
How to Put Through Your Agenda in
Collective Binary Decisions?

Noga Alon1, Robert Bredereck2, Jiehua Chen2, Stefan Kratsch2

Rolf Niedermeier2, and Gerhard J. Woeginger3

1 School of Mathematical Sciences, Tel Aviv University, Israel
2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

3 Department of Mathematics and Computer Science, TU Eindhoven,
The Netherlands

Abstract. We consider the following decision scenario: a society of vot-
ers has to find an agreement on a set of proposals, and every single
proposal is to be accepted or rejected. Each voter supports a certain
subset of the proposals–the favorite ballot of this voter–and opposes the
remaining ones. He accepts a ballot if he supports more than half of the
proposals in this ballot. The task is to decide whether there exists a bal-
lot approving a set of selected proposals (agenda) such that all voters
(or a strict majority of them) accept this ballot.
On the negative side both problems are NP-complete, and on the positive
side they are fixed-parameter tractable with respect to the total number
of proposals or with respect to the total number of voters. We look into
further natural parameters and study their influence on the computa-
tional complexity of both problems, thereby providing both tractability
and intractability results. Furthermore, we provide tight combinatorial
bounds on the worst-case size of an accepted ballot in terms of the num-
ber of voters.

1 Introduction

Consider the following decision scenario which may occur in contexts like coali-
tion formation, the design of party platforms, the change of statutes of an as-
sociation, or the agreement on contract issues: A leader has an agenda, that is,
a set of proposals she wants to get realized. However, a set of proposals has to
be approved or disapproved as a whole by a set of voters. Each voter has his
favorite proposals he wants to support. A set of proposals is acceptable to a voter
if he supports more than half of these proposals. Now, the leader is searching
for a set of proposals containing her personal agenda such that a majority of
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voters accepts this set. Can the leader efficiently find such a successful set of
proposals realizing her agenda? What about when this set of proposals has to
be acceptable to all voters and not just to a majority?

Mathematical model. Let V be a society of n voters and P be a set of m pro-
posals. Each voter may support any number of proposals in P and rejects all the
others. Subsets of P are called ballots. The favorite ballot Bi ⊆ P of a voter i
(1 ≤ i ≤ n) consists of all proposals he supports.

The voters evaluate a ballot Q ⊆ P according to the size of the intersection
of Q and their favorite ballots. More precisely, voter i accepts Q if and only if a
strict majority of proposals from Q is also contained in his favorite ballot, that
is,

|Bi ∩Q| > |Q|/2.
We say that in this case voter i is happy with Q.

The central question is whether there exists a ballot Q that (a) contains a
given agenda and that (b) is acceptable to the society. The agenda in (a) is a
set Q+ ⊆ P of proposals that have to be contained in Q, that is, Q+ ⊆ Q.
The society’s acceptance in (b) might be a unanimous acceptance or a majority
acceptance. This leads to the following two problems which only differ in the
respective questions asked.

Unanimously Accepted Ballot (UnaAB)

Input: A set P of m proposals; a society V of n voters with favorite
ballots B1, . . . , Bn ⊆ P; an agenda Q+ ⊆ P.

Question: Is there a ballot Q+ ⊆ Q ⊆ P which every single voter i
accepts (that is, |Bi ∩Q| > |Q|/2)?

Majoritywise Accepted Ballot (MajAB)

Input: A set P of m proposals; a society V of n voters with favorite
ballots B1, . . . , Bn ⊆ P; an agenda Q+ ⊆ P.

Question: Is there a ballot Q+ ⊆ Q ⊆ P which a strict majority of the
voters accepts (that is, |Bi ∩Q| > |Q|/2)?

One important special case of UnaAB or MajAB is when the agenda is
empty, that is, Q+ = ∅. In that case, the only question is whether there is a
ballot acceptable to the society.

Interestingly, the following example demonstrates that the solutions sizes to
our problems are not monotone, that is, a solution ballot of size h does not imply
a solution of a size smaller or larger than h. This is in notable contrast to many
natural decision problems, such as all problems we reduce from in this paper.

Example 1. Consider the society V = {1, 2, 3, 4} of voters and the set P =
{p1, p2, p3, p4, p5} of proposals. The favorite ballots are given asB1 = {p2, p3, p4},
B2 = {p1, p3, p5}, B3 = {p1, p2, p4}, and B4 = {p1, p2, p3}.

Suppose that the hidden agenda is empty. Then the only unanimously ac-
cepted ballots are {p1, p2, p3} of size three and {p1, p2, p3, p4, p5} of size five. This
shows that the set of the sizes of all solution ballots may contain gaps.



With regard to majority acceptance, if the hidden agenda is {p5}, then bal-
lots {p1, p2, p5}, {p2, p3, p5}, and {p1, p2, p3, p4, p5} are the only ballots that are
acceptable to a strict majority of voters. Again, the set of the sizes of all solution
ballots contains gaps. If the hidden agenda is empty, then ballot {p1, p2, p3, p4}
is also acceptable to a strict majority of voters.

Related work. While the two problems we introduce and study seem to be
new, the investigation of situations where a society has to decide upon binary
(that is, yes-or-no) issues is common within the theory and practice of decision
making. For instance, Laffond and Lainé [26] recently investigated the condi-
tions under which issue-wise majority voting allows for reaching several types
of compromise. An alternative to issue-wise evaluation is to compare issue sets
(which correspond to ballots in our setting) using the symmetric difference from
a voter’s favorite issue set [8,25,26]. A small symmetric difference is good, and a
large symmetric difference is bad. This way of comparing issue sets is very close
to the way we study in our paper: A voter accepts a ballot Q if and only if the
symmetric difference from his favorite ballot B to Q is smaller than the symmet-
ric difference from B to the empty ballot. Typically, the studies in this context
focus on proving desirable properties or on showing how to deal with certain
paradoxes. Computational complexity studies are established for related binary
decision making problems like judgment aggregation [4,14], lobbying [7,9,15,16],
or control of multiple referenda [10]. In the context of judgment aggregation,
Alon et al. [2] investigated the computational complexity of control by bundling
issues which is also related to “vote on bundled proposals” as considered in this
paper.

The scenario considered in our work is also (weakly) related to the concepts
of collective domination [13] and proportional representation [28]—in both cases
one has to select certain alternatives (proposals in our context) that provide
a “good representation” of the voter’s will. Herein, extending the Condorcet
winner principle to Condorcet winner sets plays a central role. In our work,
we also deal with “collectively winning ballots”, namely more than half of the
proposals in such a ballot are supported by a voter.

Finally, we mention in passing that central computational complexity results
of our work are cast within the framework of parameterized complexity analysis,
which due to its refined view on algorithmic (in)tractability fits particularly well
with voting and related problems [5].

Our contributions. We analyze the combinatorial and algorithmic behavior of
Unanimously Accepted Ballot and Majoritywise Accepted Ballot.
In particular, we investigate the role of the following natural parameters:

– the number m of proposals,
– the number n of voters,
– the size h of the solution ballot Q, that is, h = |Q|,
– the maximum size bmax of favorite ballots, that is, bmax = maxi∈V |Bi|, and
– the difference bgap between d(m + 1)/2e and the minimum size of favorite

ballots, that is, bgap = d(m+ 1)/2e −mini∈V |Bi|.



Table 1. Parameterized complexity results on two central problems. An entry “ILP-
FPT” means fixed-parameter tractability based on a formulation as an integer linear
program. Note that all our “intractability” results also hold for the case of Q+ = ∅.

Parameters UnaAB MajAB

Number m of proposals FPT, no polynomial kernel (Thm. 2)

Number n of voters ILP-FPT, no polynomial kernel (Thm. 3)

Parameter h W[2]-complete (Thm. 4) W[2]-hard (Thm. 4)

Parameter bmax FPT, no polynomial kernel (Thm. 5) in W[1] (Thm. 5)

Parameter bgap NP-complete already for bgap = 1 (Thm. 6)

The parameter bgap measures how far a given instance is from being trivial in
terms of the number of proposals: If each voter’s favorite ballot contains at least
d(m + 1)/2e proposals, then choosing Q = P makes every voter happy, so the
instance is a trivial yes-instance. While the parameters n and m are naturally
related to the “dimensions” of the input, the parameters h, bmax, and bgap measure
certain degrees of contradiction or inhomogeneity in an instance.

Section 2 is devoted to computational complexity results. The main picture is
summarized in Table 1. Not too much of a surprise, Unanimously Accepted
Ballot and Majoritywise Accepted Ballot turn out to be NP-complete.
More surprisingly, this remains so even when the input ballots are almost trivial,
that is, bgap = 1. Namely, if |Bi| ≥ d(m + 1)/2e for all voters i, then all voters
accept the ballot P. But if every voter i only satisfies the slightly weaker con-
dition |Bi| ≥ bm/2c, then both problems already become NP-complete. Next,
formulating the problems as integer linear programs (ILPs) where the number
of variables only depends (exponentially) on n implies fixed-parameter tractabil-
ity with respect to the parameter n. Using simple brute-force search, one easily
obtains that both problems are fixed-parameter tractable with respect to the pa-
rameter m. As to efficient and effective preprocessing by polynomial-time data
reduction, however, we show that neither for parameter n nor for parameter m
polynomial-size problem kernels exist unless an unlikely collapse in complexity
theory occurs. As to the parameter h, we prove parameterized intractability—
more precisely, W[2]-completeness for Unanimously Accepted Ballot and
W[2]-hardness for Majoritywise Accepted Ballot. While the two problems
behave in almost the same way with respect to the parameters n, m, and h, the
situation may change for the parameter bmax: While Unanimously Accept-
ed Ballot is shown fixed-parameter tractable, for Majoritywise Accepted
Ballot we only could show containment in W[1] and leave hardness as an open
question.

In Section 3, we provide an in-depth combinatorial analysis concerning the
dependence of the size of a solution ballot on the parameter n. In particular, we
show the upper bound (n+ 1)(n+1)/2 and the lower bound nn/2−o(n) for Unani-
mously Accepted Ballot with Q+ = ∅, thus achieving asymptotically almost



matching bounds. Analogous results hold for Majoritywise Accepted Bal-
lot. In Section 4, we conclude with some open questions for future research.

Due to the lack of space, we only sketch the ideas of the proofs for some of
our results.

Parameterized complexity preliminaries. The concept of parameterized
complexity was pioneered by Downey and Fellows [12] (see also [18,27] for more
recent textbooks). A parameterized problem is a language L ⊆ Σ∗ ×Σ∗, where
Σ is an alphabet. The second component is called the parameter of the prob-
lem. Typically, the parameter or the “combined” ones are non-negative integers.
A parameterized problem L is fixed-parameter tractable if there is an algorithm
that decides in f(k)·|x|O(1) time whether (x, k) ∈ L, where f is an arbitrary com-
putable function depending only on k. Correspondingly, FPT denotes the class of
all fixed-parameter tractable parameterized problems. A core tool in the devel-
opment of fixed-parameter algorithms is polynomial-time preprocessing by data
reduction [6,22]. Here, the goal is to transform a given problem instance (x, k) in
polynomial time into an equivalent instance (x′, k′) with parameter k′ ≤ k such
that the size of (x′, k′) is upper-bounded by some function g only depending
on k. If this is the case, we call instance (x′, k′) a (problem) kernel of size g(k).
If g is a polynomial, then we say that this problem has a polynomial-size problem
kernel, in short, polynomial kernel.

Fixed-parameter intractability under some plausible complexity-theoretic as-
sumptions can be shown by means of parameterized reductions. A parameterized
reduction from a parameterized problem P to another parameterized problem P ′

is a function that, given an instance (x, k), computes in f(k) · |x|O(1) time an
instance (x′, k′) (with k′ only depending on k) such that (x, k) is a yes-instance
for P if and only if (x′, k′) is a yes-instance for P ′. The two basic complexity
classes for fixed-parameter intractability are W[1] and W[2]. A parameterized
problem L is W[1]- or W[2]-hard if there is a parameterized reduction from a
W[1]- or W[2]-hard problem to L. For instance, both Independent Set and
Hitting Set are known to be NP-complete [20]. However, when parameterized
by the solution size, Independent Set is W[1]-complete while Hitting Set is
W[2]-complete [12].

2 Computational Complexity

The following observation is used many times in our proofs.

Observation 1 Let i and j be two voters that are both happy with some Q ⊆ P.

(i) Then Bi ∩Bj 6= ∅.
(ii) If Bi ∩Bj = {p}, then p ∈ Q and furthermore |Bi ∩Q| = |Bj ∩Q|.

The next observation basically says that UnaAB can be many-one reduced
in polynomial time to MajAB with the same agenda. This implies that the “ma-
jority problem” is computationally at least as hard as the “unanimous problem”.



Observation 2 Let Iuna be a UnaAB instance with n voters, and let Imaj be a
MajAB instance with 2n− 1 voters such that

– Iuna and Imaj both have the same proposal set P and the same agenda Q+,
– the voters from Iuna and the first n voters from Imaj have the same favorite

ballots B1, . . . , Bn, and
– the remaining n− 1 voters from Imaj support no proposals.

Then, Q ⊆ P is a solution for Iuna if and only if Q is a solution for Imaj.

We will use the NP-complete Hitting Set (HS) problem [20] to show many of
our intractability results. Given a finite set U , subsets S1, . . . , Sr of U , and a
nonnegative integer k, HS asks whether there is a hitting set of size k, that is,
whether there is a size-k set U ′ ⊆ U such that Si ∩ U ′ 6= ∅, i ∈ {1, . . . , r}. The
following reduction from HS to UnaAB is used several times in our intractability
proofs. Note that, due to Observation 2, it implies a reduction to MajAB.

Reduction 1 Let (U , S1, . . . , Sr, k) be an instance of HS. Construct an instance
of UnaAB as follows. The proposal set P consists of all the elements of U , of
k new dummy proposals, and of a special proposal α. There are r + 2 voters.
For 1 ≤ i ≤ r, the favorite ballot Bi consists of the elements from Si together
with all dummy proposals. Furthermore, Br+1 = U ∪ {α} and Br+2 consists of
α together with all dummy proposals. Finally, set Q+ = ∅.

Lemma 1 Reduction 1 is a parameterized reduction where the parameters h, n,
and m are linearly bounded in the parameters k, r, and |U |, respectively. More
precisely, h = 2k + 1, n = r + 2, and m = |U |+ k + 1 ≤ 2|U |+ 1.

2.1 NP-completeness

We show that UnaAB and MajAB are NP-complete even if Q+ = ∅. This
implies that there is no hope for fixed-parameter tractability parameterized
by |Q+|.

Theorem 1. Both Unanimously Accepted Ballot and Majoritywise
Accepted Ballot are NP-complete even if Q+ = ∅.

Proof (Sketch). Containment in NP is easy to see; the hardness result is achieved
due to Observations 1 and 2 and Lemma 1. ut

2.2 Few proposals or few voters

Complementing our intractability result from Theorem 1, we show that instances
with few proposals or few voters are tractable. More precisely, we show that the
considered problems are polynomial-time solvable for a fixed number of propos-
als or a fixed number of voters and the degree of the polynomial is a constant.
However, we also show that under plausible complexity-theoretic assumptions



these problems do not admit polynomial-time preprocessing algorithms that re-
duce the size of an instance to be polynomially bounded by the the number m
of proposals or the number n of voters. In other words, UnaAB and MajAB
are unlikely to allow for polynomial kernels with respect to the parameters n or
m, respectively.

Theorem 2. Parameterized by the number m of proposals, Unanimously Ac-
cepted Ballot and Majoritywise Accepted Ballot are fixed-parameter
tractable. Unless NP ⊆ coNP/poly, both problems do not admit a polynomial
kernel even if Q+ = ∅.

Proof (Sketch). For the fixed-parameter tractability result, one guesses a bal-
lot Q with Q+ ⊆ Q ⊆ P and checks whether this is a solution for UnaAB (resp.
MajAB). This takes O(2m · nc) time with c being a constant. As for the non-
existence of a polynomial kernel for UnaAB, this is due to the non-existence of
a polynomial kernel of HS parameterized by |U |+k+1 [11] and due to Lemma 1.
Together with Observation 2, the non-existence of polynomial kernels transfers
to MajAB even if Q+ = ∅. ut

Theorem 3. Parameterized by the number n of voters, Unanimously Ac-
cepted Ballot and Majoritywise Accepted Ballot are fixed-parameter
tractable. Unless NP ⊆ coNP/poly, both problems do not admit a polynomial
kernel even if Q+ = ∅.

Proof. We first describe how to formulate MajAB as an integer linear pro-
gram (ILP) and show how to modify the ILP to also work for UnaAB. Let
NV be the number of proposals that are accepted by the voter set V , that is,
NV := |{j | (∀i ∈ V : j ∈ Bi) ∧ (∀i′ /∈ V : j /∈ Bi′)}|. As the proposals
counted by NV only depend on V , we refer to V as a proposal type. Let xV
be the number of proposals of type V in the ballot Q. Further, let N+

V be the
number of proposals in Q+ that are accepted by the voter set V ⊆ V, that is,
N+
V := |Q+ ∩ {j | (∀i ∈ V : j ∈ Bi) ∧ (∀i′ /∈ V : j /∈ Bi′)}|. For each voter i

we introduce a binary variable zi that may only have value 1 if voter i is happy
with Q (and may have value 0 in any case). Then Q must satisfy the following
constraints (1)–(3).

n∑
i=1

zi ≥
n+ 1

2
(1)∑

V⊆V:
i∈V

xV −
∑
V⊆V:
i/∈V

xV ≥ m(zi − 1) + 1 ∀ i ∈ {1, . . . , n} (2)

NV ≥ xV ≥ N+
V ∀V ⊆ V (3)

Constraint (1) requires that a strict majority of voters is happy with Q. Con-
straint set (2) ensures that voter i is happy if variable zi is set to 1. Constraint
set (3) requires ballot Q to contain all proposals in Q+ and restricts the number
of proposals of each type in Q to those actually present.



Our ILP contains at most 2n variables xV and n variables zi. The total
number of constraints is at most 2n + n + 1. Since an ILP with ρ variables
and L input bits can be solved in O(ρ2.5ρ+o(ρ)L) time [24,19], MajAB is fixed-
parameter tractable with respect to the number n of voters.

If we delete constraint (1) and the variables zi, and replace the right-hand
side of constraint (2) with 1, then we gain an ILP for UnaAB with at most 2n

variables and 2n+n constraints. Thus, UnaAB is also fixed-parameter tractable
with respect to parameter n.

Unless NP ⊆ coNP/poly, even if Q+ = ∅, both problems do not have a poly-
nomial kernel with respect to the parameter n: Reduction 1 is a polynomial-time
reduction from the NP-complete problem Hitting Set; the number n of voters
in the reduced instance is linearly bounded by the number r of sets in the instance
one reduces from; and Q+ = ∅. A polynomial kernel of UnaAB with Q+ = ∅
parameterized by n would yield a polynomial kernel for Hitting Set param-
eterized by r. However, this is not possible unless NP ⊆ coNP/poly (e.g. [23,
Lemma 14]). Thus, even if Q+ = ∅, UnaAB does not admit a polynomial ker-
nel. Neither does MajAB admit a polynomial kernel even if Q+ = ∅ due to
Observation 2. ut

2.3 Small Ballots

We perform a parameterized complexity analysis concerning parameters based
on the ballot sizes. We start with the size h of the solution ballot. For technical
reasons, we need to assume that h is given as part of the input when dealing
with the parameterized problems.

Theorem 4. Parameterized by the size h of the solution ballot, Unanimously
Accepted Ballot is W[2]-complete and Majoritywise Accepted Ballot
is W[2]-hard. Both results hold even if Q+ = ∅.

Proof (Sketch). Reduction 1 is a parameterized reduction from the W[2]-hard
Hitting Set parameterized by the size k of the hitting set to UnaAB pa-
rameterized by the size h of the solution ballot with Q+ = ∅ (see Lemma 1).
Because of Observation 2, this implies W[2]-hardness for MajAB parameterized
by h even if Q+ = ∅. To show that UnaAB is in W[2], we reduce from UnaAB
parameterized by h to the W[2]-complete Independent Dominating Set pa-
rameterized by the solution size k [12]. ut

The membership of MajAB parameterized by the size h of the solution ballot
for the class W[2] remains open. Note that the W[2]-hardness reduction in the
proof of Theorem 4 does not rely on (an upper bound for) h being given as part
of the input. That is, the problem is computationally hard also for the cases
where the size of ballot Q is not explicitly required to be bounded by h.

Except for the parameter h where we only know that MajAB is W[2]-hard
while UnaAB is even W[2]-complete, all results shown so far are the same for
unanimous acceptance and majority acceptance. The following theorem shows
that this may change when considering the parameter bmax where UnaAB re-
mains tractable but for MajAB we only know W[1]-membership.



Theorem 5. Parameterized by the maximum size bmax of the favorite ballots,
Unanimously Accepted Ballot can be solved in O(b2bmax

max ·nm) time implying
fixed-parameter tractability; however, it admits no polynomial kernel unless NP ⊆
coNP/poly even if Q+ = ∅. Majoritywise Accepted Ballot parameterized
by bmax is in W[1].

Proof (Sketch). To show that UnaAB is solvable in O(b2bmax
max · nm) time, we

first observe that any solution Q must satisfy |Q| ≤ 2bmax. Based on this, we
can design a depth-bounded search tree algorithm solving UnaAB where the
number of branching possibilities in each step is at most bmax and the depth of
the algorithm is at most 2bmax.

The non-existence of a polynomial kernel for UnaAB with respect to param-
eter m shown in Theorem 2 also holds for parameter bmax, as bmax ≤ m.

Finally, to show the W[1] containment, we use a theorem from [18, Theo-
rem 6.22.] which states that a parameterized problem L with parameter k is in
W[1] if and only if there is a tail-nondeterministic k-restricted nondeterministic
random access machine (NRAM) program deciding L. The description of a tail-
nondeterministic bmax-restricted NRAM program P for MajAB is omitted due
to lack of space. ut

Next, we discuss the relation between the parameters “maximum size bmax

of the favorite ballots” and “the size hmax of the maximum symmetric differ-
ence between any two favorite ballots”. As the following proposition shows, for
the cases with Q+ = ∅, the two parameters hmax and bmax are “equivalent” in
terms of parameterized complexity theory: The fact that a parameter x is lin-
early bounded by a parameter y implies that the parameterization by x and the
parameterization by y are in the same level of the W-hierarchy and yield the
same parameterized hardness results.

Proposition 1. For any instance of Unanimously Accepted Ballot or
Majoritywise Accepted Ballot it holds that hmax ≤ 2bmax, where hmax

denotes the size of the maximum symmetric difference between two favorite bal-
lots and bmax denotes the maximum size of the given favorite ballots. Instances
of Unanimously Accepted Ballot or Majoritywise Accepted Ballot
are yes-instances if hmax < bmax/2 and Q+ = ∅.

We conclude this section with the following theorem which uses the fact
that an instance of UnaAB or MajAB is a trivial yes-instance if the minimum
size of the favorite ballots is at least d(m + 1)/2e where m denotes the total
number of proposals in P. However, both problems become NP-complete when
this minimum size is one less than the guarantee d(m + 1)/2e, even if Q+ = ∅.
This implies that there is no hope for fixed-parameter tractability with respect to
the “below guarantee parameter” bgap which is the difference between d(m+1)/2e
and the minimum size of the favorite ballots.

Theorem 6. An instance of Unanimously Accepted Ballot (resp. Ma-
joritywise Accepted Ballot) is a yes-instance if each voter i satisfies |Bi| >



m/2. Unanimously Accepted Ballot (resp. Majoritywise Accepted
Ballot) is NP-complete even if Q+ = ∅ and each voter i satisfies |Bi| >
m/2− 1.

Proof. As for the first statement, choosing Q = P makes every voter happy. To
show the second statement, we many-one reduce from the NP-complete Vertex
Cover (VC) problem. Given an undirected graph G = (U,E) and an integer
k ≤ |U |, VC asks whether there is a vertex cover of at most k vertices, that is,
whether there is a set U ′ ⊆ U with |U ′| ≤ k and e ∩ U ′ 6= ∅,∀e ∈ E.

Let I = ((U,E), k) with vertex set U = {u1, . . . , ur} and edge set E =
{e1, . . . , es} be a VC instance. We first reduce from it to an instance I ′ for
UnaAB and then extend this reduced instance I ′ to an instance I ′′ for MajAB.

Both instances I ′ and I ′′ have the same proposal set P. It consists of one
special proposal α, of all vertices in U , of k dummy proposals βj (1 ≤ j ≤ k),
and of r−k additional dummy proposals γj′ (1 ≤ j′ ≤ r−k). Thus, |P| = 2r+1.

Instance I ′ contains four types of voters: one voter v0, one voter v0, s edge
voters, and r− k vertex haters. Voter v0 favors proposal α and all the r dummy
proposals. Voter v0 also favors proposal α, and all the vertices in U . For 1 ≤ i ≤ s,
the ith edge voter’s favorite ballot Ai consists of the two vertices in ei, of all
the k dummy proposals βj , and of r−k− 2 arbitrarily chosen dummy proposals
from {γ1, . . . , γr−k}. For 1 ≤ i′ ≤ r− k, the favorite ballot Bi′ of vertex hater i′

consists of α and of all dummy proposals but γi′ . In total, the number of voters
in I ′ is s+ r− k+ 2, with each voter supporting at least r = b|P|/2c proposals.
Set Q+ = ∅. Obviously, this reduction runs in polynomial time.

To show the reduction’s correctness, we have to show that I has a vertex
cover of size at most k if and only if there is a ballot Q ⊆ P that all the voters
in I are happy with.

For the “only if” part, suppose that U ′ ⊆ U with |U ′| ≤ k is a vertex cover.
We show that every voter is happy with Q = {α}∪{βj | 1 ≤ j ≤ |U ′|}∪U ′. First,
the size of Q is 2|U ′|+ 1. To make a voter happy, at least |U ′|+ 1 of his favorite
proposals must be also in Q. Obviously, voters v0, v0 and all vertex haters are
happy with Q. For each i ∈ {1, . . . , s}, Q ∩Ai contains all dummy proposals βj
with 1 ≤ j ≤ |U ′| and at least one vertex proposal vj′ with vj′ ∈ ei ∩ U ′ since
U ′ is a vertex cover. This sums up to at least |U ′| + 1 proposals. Hence, every
edge voter is also happy with Q.

For the “if” part, by applying Observation 1(ii) to the ballots of voters v0
and v0, ballot Q must contain α, and furthermore, Q contains an equal number x
of vertex proposals and dummy proposals. For each i′ ∈ {1, . . . , r− k}, ballot Q
cannot contain dummy proposal γi′ since otherwise |Bi′ ∩Q| = x < b|Q|/2c+ 1.
Thus, vertex hater i′ would not be happy. Therefore, the x dummy proposals
must come from {β1, . . . , βk} and x ≤ k. To make the ith edge voter happy,
ballot Q must satisfy the condition |Q ∩ Ai| ≥ x + 1. But since no edge voter
favors proposal α, ballot Q must contain at least one proposal uj ∈ Ai. By
definition of Ai, the corresponding vertex uj is incident to edge ei. This implies
that the x vertices in Q form a vertex cover for (U,E).



Next, we extend instance I ′ to instance I ′′ for MajAB by adding r−k vertex
lovers who have the same favorite ballot U , and s edge-inverse voters such that
for 1 ≤ i ≤ s, edge-inverse voter i’s favorite ballot Ci = (U ∪{γ1, . . . , γr−k})\Ai.
Thus, Ci and Ai are disjoint. In total, I ′′ has 2(s+ r− k) + 2 voters. Since each
of the newly added voters favors exactly r proposals, the constraint that each
voter’s proposal set has at least r = b|P|/2c holds. This extension also runs in
polynomial time.

Now we show the correctness of the extended reduction, that is, I has a
vertex cover of size at most k if and only if there is a ballot Q ⊆ P which more
than half of the voters in I ′′ are happy with.

For the “only if” part, the ballot Q as constructed in the “only if” part above
makes all voters in I ′ happy. This sums up to s + r − k + 2. Since I ′′ contains
all the voters from I ′ and has 2(s+ r− k) + 2 voters, this also means that more
than half of the voters in I ′′ is happy with Q.

For the “if” part, for 1 ≤ i ≤ s, the ith edge voter and the ith edge-inverse
voter do not share a common favorite proposal. Furthermore, no vertex hater’s
favorite ballot intersects any vertex lover’s favorite ballot. Hence, by applying
Observation 1(i), any ballot can make at most s voters from the edge voters
and the edge-inverse voters happy, and can make at most r − k voters from
the vertex haters and the newly constructed vertex lovers happy. But I ′′ has
2(s+ r−k) + 2 voters. This means that in order to be a solution ballot for I ′′, Q
must make both v0 and v0 happy. By applying Observation 1(ii), Q must then
contain α, and, furthermore, Q contains the same number x of vertex proposals
and dummy proposals. The ballot Q cannot make any vertex lover happy since
his favorite ballot and Q have an intersection of size x which is smaller than
b|Q|/2c + 1. Thus, Q needs to make all vertex haters happy. Then, Q cannot
contain any dummy proposal γi′ since otherwise the vertex hater i′ is not happy
due to |Bi′ ∩ Q| = x < b|Q|/2c + 1. Hence, Q contains x dummy proposals
from {β1, . . . , βk} with x ≤ k. Then, no edge-inverse voter is happy with Q
since at most x proposals from his favorite ballot are in Q. This means that
all edge voters must be happy with Q. To make the ith edge voter happy, Q
must intersect with Ai in at least one vertex uj ∈ Ai. By definition of Ai, the
corresponding vertex uj is incident to edge ei. Thus, the x vertices in Q form a
vertex cover for (U,E). ut

3 Combinatorial Bounds on Minimal Accepted Ballots

We say that a unanimously (resp. majoritywise) accepted ballot is minimal if
no proper subset of it is also unanimously (resp. majoritywise) accepted. In
this section, we investigate the largest possible size of a minimal unanimously
accepted ballot for the situation with n voters and Q+ = ∅. We derive (almost
tight) upper and lower bounds on this quantity. From this bound, a similar result
can be derived for majoritywise accepted ballots.

It is not hard to see that both upper and lower bounds come down to study-
ing the case where the set P of all proposals already is a minimal accepted



ballot: Such instances cannot have smaller solutions (giving a lower bound), and
upper bounds directly carry over to Q ⊆ P by considering a restricted instance
with P ′ := Q. To make the question more amenable to combinatorial tools we
translate it into a problem on a sequence of vectors with {−1, 1}-entries: Given n
voters and m proposals we create m vectors x1, . . . , xm ∈ {−1, 1}n; the ith entry
in vector xj is 1 if the jth proposal is contained in the favorite ballot of voter i,
else it is −1. In this formulation, a unanimously accepted ballot Q corresponds
to a subset of the vectors whose vector sum is positive in each coordinate: Con-
sidering some voter i, for each proposal in Bi ∩Q we incur 1, for each proposal
in Q \ Bi we incur −1. If |Bi ∩ Q| > |Q|/2 then this gives a positive sum in
coordinate i; the converse is true as well.

Let us normalize the question a little more. First of all, no minimal ballot can
be of even size: Otherwise all coordinate sums would be even and hence each sum
is at least 2; then however we may discard an arbitrary vector and still retain
sums of at least 1 each. Secondly, it is clear that replacing +1 entries by−1 entries
does not introduce additional subsequences with positive coordinate sums. Thus,
we may restrict ourselves to the case where the coordinate sums over the minimal
sequence of m vectors are all equal to 1 (all sums are odd and such a replacement
lowers a sum by exactly 2).

Now, a collection of vectors is called a minimal majority sequence of dimen-
sion n (an n-mms for short) if all its coordinate-wise sums are 1 and no proper
subsequence of the vectors has a positive sum in each coordinate. Note that an
n-mms cannot contain a nonempty subsequence S whose sum is at most 0 in
each coordinate, since otherwise the sum of the vectors that are in this n-mms
but not in S must be positive in each coordinate—a contradiction to the mini-
mality of an n-mms. Thus, the definition of an n-mms is equivalent to that all its
coordinate-wise sums are 1 and no nonempty subsequence has sum of at most 0
in each coordinate. The length of the sequence is the number m of its elements.
Let f(n) denote the maximum possible length of an n-mms. In this section, we
show that f(n) ≈ nn/2+o(n).

Theorem 7. The maximum possible length f(n) of a minimal majority sequence
of dimension n satisfies

nn/2−o(n) ≤ f(n) ≤ (n+ 1)(n+1)/2.

Proof (Sketch). One way to obtain an upper bound on f(n) is to apply a known
result of Sevastyanov [29]. It asserts that any sequence of vectors whose sum is the
zero vector, where the vectors lie in an arbitrary n-dimensional normed space R
and each of them has norm at most 1, can be permuted so that all initial sums
of the permuted sequence are of norm at most n. Given an n-mms v1, . . . , vm ∈
{−1, 1}n, append to it the vector −1 where 1 is the all-1-vector of length n to get
a zero-sum sequence of m+ 1 vectors in Rn, where the `∞ norm of each vector
is 1. By the above mentioned result there is a permutation u1, u2, . . . , um+1 of
these vectors so that the `∞-norm of each initial sum

∑j
i=1 ui is at most n. If

m + 1 > (2n + 1)n then, by the pigeonhole principle, some two distinct initial
sums are equal, and their difference gives a proper subsequence of the original



mms with sum either the zero vector (if this difference does not include the
vector −1), or 1 (if it does). In both cases, this contradicts the assumption that
the original sequence is an mms. This shows that f(n) ≤ (2n + 1)n. See [1] for
a similar argument.

The proof of the stronger upper bound stated in Theorem 7 is similar to
that of a result of Huckeman, Jurkat, and Shapley (cf. [21]) and is based on
some simple facts from convex geometry. The details and the proof for the lower
bound are omitted. ut

The proof combines the main result of Alon and Vu [3] with arguments from
Linear Algebra, Geometry, and Discrepancy Theory. Instead of turning to the
proof, let us give a corollary for the effect on our two central problems.

Corollary 1. Consider a Unanimously Accepted Ballot instance with n
voters. If there exists a unanimously accepted ballot, then there also exists one
of size at most (n + 1)(n+1)/2. This bound is essentially tight, as there exist
choices of accepted ballots such that any unanimously accepted ballot has size
at least nn/2−o(n). For Majoritywise Accepted Ballot, the corresponding
upper and lower bounds are respectively (t + 1)(t+1)/2 and tt/2−o(t), where t =
d(n+ 1)/2e denotes the majority threshold.

Proof. As the correspondence between favorite ballots and vector sequences has
been thoroughly discussed above for the unanimous case, we now concentrate
on the majority case.

To see the lower bound for the majority case, we start from a lower bound
example for the unanimous case with t old voters and a minimum accepted
ballot size of tt/2−o(t), and we add n − t < n/2 new voters with empty favorite
ballots to it. Note that the resulting instance has a total of n voters and that
its majority threshold indeed is t. Then any majoritywise accepted ballot must
be unanimously accepted by the t old voters, so that the minimum majoritywise
accepted ballot has size at least tt/2−o(t).

For the upper bound, consider any majoritywise accepted ballot Q for n
voters and consider any minimal majority of t voters that (amongst themselves)
unanimously accept this ballot. Then any other unanimously accepted ballot for
these voters is also majoritywise accepted by all n voters, so that we get the
desired upper bound of (t+ 1)(t+1)/2 on the size of Q. ut

4 Open Questions and Conclusion

We have introduced new and naturally motivated problems in computational
social choice, and we studied their computational complexity and started an
analysis of their combinatorial properties. We conclude this paper with a few
challenges for future research.

First, recall that in Proposition 1 we stated upper bounds on hmax (the size
of the maximum symmetric difference between two favorite ballots) in terms



of linear functions in bmax (the maximum ballot size of voters). Hence, param-
eterized hardness results with respect to bmax transfer to the parameterization
by hmax. In the case of empty agenda, that is, Q+ = ∅, however, we have no good
lower bounds for hmax in terms of bmax. Thus, it remains to classify the param-
eterized computational complexity of both Unanimously Accepted Ballot
and Majoritywise Accepted Ballot using parameter hmax. Notably, in the
cases of Q+ = ∅ the parameters hmax and bmax are linearly related so that the
same parameterized complexity results will hold for both parameterizations.

Second, with respect to parameter h (the size of the solution ballot Q), we
established W[2]-hardness for Majoritywise Accepted Ballot even if Q+ =
∅, but we left open the precise location of this problem in the parameterized
complexity hierarchy. It might be W[2]-complete, but all we currently know is
that it is contained in W[2] (Maj), a class presumably larger than W[2] [17].

Third, the combinatorial bounds from Section 3 do not hold for instances
with nonempty agenda, since such bounds cannot be independent of |Q+|. For
cases with nonempty agenda there are similar bounds with an extra factor of
|Q+|. A detailed analysis could be part of investigations of weighted variants of
our problems. In this regard, weights on the voters, weights on the proposals, or
weights on the acceptance threshold of the voters seem to be well-motivated.

Fourth, can we avoid Integer Linear Programs for showing fixed-parameter
tractability with respect to the parameter number n of votes and provide direct
combinatorial algorithms beating the ILP-based running times? In this context,
the exponential lower bound on the number of proposals in ballots accepted by
society from Section 3 might be relevant.

Finally, it remains a puzzling open question whether Majoritywise Ac-
cepted Ballot parameterized by bmax is fixed-parameter tractable—we could
only show containment in W[1].
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