^d_n, \tilde{\chi})$ is small; this will imply the existence a colouring χ with small $\operatorname{disc}_p(\mathcal{B}^d_n, \chi)$ and the assertion will follow.

Let us first find the upper bound for $\operatorname{disc}_p(\mathcal{B}_n^d)$, where $1 \leq p < \infty$. Note that from Theorem 1 and (7) it follows that for $1 \leq p \leq 2$

$$\operatorname{disc}_{p}(\mathcal{H}) \leq \operatorname{disc}_{2}(\mathcal{H}) \leq 2^{-d}(n+1)^{d/2} < p^{7}2^{-d/2}(n+1)^{d/2},$$

so it is enough to verify (1) for $2 \leq p < \infty$. Since the colouring $\tilde{\chi}$ is random, $[\operatorname{disc}_p(\mathcal{B}_n^d, \tilde{\chi})]^p$ is a random variable with expectation

$$E[\operatorname{disc}_{p}(\mathcal{B}_{n}^{d},\tilde{\chi})]^{p} = E\left[\frac{1}{|\mathcal{B}_{n}^{d}|}\sum_{B\in\mathcal{B}_{n}^{d}}|\tilde{\chi}(B)|^{p}\right]$$

$$= \frac{1}{|\mathcal{B}_{n}^{d}|}\sum_{B\in\mathcal{B}_{n}^{d}}E|\tilde{\chi}(B)|^{p} \leq \max_{B\in\mathcal{B}_{d}^{n}}E|\tilde{\chi}(B)|^{p}.$$
(8)

In order to estimate the above sum we study the behaviour of the random variable $\tilde{\chi}(B)$, for $B \in \mathcal{B}_n^d$. Note that for any colouring χ of $[n]^d$,

$$\chi(B) = \sum_{P \in \mathcal{P}} \chi(P \cap B) \,.$$

Let us assume now that χ is such that for every $P \in \mathcal{P}$ we have $\chi | P = \chi_{\alpha}(P)$ for some $\alpha = odd$, even. It is not hard to see that then, for any box $B \in \mathcal{B}_n^d$,

$$|\chi(P \cap B)| \le 1,$$

and equality holds if and only if $|P \cap B| = 1$. Thus, for a fixed B, $\tilde{\chi}(B)$ is a sum of w independent identically distributed random variables

 $\tilde{\epsilon}_1, \ldots, \tilde{\epsilon}_w$, where

$$w = w(B) = \left| \{ P \in \mathcal{P} \colon |P \cap B| = 1 \} \right| \le m^d \tag{9}$$

and $\Pr(\tilde{\epsilon}_i = -1) = \Pr(\tilde{\epsilon}_i = 1) = 1/2$ for i = 1, ..., w. Thus, using Chernoff's bounds for the tails of the binomial distribution (see, for instance, [2], Corollary A.1.2), we infer that for every t > 0

$$\Pr(|\tilde{\chi}(B)| \ge t) < 2\exp\left(-\frac{t^2}{2w(B)}\right) \le 2\exp\left(-\frac{t^2}{2m^d}\right).$$
(10)

Set $\tau_i = 2^i m^{d/2}$ for $i = 0, 1, \dots$ Then, from (10), we get

$$E |\tilde{\chi}(B)|^{p} \leq \tau_{0}^{p} + \sum_{i=0}^{\infty} \tau_{i+1}^{p} 2 \exp\left(-\frac{\tau_{i}^{2}}{2m^{d}}\right)$$

$$= m^{pd/2} + m^{pd/2} \sum_{i=0}^{\infty} 2^{ip+p+1} \exp\left(-2^{2i-1}\right)$$

$$= m^{pd/2} \sum_{j=0}^{\infty} 2^{jp+1} \exp\left(-2^{2j-3}\right).$$

A crude estimate of the above sum gives

$$\sum_{j=0}^{\infty} 2^{jp+1} \exp\left(-2^{2j-3}\right) \le \sum_{j=0}^{\infty} 2^{jp+1-2^{2j-3}}$$
$$\le 5 \log_2 p \, 2^{5p \log_2 p+1} + \sum_{j\ge 5 \log_2 p} 2^{jp+1-p^5 2^{j-3}}$$
$$\le 10p^{5p} \log_2 p + 1 \le p^{7p} \,.$$

Hence $\operatorname{E}[\operatorname{disc}_p(\mathcal{B}_n^d, \tilde{\chi})]^p \leq p^{7p} m^{pd/2}$, so there exists a colouring $\chi : [n]^d \to \{-1, 1\}$ such that $[\operatorname{disc}_p(\mathcal{B}_n^d, \chi)]^p \leq p^{7p} m^{pd/2}$. Hence

disc_p(
$$\mathcal{B}_n^d$$
) $\leq \left[p^{7p} m^{pd/2} \right]^{1/p} \leq p^7 2^{-d/2} (n+1)^{d/2}$

Finally, note that (10) implies that the probability that for some set B of \mathcal{B}_n^d we have $|\tilde{\chi}(B)| \geq t$ is at most

$$|\mathcal{B}_n^d| 2 \exp(-t^2/2m^d) \le 2^{dn+1} \exp(-t^2/2m^d).$$

The above expression is strictly smaller than 1 for $t = 2\sqrt{dn}m^{d/2}$, so for some colouring χ we have $\operatorname{disc}(\mathcal{B}_n^d, \chi) \leq 2\sqrt{dn}m^{d/2}$ and

disc
$$(\mathcal{B}_n^d) \le 2\sqrt{dn} \, m^{d/2} \le 2^{-d/2+1} \sqrt{d} (n+1)^{(d+1)/2} \,.$$

We conclude the section with a remark that in the proof of the upper bound in Theorem 2, instead of the random colouring $\tilde{\chi}$ one can use the random colouring $\tilde{\chi}'$, in which each element of $[n]^d$ is coloured

10

independently with -1 or 1. Then, similarly as in the argument above, for a given $B \in B_n^d$ the random variable $\tilde{\chi}'(B)$ is a sum of independent identically distributed random variables $\tilde{\epsilon}_i$, but in this case the number of $\tilde{\epsilon}_i$'s can be substantially larger than for $\tilde{\chi}(B)$. Consequently, Chernoff's bounds we used in the paper would give a weaker estimate for $\operatorname{disc}_p(\mathcal{B}_n^d, \tilde{\chi}')$.

References

 G. AGNARSSON, B. DOERR, AND T. SCHOEN, Coloring t-dimensional mboxes, Discrete Mathematics 226 (2001), 21–33.

[2] N. ALON, J. SPENCER, "*The Probabilistic Method*", 2nd edition, Wiley, New York, 2000.

[3] S. J. SZAREK, On the best constants in the Khinchin Inequality, Studia Math. 58 (1976), 197-208.

Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

E-mail address: <noga@math.tau.ac.il>

MATHEMATISCHES SEMINAR, CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL, LUDEWIG-MEYN-STRASSE 4, 24098 KIEL, GERMANY

E-mail address: <bed@numerik.uni-kiel.de>

DEPARTMENT OF DISCRETE MATHEMATICS, ADAM MICKIEWICZ UNIVERSITY, 60-769 POZNAŃ, POLAND

E-mail address: <tomasz@amu.edu.pl>

Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Strasse 4, 24098 Kiel, Germany,

AND

Department of Discrete Mathematics, Adam Mickiewicz University, 60-769 Poznań, Poland

E-mail address: <tos@numerik.uni-kiel.de>