ON THE DISCREPANCY OF COMBINATORIAL RECTANGLES

NOGA ALON, BENJAMIN DOERR, TOMASZ ŁUCZAK, AND TOMASZ SCHOEN

Abstract

Let \mathcal{B}_{n}^{d} denote the family which consists of all subsets $S_{1} \times \cdots \times S_{d}$, where $S_{i} \subseteq[n]$, and $S_{i} \neq \emptyset$, for $i=1, \ldots, d$. We compute the L_{2}-discrepancy of \mathcal{B}_{n}^{d} and give estimates for the $L_{p^{-}}$ discrepancy of \mathcal{B}_{n}^{d} for $1 \leq p \leq \infty$.

1. Introduction

For a family of subsets \mathcal{H} of a finite set Ω, a colouring $\chi: \Omega \rightarrow$ $\{-1,1\}$, and $A \in \mathcal{H}$, let $\chi(A)=\sum_{a \in A} \chi(a)$. Then, for $1 \leq p<\infty$, we set

$$
\operatorname{disc}_{p}(\mathcal{H}, \chi)=\left(\frac{1}{|\mathcal{H}|} \sum_{A \in \mathcal{H}}|\chi(A)|^{p}\right)^{1 / p}
$$

while for $p=\infty$

$$
\operatorname{disc}_{\infty}(\mathcal{H}, \chi)=\operatorname{disc}(\mathcal{H}, \chi)=\max \{|\chi(A)|: A \in \mathcal{H}\}
$$

The L_{p}-discrepancy $\operatorname{disc}_{p}(\mathcal{H})$ of \mathcal{H}, where $1 \leq p \leq \infty$, is defined as the minimum value of $\operatorname{disc}_{p}(\mathcal{H}, \chi)$ over all possible colourings $\chi: \Omega \rightarrow$ $\{-1,1\}$. We shall sometimes call the L_{∞}-discrepancy just the discrepancy and write $\operatorname{disc}(\mathcal{H})$ instead of $\operatorname{disc}_{\infty}(\mathcal{H})$.

In this note we study the L_{p}-discrepancy of the family \mathcal{B}_{n}^{d} of boxes (or combinatorial rectangles,) which consists of all sets of type $S_{1} \times$ $S_{2} \times \cdots \times S_{d}$, where $\emptyset \neq S_{i} \subseteq[n]=\{1,2, \ldots, n\}$, for $i=1,2, \ldots, d$. We compute the L_{2}-discrepancy of \mathcal{B}_{n}^{d} precisely and estimate $\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}\right)$ for all $p, 1 \leq p \leq \infty$.

Date: November 17, 2001.
1991 Mathematics Subject Classification. 11K38, 05D40.
Key words and phrases. discrepancy, probabilistic method.
The first author was partially supported by a USA-Israeli BSF grant, by the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. The third author was partially supported by KBN grant 2 P03A 02117.

Theorem 1. For every $d, n \geq 1$ we have

$$
\operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}\right)=\left[\left(\frac{2^{n}}{2^{n}-1}\right)\left(\frac{n+\frac{1}{2}\left(1-(-1)^{n+1}\right)}{4}\right)\right]^{d / 2}
$$

Theorem 2. Let $d, n \geq 1$. Then, for $1 \leq p<\infty$,

$$
\begin{equation*}
8^{-d / 2} n^{d / 2} \leq \operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}\right) \leq p^{7} 2^{-d / 2}(n+1)^{d / 2} \tag{1}
\end{equation*}
$$

for $p \geq 2$,

$$
\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}\right) \geq \operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}\right) \geq 2^{-d} n^{d / 2}
$$

while for the L_{∞}-discrepancy of \mathcal{B}_{n}^{d} we have

$$
\begin{equation*}
8^{-d / 2} n^{(d+1) / 2} \leq \operatorname{disc}\left(\mathcal{B}_{n}^{d}\right) \leq 2^{-d / 2+1} \sqrt{d}(n+1)^{(d+1) / 2} \tag{2}
\end{equation*}
$$

In the special case $d=2$, Theorem 2 improves the bound

$$
\begin{equation*}
\frac{1}{15} n^{3 / 2}-\frac{4}{5} n \leq \operatorname{disc}\left(\mathcal{B}_{n}^{2}\right) \leq 2 n^{3 / 2} \tag{3}
\end{equation*}
$$

proven in [1]. Using the method presented in this note one can get a further improvement (for large n) of the lower bound in (3) to $(1 / \sqrt{8 \pi}+$ $o(1)) n^{3 / 2}$.

2. L_{2}-DISCREPANCY

Let \mathcal{H} be a family of subsets of a finite abelian group G. We say that \mathcal{H} is shift-invariant if for every $A \in \mathcal{H}$ and $g \in G$ we have also $g+A \in$ \mathcal{H}. In this section we compute $\operatorname{disc}_{2}(\mathcal{H})$ for any shift-invariant family \mathcal{H} of subsets of G. Since, clearly, the family of boxes \mathcal{B}_{n}^{d}, considered as a family of subsets of \mathbb{Z}_{n}^{d}, is shift-invariant, Theorem 1 will follow.

For $A \in \mathcal{H}$ and $g \in G$ we set

$$
\nu_{A}(g)=\left|\left\{\left(e, e^{\prime}\right) \in A \times A: e-e^{\prime}=g\right\}\right|,
$$

and

$$
\nu(g)=\sum_{A \in \mathcal{H}} \nu_{A}(g) .
$$

Lemma 3. Let \mathcal{H} be a shift-invariant family of subsets of a finite abelian group G and $\chi: G \rightarrow\{-1,+1\}$. Then

$$
\sum_{A \in \mathcal{H}} \chi^{2}(A)=\frac{1}{|G|} \sum_{g, g^{\prime} \in G} \chi(g) \chi\left(g^{\prime}\right) \nu\left(g-g^{\prime}\right) .
$$

Proof. Let $A \in \mathcal{H}$. Then

$$
\begin{aligned}
\sum_{g \in G} \chi^{2}(A+g) & =\sum_{g \in G}\left(\sum_{a \in A} \chi(a+g)\right)^{2} \\
& =\sum_{g \in G} \sum_{a, a^{\prime} \in A} \chi(a+g) \chi\left(a^{\prime}+g\right) \\
& =\sum_{g, g^{\prime} \in G} \chi(g) \chi\left(g^{\prime}\right) \nu_{A}\left(g-g^{\prime}\right)
\end{aligned}
$$

Since \mathcal{H} is shift-invariant, we get

$$
\begin{aligned}
|G| \sum_{A \in \mathcal{H}} \chi^{2}(A) & =\sum_{A \in \mathcal{H}} \sum_{g \in G} \chi^{2}(A+g) \\
& =\sum_{g, g^{\prime} \in G} \chi(g) \chi\left(g^{\prime}\right) \sum_{A \in \mathcal{H}} \nu_{A}\left(g-g^{\prime}\right) \\
& =\sum_{g, g^{\prime} \in G} \chi(g) \chi\left(g^{\prime}\right) \nu\left(g-g^{\prime}\right),
\end{aligned}
$$

which completes the proof.
Proof of Theorem 1. Let $\chi_{0}: \mathbb{Z}_{n}^{d} \rightarrow\{-1,+1\}$ be a "chessboard colouring" of \mathbb{Z}_{n}^{d}, i.e., $\chi_{0}\left(x_{1}, \ldots, x_{d}\right)=-1$, or 1 , if the sum $\sum_{i=1}^{d} x_{i}$ is odd, or even, respectively. We shall show that for an arbitrary colouring $\chi: \mathbb{Z}_{n}^{d} \rightarrow\{-1,+1\}$ of \mathbb{Z}_{n}^{d},

$$
\operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}, \chi\right) \geq \operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}, \chi_{0}\right)
$$

and compute

$$
\operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}, \chi_{0}\right)=\operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}\right)
$$

For a given $\mathbf{g}=\left(g_{1}, \ldots, g_{d}\right) \in \mathbb{Z}_{n}^{d}$, let

$$
\operatorname{ind}(\mathbf{g})=\left|\left\{i \in[d]: g_{i}=0\right\}\right|
$$

Notice that

$$
\nu(\mathbf{g})=n^{d} 2^{d(n-2)+\operatorname{ind}(\mathbf{g})} .
$$

For every $\mathbf{h}=\left(h_{1}, \ldots, h_{d}\right) \in \mathbb{Z}_{n}^{d}$, and $I \subseteq[d]$, define

$$
\begin{aligned}
\mathcal{C}(\mathbf{h}, I) & =\left\{\mathbf{h}^{\prime}=\left(h_{1}^{\prime}, \ldots, h_{d}^{\prime}\right) \in \mathbb{Z}_{n}^{d}: h_{i}=h_{i}^{\prime} \text { for } i \in I\right\} \\
& =\left\{\mathbf{h}^{\prime} \in \mathbb{Z}_{n}^{d}:\left.\mathbf{h}^{\prime}\right|_{I}=\left.\mathbf{h}\right|_{I}\right\} .
\end{aligned}
$$

From Lemma 3 it follows that

$$
\begin{align*}
\sum_{A \in \mathcal{B}_{n}^{d}} \chi^{2}(A) & =2^{d(n-2)} \sum_{i=0}^{d} 2^{i} \sum_{\substack{\mathbf{g}, \mathbf{g}^{\prime} \in \mathbb{Z}^{d} \\
\text { ind }\left(\mathbf{g}-\mathbf{g}^{\prime}\right)=i}} \chi(\mathbf{g}) \chi\left(\mathbf{g}^{\prime}\right) \\
& =2^{d(n-2)} \sum_{\mathcal{C}(\mathbf{h}, I)}\left(\sum_{\mathbf{g} \in \mathcal{C}(\mathbf{h}, I)} \chi(\mathbf{g})\right)^{2}, \tag{4}
\end{align*}
$$

where the sum is taken over all families $\mathcal{C}(\mathbf{h}, I)$. Indeed, observe that every term $\chi(\mathbf{g}) \chi\left(\mathbf{g}^{\prime}\right)$, with $\mathbf{g} \neq \mathbf{g}^{\prime}$, appears in the last double sum of (4) $2^{\operatorname{ind}\left(\mathbf{g}-\mathbf{g}^{\prime}\right)+1}$ times, and every term $\chi^{2}(\mathbf{g})$ appears 2^{d} times. Separating the summands with $I=[d]$ we get

$$
\begin{aligned}
\sum_{A \in \mathcal{B}_{n}^{d}} \chi^{2}(A) & =2^{d(n-2)} \sum_{\mathbf{g} \in \mathbb{Z}_{n}^{d}} \chi^{2}(\mathbf{g})+2^{d(n-2)} \sum_{\substack{\mathcal{C}(\mathbf{h}, I) \\
I \neq[d]}}\left(\sum_{\mathbf{g} \in \mathcal{C}(\mathbf{h}, I)} \chi(\mathbf{g})\right)^{2} \\
& =2^{d(n-2)} n^{d}+2^{d(n-2)} \sum_{\substack{\mathcal{C}(\mathbf{h}, I) \\
I \neq[d]}}\left(\sum_{\left.\mathbf{g}\right|_{I}=\left.\mathbf{h}\right|_{I}} \chi(\mathbf{g})\right)^{2} .
\end{aligned}
$$

Now let us consider two cases. If n is even, then, clearly,

$$
\sum_{A \in \mathcal{B}_{n}^{d}} \chi^{2}(A) \geq 2^{d(n-2)} n^{d}
$$

On the other hand, for every $I \subseteq[d], I \neq[d]$, and every \mathbf{h},

$$
\sum_{\mathbf{g} \in \mathcal{C}(\mathbf{h}, I)} \chi_{0}(\mathbf{g})=0
$$

so, if n is even,

$$
\left[\operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}\right)\right]^{2}=\left[\operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}, \chi_{0}\right)\right]^{2}=\left(\frac{2^{n}}{2^{n}-1}\right)^{d}\left(\frac{n}{4}\right)^{d}
$$

If n is odd, then for every $I \subseteq[d]$ and $\mathbf{h} \in \mathbb{Z}_{n}^{d}$

$$
\left|\sum_{\left.\mathbf{g}\right|_{I}=\left.\mathbf{h}\right|_{I}} \chi(\mathbf{g})\right| \geq 1 .
$$

Furthermore, it is not hard to see that each such sum equals one for the colouring χ_{0}. Hence

$$
\begin{aligned}
\sum_{A \in \mathcal{B}_{n}^{d}} \chi^{2}(A) & \geq \sum_{A \in \mathcal{B}_{n}^{d}} \chi_{0}^{2}(A)=2^{d(n-2)} n^{d}+2^{d(n-2)} \sum_{\substack{\mathcal{C}(\mathbf{n}, I) \\
I \neq[d]}} 1 \\
& =2^{d(n-2)} n^{d}+2^{d(n-2)} \sum_{i=0}^{d-1}\binom{d}{i} n^{i}=2^{d(n-2)} \sum_{i=0}^{d}\binom{d}{i} n^{i} \\
& =2^{d(n-2)}(n+1)^{d} .
\end{aligned}
$$

Consequently, for odd n we have

$$
\left[\operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}\right)\right]^{2}=\left(\frac{2^{n}}{2^{n}-1}\right)^{d}\left(\frac{n+1}{4}\right)^{d}
$$

and the assertion follows.
The above proof of Theorem 1 has a combinatorial flavour but one can explore the fact that \mathcal{B}_{n}^{d} is a "product family" using an algebraic argument. Below we sketch such an alternative proof of Theorem 1 for the case in which n is even.

Let $\chi: V \mapsto\{-1,1\}$ be a colouring of the set of vertices of a hypergraph $\mathcal{H}=(V, E)$. Denote by $B=\left(B_{e, v}\right)_{e \in E, v \in V}$ the incidence matrix of \mathcal{H} in which $B_{e, v}=1$ if and only if $v \in e$. It is easy to see that then

$$
\left[\operatorname{disc}_{2}(\mathcal{H}, \chi)\right]^{2}=\frac{1}{|E|} \chi^{T} B^{T} B \chi .
$$

This implies that if the smallest eigenvalue of $B^{T} B$ is λ and $|V|=n$, then

$$
\left[\operatorname{disc}_{2}(\mathcal{H}, \chi)\right]^{2} \geq \frac{1}{|E|} \lambda n
$$

and equality holds if and only if there is an eigenvector of $B^{T} B$ corresponding to the smallest eigenvalue with $\{-1,1\}$-coordinates.

If $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{d}$ are d hypergraphs, where $\mathcal{H}_{i}=\left(V_{i}, E_{i}\right)$, then the product of $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{d}$ is the hypergraph \mathcal{H} whose set of vertices is the Cartesian product $\prod_{i=1}^{d} V_{i}$ and whose set of edges are all Cartesian products $\prod_{i=1}^{d} e_{i}$, for each choice of $e_{i} \in E_{i}$. It is not difficult to check that if B_{i} is the incidence matrix of H_{i} and B is the incidence matrix of H, then $B^{T} B$ is the tensor product of the matrices $B_{i}^{T} B_{i}$. Therefore, the set of all eigenvalues of $B^{T} B$ is the set of all products $\prod_{i=1}^{d} \mu_{i}$ where μ_{i} ranges over all eigenvalues of $B_{i}^{T} B_{i}$. In particular, the smallest eigenvalue of $B^{T} B$ is $\prod_{i=1}^{d} \lambda_{i}$, where λ_{i} is the smallest eigenvalue of $B_{i}^{T} B_{i}$, and the tensor product of any d vectors v_{i}, where v_{i} is an eigenvector corresponding to the smallest eigenvalue of $B_{i}^{T} B_{i}$,
is an eigenvector of $B^{T} B$, corresponding to its smallest eigenvalue. We have thus proved the following.

Lemma 4. Let $\mathcal{H}_{i}=\left(V_{i}, E_{i}\right), i=1, \ldots, d$ be hypergraphs, and suppose λ_{i} is the smallest eigenvalue of $B_{i}^{T} B_{i}$, where B_{i} is the incidence matrix of H_{i}. Let \mathcal{H} be the product of all hypergraphs \mathcal{H}_{i}, and let n_{i} denote the number of vertices of \mathcal{H}_{i}. Then

$$
\begin{equation*}
\operatorname{disc}_{2}(\mathcal{H}, \chi) \geq\left[\frac{1}{\prod_{i=1}^{d}\left|E_{i}\right|} \prod_{i=1}^{d} \lambda_{i} n_{i}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

Moreover, if for each i there is an eigenvector of $B_{i}^{T} B_{i}$ corresponding to the smallest eigenvalue with $\{-1,1\}$-coordinates, then (5) holds with equality.

In particular, if for $1 \leq i \leq d, \mathcal{H}_{i}=\mathcal{B}_{n}^{1}$ is the hypergraph whose set of vertices is $[n]$ and whose set of edges is the set of all nonempty subsets of $[n]$, then $B_{i}^{T} B_{i}$ is an n by n matrix with each diagonal entry being 2^{n-1} and each other entry being 2^{n-2}. It follows that its smallest eigenvalue is $2^{n-1}-2^{n-2}=2^{n-2}$ (with multiplicity $n-1$). Thus, by Lemma 4 (where here the product \mathcal{H} is $\mathcal{B}_{n}^{d}, n_{i}=n, \lambda_{i}=2^{n-2}$ and $\left|E_{i}\right|=2^{n}-1$ for all i):

$$
\operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}\right) \geq\left[\left(\frac{2^{n}}{2^{n}-1}\right)\left(\frac{n}{4}\right)\right]^{d / 2}
$$

Moreover, equality holds for every even n, as in this case every $\{-1,1\}$ vector of length n whose sum of coordinates is 0 , is an eigenvector of the smallest eigenvalue of $B_{i}^{T} B_{i}$.

3. L_{p}-DISCREPANCY: THE LOWER BOUND

Our proofs of the lower bounds in (1) and (2) rely on the following probabilistic theorem, proved by Szarek [3].

Lemma 5. Let a_{1}, \ldots, a_{n} be real numbers and let $\tilde{\epsilon}_{1}, \ldots, \tilde{\epsilon}_{n}$ denote independent identically distributed random variables such that

$$
\operatorname{Pr}\left(\tilde{\epsilon}_{i}=1\right)=\operatorname{Pr}\left(\tilde{\epsilon}_{i}=-1\right)=1 / 2 \quad \text { for } \quad i=1,2, \ldots, n
$$

Set $X=\sum_{i=1}^{n} \tilde{\epsilon}_{i} a_{i}$. Then for the expectation $\mathrm{E}|\tilde{X}|$ of $|\tilde{X}|$ we have

$$
\mathrm{E}|\tilde{X}| \geq \frac{1}{\sqrt{2}}\left(\sum_{i=1}^{n} a_{i}\right)^{1 / 2}
$$

Let $\tilde{R}=\tilde{R}_{n}$ denote the random subset of $[n]$, where each element of $[n]$ is included in \tilde{R} independently with probability $1 / 2$, or, equivalently, where each subset of $[n]$ appears as \tilde{R} with probability 2^{-n}. The following corollaries are straightforward consequences of Lemma 5 .

Corollary 6. Let a_{1}, \ldots, a_{n} be a sequence of real numbers and $\tilde{Y}=$ $\sum_{i \in \tilde{R}} a_{i}$. Then

$$
\mathrm{E}|\tilde{Y}|=2^{-n} \sum_{A \subseteq[n]}\left|\sum_{i \in A} a_{i}\right| \geq \frac{1}{\sqrt{8 n}} \sum_{i=1}^{n}\left|a_{i}\right|
$$

Proof. For every vector $\mathbf{e}=\left(\tilde{\epsilon}_{1}, \ldots, \tilde{\epsilon}_{n}\right) \in\{-1,1\}^{n}$ define $A_{\mathbf{e}}=\{i$: $\left.\tilde{\epsilon}_{i}=1\right\}$ and $A_{\mathrm{e}}^{\prime}=\left\{i: \tilde{\epsilon}_{i}=-1\right\}$. Then, by the triangle inequality

$$
\left|\sum_{i \in A_{\mathrm{e}}} a_{i}\right|+\left|\sum_{i \in A_{\mathrm{e}}^{\prime}} a_{i}\right| \geq\left|\sum_{i=1}^{n} \tilde{\epsilon}_{i} a_{i}\right| .
$$

As $\tilde{\epsilon}$ ranges over all 2^{n} members of $\{-1,1\}^{n}, A_{\mathrm{e}}$, as well as A_{e}^{\prime} range over all 2^{n} subsets of $\{1,2, \ldots, n\}$. Thus, using Lemma 5 and CauchySchwartz inequality we infer that

$$
2 E|\tilde{Y}| \geq E\left|\sum_{i=1}^{n} \tilde{\epsilon}_{i} a_{i}\right| \geq \frac{1}{\sqrt{2}}\left(\sum_{i=1}^{n} a_{i}\right)^{1 / 2} \geq \frac{1}{\sqrt{2 n}} \sum_{i=1}^{n}\left|a_{i}\right|
$$

Remark. If $\left|a_{1}\right|=\cdots=\left|a_{n}\right|=1$, then $\tilde{X}=\sum_{i=1}^{n} \tilde{\epsilon}_{i} a_{i}$ is asymptotically a normal random variable with standard deviation \sqrt{n}, and hence

$$
\begin{array}{r}
\mathrm{E}|\tilde{Y}| \geq \frac{1}{2} \mathrm{E}|\tilde{X}|=\frac{1}{2}(1+o(1)) \sqrt{n} \int_{0}^{\infty} \frac{2}{\sqrt{2 \pi}} x e^{-x^{2} / 2} d x \tag{6}\\
=(1+o(1)) \sqrt{n / 2 \pi}
\end{array}
$$

Corollary 7. Let $\chi:[n]^{d} \rightarrow\{-1,1\}$. Then for every $\ell, 0 \leq \ell \leq d$,

$$
\begin{aligned}
2^{-\ell n} \sum_{x_{1} \in[n]} \cdots & \sum_{x_{d-\ell} \in[n]} \sum_{A_{d-\ell+1} \subseteq[n]} \cdots \sum_{A_{d} \subseteq[n]} \\
& \left|\sum_{x_{d-\ell+1} \in A_{d-\ell+1}} \cdots \sum_{x_{d} \in A_{d}} \chi\left(x_{1}, x_{2}, \ldots, x_{d}\right)\right| \geq 8^{-\ell / 2} n^{d-\ell / 2} .
\end{aligned}
$$

Proof. We use induction on ℓ. For $\ell=0$ there is nothing to prove. In order to show the assertion for $\ell \geq 1$ it is enough to set for each
$(d-\ell)$-tuple $x_{1}, \ldots, x_{d-\ell}$ and all $A_{d-\ell+2}, \ldots, A_{d} \subseteq[n]$,

$$
\begin{aligned}
& a_{i}\left(x_{1}, \ldots, x_{d-\ell}, A_{d-\ell+2}, \ldots, A_{d}\right) \\
& \quad=\sum_{x_{d-\ell+2} \in A_{d-\ell+2}} \cdots \sum_{x_{d} \in A_{d}} \chi\left(x_{1}, x_{2}, \ldots, x_{d-\ell}, i, x_{d-\ell+2}, \ldots, x_{d}\right),
\end{aligned}
$$

and apply Corollary 6.
Proof of the lower bounds in Theorem 2. Note that for every family of sets \mathcal{H} and $1 \leq r \leq s \leq \infty$, we have

$$
\begin{equation*}
\operatorname{disc}_{r}(\mathcal{H}) \leq \operatorname{disc}_{s}(\mathcal{H}) \tag{7}
\end{equation*}
$$

Now it is enough to observe that Corollary 7 applied with $\ell=d$, gives the required lower bound for $\operatorname{disc}_{1}\left(\mathcal{B}_{n}^{d}\right)$, and thus, for $\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}\right)$ with $1 \leq p<\infty$. For $p \geq 2$ we get a slightly better lower bound, as in this case

$$
\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}\right) \geq \operatorname{disc}_{2}\left(\mathcal{B}_{n}^{d}\right) \geq 2^{-d} n^{d / 2}
$$

by Theorem 1 .
In order to deal with $\operatorname{disc}\left(\mathcal{B}_{n}^{d}\right)$ note that Corollary 7 with $\ell=d-1$ gives

$$
2^{-(d-1) n} \sum_{A_{2} \subseteq[n]} \cdots \sum_{A_{d} \subseteq[n]} \sum_{x_{1} \in[n]}\left|\chi\left(\left\{x_{1}\right\} \times A_{2} \times \cdots \times A_{d}\right)\right| \geq 8^{-(d-1) / 2} n^{(d+1) / 2} .
$$

Thus, there exist sets S_{2}, \ldots, S_{d} such that

$$
\sum_{x_{1} \in[n]}\left|\chi\left(\left\{x_{1}\right\} \times S_{2} \times \cdots \times S_{d}\right)\right| \geq 8^{-(d-1) / 2} n^{(d+1) / 2} .
$$

Let $S_{1}^{ \pm}$be the set of all $x_{1} \in[n]$ for which

$$
\pm \chi\left(\left\{x_{1}\right\} \times S_{2} \times \cdots \times S_{d}\right)>0
$$

Take as S_{1} any of the sets S_{1}^{-}, S_{1}^{+}, such that

$$
\begin{aligned}
\sum_{x_{1} \in S_{1}}\left|\chi\left(\left\{x_{1}\right\} \times S_{2} \times \cdots \times S_{d}\right)\right| & =\left|\chi\left(S_{1} \times \cdots \times S_{d}\right)\right| \\
& \geq 8^{-(d-1) / 2} n^{(d+1) / 2} / 2>8^{-d / 2} n^{(d+1) / 2}
\end{aligned}
$$

The above holds for arbitrary $\chi:[n]^{d} \rightarrow\{-1,1\}$, so $\operatorname{disc}\left(\mathcal{B}_{n}^{d}\right) \geq$ $8^{-d / 2} n^{(d+1) / 2}$.

Finally, from (6) we get $\operatorname{disc}\left(\mathcal{B}_{n}^{2}\right) \geq(1 / \sqrt{8 \pi}+o(1)) n^{3 / 2}$.

4. L_{p}-DISCREPANCY - THE UPPER BOUND

Proof of the upper bounds in Theorem 2. Let us divide the set $[n]=$ $\{1,2, \ldots, n\}$ into $m=\lceil n / 2\rceil$ subsets, setting $P_{i}=\{2 i-1,2 i\}$ for $i=1,2, \ldots,\lfloor n / 2\rfloor$ and, if n is odd, $P_{m}=\{n\}$. Let also

$$
\mathcal{P}=\left\{P_{i_{1}} \times \cdots \times P_{i_{d}}: 1 \leq i_{1}, \ldots, i_{d} \leq m\right\} .
$$

Hence, the family \mathcal{P} is a partition of the set $[n]^{d}$ into m^{d} boxes, each of at most 2^{d} elements.

Note that for each $P \in \mathcal{P}$ there exist two "natural" colourings $\chi_{\text {odd }}(P), \chi_{\text {even }}(P): P \rightarrow\{-1,1\}$ which colour elements $\left(x_{1}, \ldots, x_{d}\right)$ of P according to the parity of $\sum_{i=1}^{d} x_{i}$, so that no two points at Hamming distance one are coloured with the same colour. Let $\tilde{\chi}:[n]^{d} \rightarrow$ $\{-1,1\}$ denote a random colouring of $[n]^{d}$ in which for each $P \in \mathcal{P}$ independently we choose with probability $1 / 2$ one of the colourings $\chi_{\text {odd }}(P), \chi_{\text {even }}(P)$. Our aim is to show that with positive probability $\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}, \tilde{\chi}\right)$ is small; this will imply the existence a colouring χ with small $\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}, \chi\right)$ and the assertion will follow.

Let us first find the upper bound for $\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}\right)$, where $1 \leq p<\infty$. Note that from Theorem 1 and (7) it follows that for $1 \leq p \leq 2$

$$
\operatorname{disc}_{p}(\mathcal{H}) \leq \operatorname{disc}_{2}(\mathcal{H}) \leq 2^{-d}(n+1)^{d / 2}<p^{7} 2^{-d / 2}(n+1)^{d / 2}
$$

so it is enough to verify (1) for $2 \leq p<\infty$. Since the colouring $\tilde{\chi}$ is random, $\left[\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}, \tilde{\chi}\right)\right]^{p}$ is a random variable with expectation

$$
\begin{align*}
\mathrm{E}\left[\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}, \tilde{\chi}\right)\right]^{p} & =\mathrm{E}\left[\frac{1}{\left|\mathcal{B}_{n}^{d}\right|} \sum_{B \in \mathcal{B}_{n}^{d}}|\tilde{\chi}(B)|^{p}\right] \\
& =\frac{1}{\left|\mathcal{B}_{n}^{d}\right|} \sum_{B \in \mathcal{B}_{n}^{d}} \mathrm{E}|\tilde{\chi}(B)|^{p} \leq \max _{B \in \mathcal{B}_{d}^{d}} \mathrm{E}|\tilde{\chi}(B)|^{p} . \tag{8}
\end{align*}
$$

In order to estimate the above sum we study the behaviour of the random variable $\tilde{\chi}(B)$, for $B \in \mathcal{B}_{n}^{d}$. Note that for any colouring χ of $[n]^{d}$,

$$
\chi(B)=\sum_{P \in \mathcal{P}} \chi(P \cap B) .
$$

Let us assume now that χ is such that for every $P \in \mathcal{P}$ we have $\chi \mid P=\chi_{\alpha}(P)$ for some $\alpha=o d d$, even. It is not hard to see that then, for any box $B \in \mathcal{B}_{n}^{d}$,

$$
|\chi(P \cap B)| \leq 1,
$$

and equality holds if and only if $|P \cap B|=1$. Thus, for a fixed $B, \tilde{\chi}(B)$ is a sum of w independent identically distributed random variables
$\tilde{\epsilon}_{1}, \ldots, \tilde{\epsilon}_{w}$, where

$$
\begin{equation*}
w=w(B)=|\{P \in \mathcal{P}:|P \cap B|=1\}| \leq m^{d} \tag{9}
\end{equation*}
$$

and $\operatorname{Pr}\left(\tilde{\epsilon}_{i}=-1\right)=\operatorname{Pr}\left(\tilde{\epsilon}_{i}=1\right)=1 / 2$ for $i=1, \ldots, w$. Thus, using Chernoff's bounds for the tails of the binomial distribution (see, for instance, [2], Corollary A.1.2), we infer that for every $t>0$

$$
\begin{equation*}
\operatorname{Pr}(|\tilde{\chi}(B)| \geq t)<2 \exp \left(-\frac{t^{2}}{2 w(B)}\right) \leq 2 \exp \left(-\frac{t^{2}}{2 m^{d}}\right) \tag{10}
\end{equation*}
$$

Set $\tau_{i}=2^{i} m^{d / 2}$ for $i=0,1, \ldots$ Then, from (10), we get

$$
\begin{aligned}
\mathrm{E}|\tilde{\chi}(B)|^{p} & \leq \tau_{0}^{p}+\sum_{i=0}^{\infty} \tau_{i+1}^{p} 2 \exp \left(-\frac{\tau_{i}^{2}}{2 m^{d}}\right) \\
& =m^{p d / 2}+m^{p d / 2} \sum_{i=0}^{\infty} 2^{i p+p+1} \exp \left(-2^{2 i-1}\right) \\
& =m^{p d / 2} \sum_{j=0}^{\infty} 2^{j p+1} \exp \left(-2^{2 j-3}\right)
\end{aligned}
$$

A crude estimate of the above sum gives

$$
\begin{aligned}
\sum_{j=0}^{\infty} 2^{j p+1} \exp \left(-2^{2 j-3}\right) & \leq \sum_{j=0}^{\infty} 2^{j p+1-2^{2 j-3}} \\
& \leq 5 \log _{2} p 2^{5 p \log _{2} p+1}+\sum_{j \geq 5 \log _{2} p} 2^{j p+1-p^{5} 2^{j-3}} \\
& \leq 10 p^{5 p} \log _{2} p+1 \leq p^{7 p}
\end{aligned}
$$

Hence $\mathrm{E}\left[\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}, \tilde{\chi}\right)\right]^{p} \leq p^{7 p} m^{p d / 2}$, so there exists a colouring χ : $[n]^{d} \rightarrow\{-1,1\}$ such that $\left[\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}, \chi\right)\right]^{p} \leq p^{7 p} m^{p d / 2}$. Hence

$$
\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}\right) \leq\left[p^{7 p} m^{p d / 2}\right]^{1 / p} \leq p^{7} 2^{-d / 2}(n+1)^{d / 2}
$$

Finally, note that (10) implies that the probability that for some set B of \mathcal{B}_{n}^{d} we have $|\tilde{\chi}(B)| \geq t$ is at most

$$
\left|\mathcal{B}_{n}^{d}\right| 2 \exp \left(-t^{2} / 2 m^{d}\right) \leq 2^{d n+1} \exp \left(-t^{2} / 2 m^{d}\right)
$$

The above expression is strictly smaller than 1 for $t=2 \sqrt{d n} m^{d / 2}$, so for some colouring χ we have $\operatorname{disc}\left(\mathcal{B}_{n}^{d}, \chi\right) \leq 2 \sqrt{d n} m^{d / 2}$ and

$$
\operatorname{disc}\left(\mathcal{B}_{n}^{d}\right) \leq 2 \sqrt{d n} m^{d / 2} \leq 2^{-d / 2+1} \sqrt{d}(n+1)^{(d+1) / 2}
$$

We conclude the section with a remark that in the proof of the upper bound in Theorem 2, instead of the random colouring $\tilde{\chi}$ one can use the random colouring $\tilde{\chi}^{\prime}$, in which each element of $[n]^{d}$ is coloured
independently with -1 or 1 . Then, similarly as in the argument above, for a given $B \in B_{n}^{d}$ the random variable $\tilde{\chi}^{\prime}(B)$ is a sum of independent identically distributed random variables $\tilde{\epsilon}_{i}$, but in this case the number of $\tilde{\epsilon}_{i}$'s can be substantially larger than for $\tilde{\chi}(B)$. Consequently, Chernoff's bounds we used in the paper would give a weaker estimate for $\operatorname{disc}_{p}\left(\mathcal{B}_{n}^{d}, \tilde{\chi}^{\prime}\right)$.

References

[1] G. Agnarsson, B. Doerr, and T. Schoen, Coloring t-dimensional mboxes, Discrete Mathematics 226 (2001), 21-33.
[2] N. Alon, J. Spencer, "The Probabilistic Method", 2nd edition, Wiley, New York, 2000.
[3] S. J. Szarek, On the best constants in the Khinchin Inequality, Studia Math. 58 (1976), 197-208.

Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, ISRAEL.

E-mail address: noga@math.tau.ac.il
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Strasse 4, 24098 Kiel, Germany

E-mail address: bed@numerik.uni-kiel.de
Department of Discrete Mathematics, Adam Mickiewicz University, 60-769 Poznań, Poland

E-mail address: tomasz@amu.edu.pl
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Strasse 4, 24098 Kiel, Germany, AND
Department of Discrete Mathematics, Adam Mickiewicz University, 60-769 Poznań, Poland

E-mail address: tos@numerik.uni-kiel.de

