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1 Introduction

Testing of graph properties has become an active research area in the recent years (see for example
[3, 7, 14, 13, 1, 4] and the surveys [15, 8]). In particular, it was shown in [3] that every property
that is characterized by a finite collection of forbidden induced subgraphs is ε-testable. However,
the complexity of the test is double-tower with respect to 1/ε, as the only tool known to prove
this testability is a variant of Szemerédi’s Regularity Lemma. Recently Alon and Shapira [1, 4]
initiated a study of those graph properties that are characterized by forbidden subgraphs and can
be tested ‘very efficiently’, in the sense that they can be tested with only poly(1/ε) many queries.
Here we concentrate on the family of graph properties that are characterized by forbidden induced
subgraphs. We show that any property of bipartite graphs that is characterized by a finite collection
of forbidden induced subgraphs is ε-testable with a number of queries that is poly(1/ε).

Our main tool is a new ‘conditional’ version of the regularity lemma for binary matrices (Lemma
1.6 below), which may be interesting on its own. We combine this with some methods similar to
those of [10] (which is an expanded version of some results from [9] that do not appear here), to
obtain the desired result.

We note that the study of such bipartite graph properties is an extension of the poset model
studied in [10], in which the testability of properties is related to the logical complexity of their
description. In this case the poset is the 2-dimensional n× n grid, which as a poset is the product
of two n-size total orders (lines). The language (syntax) includes the poset relation, the label unary
relation (being labeled ‘1’), and in addition, the relations row(x1, x2) which state that x1 is on the
same row as x2, and similarly col(x1, x2) for columns. ∀-properties in this model are properties
that can be described by a finite formula over a fixed number of variables with only ∀ quantifiers
in prenex normal form. Such properties would then correspond to exactly the properties that are
characterized by a finite collection of forbidden submatrices (in a similar manner to what was done
in [10] for the ∀-poset model). We call this model the ‘submatrix model’. The submatrix model is
closely related to a sub-model of the (not always testable) ∀∃-poset model, defined in [10].

The model ‘submatrix’ includes some interesting properties. In particular, the permutation-
invariant properties in it are tightly connected to bipartite graph properties that are characterized
by a collection of forbidden induced subgraphs:

Definition 1.1 For a finite collection F of 0/1 matrices, we denote by SF all 0/1-matrices that
do not contain as a submatrix any row and/or column permutation of a member of F .

Observation 1.2 Every bipartite graph property (where a bipartite graph is identified with its
adjacency matrix in the usual way), that is characterized by a finite collection of forbidden induced
subgraphs, is equivalent to a property SF for some finite set F of matrices. In addition, every
SF -property in the ‘submatrix’ model is a bipartite graph property as above.

The main result here is:

Theorem 1.3 Let F be a fixed collection of 0/1 matrices. Property SF is (ε, poly(1
ε ))-testable for

every ε > 0, by a two sided error algorithm.
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The test above however is not only 2-sided, but it is also very computation-intensive (despite
this computation using only a relatively small set of queries as data). However, using the tools
presented in [14] (or more accurately, a very slight variation thereof), the existence of the above
test implies the existence of a 1-sided test with a much smaller computation time.

Theorem 1.4 Let F be a fixed collection 0/1 matrices. Property SF is (ε, poly(1
ε ))-testable for

every ε > 0, by a one sided error algorithm whose running time is polynomial in the time it takes
to make the queries.

The derivation of Theorem 1.4 from Theorem 1.3 is in Section 5. To present the test proving
Theorem 1.3, we will need some machinery:

Let M be a 0/1-labeled, n×m matrix. We denote by R(M) and C(M) the set of rows and the
set of columns of M respectively. For an integer r, an r-partition of M is a partition of the set R(M)
into r′ ≤ r parts {R1, . . . , Rr′} and a partition of the set C(M) into r′′ ≤ r parts {C1, . . . , Cr′′}.
Each submatrix of the form Ri×Cj will be called a block (note that the coordinate sets defining the
blocks do not necessarily consist of consecutive matrix coordinates). The weight of the (i, j) block
is defined as 1

nm |Ri||Cj |. We also define similar weights for the Ri’s and Cj ’s, e.g. w(Ri) = 1
n |Ri|.

For a block B of a 0/1-matrix M , we say that B is δ-homogeneous if all but a δ-fraction of
its values are identical. If B is δ-homogeneous we call the value that appears in at least a 1 − δ
fraction of the places the δ-dominant value of B. Note that this value is also α-dominant for any
δ < α < 1/2. We say that a value is the dominant value of B if it is the majority value in B.

Definition 1.5 Let P = {R1, . . . Rr′} × {C1, . . . Cr′′} be an r-partition of M , and let δ > 0. We
say that P is a (δ, r)-partition if the total weight of the δ-homogeneous blocks is at least 1− δ.

The key result is that an input that does not admit some (δ, r)-partition can be rejected easily,
because it will then contain many copies of every possible k × k matrix (including the forbidden
ones) as submatrices.

Lemma 1.6 Let k be fixed. For every δ > 0 and n × n, 0/1-matrix M , with n > (k
δ )O(k), either

M has a (δ, r)-partition for r = r(δ, k) ≤ poly(k/δ), or for every 0/1-labeled k × k matrix F , a
g(δ, k) ≥ 1/poly(k/δ) fraction of the k × k submatrices of M are F . (The degree of each of the
polynomials poly(k/δ) above is a function of k).

This lemma allows us to reduce the testing problem to matrices that admit a (δ, r)-partition for
certain δ, r, as for matrices that do not admit such partitions the lemma asserts that querying a
random submatrix will find a counter example with sufficiently high probability. We note that the
lemma is a conditional version of Szemerédi’s Regularity Lemma ([17], see also [6, Chapter 7]), as
a (δ, r)-partition is in particular a regular partition in the sense of Szemerédi of the corresponding
bipartite graph. The improvement over using directly the Regularity Lemma is achieved because
of this conditioning. The proof of the lemma will be presented in Section 4.
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We will then construct a test for matrices admitting a (δ, r)-partition. This test will be very
similar to the 2-sided boolean matrix poset test in [10]. However, the situation in the poset test
is that the partition can be fixed in advance, while in our case there is the problem of ‘learning’
enough of the partition by sampling. For this we need some more machinery, that is described in
Section 2, along with the framework of the proof of Theorem 1.3.

The plan of the paper is as follows. Section 2 includes some preliminaries, as well as a proof
of Theorem 1.3 from two main lemmas, Lemma 1.6 above and Lemma 2.1 that is stated there.
The lemmas themselves are proven in Section 4 and Section 3 respectively. Section 5 shows how
to extend Theorem 1.3 to Theorem 1.4, and the final Section 6 contains some concluding open
problems.

2 Partitions, signatures and Theorem 1.3

Assume that M has a (δ, r)-partition. We have no hope, of course, to find it by O(1) many queries,
as we cannot even sample a single point from each row. Hence, we will need here to define the
‘high level features’ of the (δ, r)-partitions of M , that can be detected by sampling. This is given
in the following.

Let M be a matrix with a (δ, r)-partition P defined by the row partition {R1, . . . , Rs} and the
column partition {C1, . . . , Ct}, s, t ≤ r. Then P naturally defines a high-level pattern which is an
s × t matrix of the dominant labels of the blocks. Formally, let P be a 0/1-labeled, s × t matrix.
A block Ri × Cj is called δ-good with respect to P if it is δ-homogeneous and its dominant label
is Pi,j . P is called a δ-pattern of P if all but at most a δ fraction of the weighted blocks in P are
δ-good with respect to P .

It is immediate from the definition that if a partition has a δ-good pattern of size s× t, then it
is a (δ, r)-partition with r = max{s, t}. Conversely, if P is a (δ, r)-partition, then it has an r × r
δ-pattern (by possibly introducing empty blocks).

As the block sizes of a (δ, r)-partition need not be fixed, we will also need information about the
weights of Ri and Cj , (i, j) ∈ [s]× [t]: Let M be an n× n matrix with a (δ, r)-partition P defined
by the row partition {R1, . . . , Rs} and the column partition {C1, . . . , Ct}. Then a δ-signature of P
is an s× t, 0/1-labeled matrix P and two sequences {αi}s

1, {βi}t
1, where P is a δ-pattern of P, and

in addition
∑s

i=1 |
|Ri|
n − αi| ≤ δ and

∑t
j=1 |

|Rj |
n − βj | ≤ δ

Note that the signature of a partition is closed under permutations of rows and columns, namely,
any row/column permutation of P with the respective permutations of {αi}s

1 and {βi}t
1 is also a

signature of the same matrix. Moreover, a signature of M is also a signature of all row/column
permutations of M .

The signature of a partition has sufficient properties for constructing a test. Namely, it can
be detected by sampling and it carries enough information to allow for a test, as asserted by the
following:

Lemma 2.1 Let δ < 1/81 and assume that an n × n, 0/1 matrix M has a (δ, r)-partition. By
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sampling q = poly(r) many queries, a 26δ1/6-signature of a (16δ1/6, 10r2/(4δ2/3) + 1)-partition can
be found, with success probability 3

4 .

We note that a test for a much closer approximation of the original (δ, r)-partition can also
be deduced from [13], with exponentially worse running time and query complexity. The proof of
Lemma 2.1 is given in Section 3. We end the discussion by showing that together with Lemma 1.6
this indeed implies a 2-sided error test.

Proof of Theorem 1.3: Assume that we want to ε-test M for a permutation invariant collection of
forbidden induced k×k submatrices. Blocks will now correspond to partition-blocks: Let δ = ( ε

300)6,
and let g = g(δ, k), r = r(δ, k) be those of Lemma 1.6. For 4/g iterations, independently, we choose
k random rows and k random columns of M and query all k2 points in the k × k matrix that is
defined by them. If we find a counter example in the queried points we answer ‘No’. Otherwise, by
Lemma 1.6 we may assume with probability 11

12 that M has a (δ, r)-partition.

If M has a (δ, r)-partition, using Lemma 2.1 we can find an ε
8 -signature of an ( ε

8 , 10r2/4( ε
300)4 +

1)-partition by sampling poly(r, ε) = poly(ε) queries. Let P with {αi}s
1 and {βi}t

1 be an ε
8 -signature

of such a partition. We form an n×n matrix MQ that represents our knowledge of M : We partition
the rows of MQ into s parts of weights {αi}s

1 and the columns into t parts of weights {βi}t
1. For

every block of P , we set every entry of the corresponding block of MQ to have the same label as in
P . Now, let MQ,ε be the set of all matrices that can be obtained from MQ by changing at most
εn2/2 entries in any possible way.

We check if any of the members of MQ,ε has the property SF . If there is such a member, the
algorithm answers ‘Yes’. Otherwise, if every member MQ,ε contains a permutation of a forbidden
submatrix, then the answer is ‘No’. Note, this last phase of the algorithm involves no additional
queries and is just a computation phase.

To see that the algorithm is correct we first note that if a counter example is found in the first
phase of the algorithm, then the input M does not have the property with probability 1. Hence
the algorithm can err only in the second phase.

We claim that, with high probability, (a) some row/column permutation of M is a member of
MQ,ε, and (b) every two members of MQ,ε are of distance at most εn2. Indeed, assume that the
signature that has been found is an ε

8 -signature of an ( ε
8 , 10r2/4( ε

300)4 + 1)-partition of M . Then
MQ can be obtained from M by changing at most an ε

8 -fraction of the entries in each ε
8 -good block,

followed by changing any of the entries in the non- ε
8 -homogeneous blocks, and finally changing

entries that are in strips around every block to compensate for the inaccuracy of the size sequences
of the signature (whose sizes sum up to no more than ε

8 for the rows and ε
8 for the columns). The

first two types of changes contribute at most an ε
8 -fraction of changes to the whole matrix each,

and the last type contributes at most an ε
4 -fraction of changes. Thus M is at most εn2/2-far from

MQ, and in particular M is in MQ,ε. This proves (a), while (b) follows automatically from the
definition of MQ,ε and the triangle inequality.

Hence, we may assume that with probability at least 2
3 , the ε

8 -signature is computed correctly
and (a) and (b) are satisfied. The failure probability here is the probability of not finding a copy
of a forbidden induced submatrix in the case that M does not admits a (δ, r)-partition, which is
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at most 1
12 , plus the 1

4 bound on the error probability of finding a signature of the corresponding
partition if such a partition exists, as asserted by Lemma 2.1. We conclude that if M has the
property then certainly one member of MQ,ε will have the property (as M itself is such a member
by (a)), and thus the algorithm will accept. On the other hand, if M is more than εn2-far from
having the property, then no member of MQ,ε can have the property by (b).

Clearly the query complexity of the test is poly(r, 1/ε), and by our expression for r it is poly(1/ε),
which concludes the proof.

Remark: In all the above we discussed forbidden induced subgraphs. Not having a forbidden
subgraph (rather than induced subgraph) is a monotone decreasing property. In this case, the
test is trivial, by density: For a large enough density, a Zarankiewicz (see [19], [12]) type theorem
asserts that the answer ‘No’ is correct (as the graph will have a large enough complete bipartite
graph), while if the density is low then the answer is trivially ‘Yes’, as the graph is close to the
empty (edge-less) one. A thorough treatment of this case is found in [1].

We also remind the reader that although the calculation time (unlike the number of queries) has
a bad dependence on the input size (this can be alleviated somewhat, but in light of the following
we omit the details), we actually need to use only the mere existence of such a test in Section 5 to
conclude that there is a much simpler test with a smaller calculation time. We now turn back to
the proofs of Lemma 2.1 and Lemma 1.6.

3 (δ, r)-partitions, row similarity and the proof of Lemma 2.1

Our goal here is to show that by sampling poly(1/δ, r) entries in M , one can detect the signature
of a (δ′, r′)-partition, if a (δ, r) partition exists. For this we need a representation of a partition
in a ‘local’ way, which is asserted by the following Claim 3.2 and Claim 3.3. To do this, we relate
the notion of a (δ, r)-partition to relative distances between rows and columns. For the rest of this
section we assume that δ is smaller than a global constant to be chosen later.

For two vectors u, v ∈ {0, 1}m let µ(u, v) = 1
m |{i| ui 6= vi}|, namely, µ(u, v) is the normalized

hamming distance between the two vectors. We will use the following definitions.

Definition 3.1 Let M be an n×n matrix. We set ER(µ(ri, rj)) to be the expected value of µ(ri, rj)
where ri, rj are two rows of M chosen at random. Similarly let EC(µ(ci, cj)) denote the respective
quantity where ci, cj are two columns chosen at random.

Given a set of vectors V (usually either the set of rows or the set of columns of M), and a
partition V0, . . . , Vs of V , we say that the partition is a (δ, r)-clustering of V if s ≤ r, |V0| ≤ δ|V |,
and for every 1 ≤ i ≤ r and u, v ∈ Vi we have µ(u, v) ≤ δ.

There is a close correlation between (δ, r)-partitions of M and (δ, r)-clusterings of its rows and
columns, as the following two claims show.
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Claim 3.2 Let M be a 0/1, m×m matrix and assume that M has a (δ, r) partition. Then there
exists a (4δ1/3, r)-clustering of the rows of M , as well as a (4δ1/3, r)-clustering of the columns of
M .

Claim 3.3 Let M be a 0/1, m × m matrix, and assume that {R0, . . . , Rs} and {C0, . . . , Ct} are
(δ2, r)-clusterings of the set of rows and the set of columns respectively. Then these clusterings
form also a (4δ, r + 1)-partition of M for r = max{s, t}.

Moreover, for the above R0, . . . , Rs and C0, . . . , Ct, a 4δ-signature for the partition is given by
the sequences αi = w(Ri), i = 0, . . . , s, βi = w(Ci), i = 0, . . . , t, and the s× t matrix P where the
(i, j) entry of P corresponds to the block Ri × Cj and its label is the dominant label of this block.

Before we prove the two claims we need two simple observations, that in some sense correspond
to the case “r = 1” of the claims:

Observation 3.4 Let A be a 0/1 matrix. If A is δ-homogeneous, then ER(µ(ri, rj)) ≤ 2δ and
EC(µ(ri, rj)) ≤ 2δ.

Proof: As A is δ-homogeneous, we may assume without loss of generality that A contains less
than a δ fraction of 0’s. Hence, choosing two rows at random and picking a random place i in both,
the probability that they are not both ‘1’ in this place is at most 2δ. Thus the expectation of the
fraction of the number of places where they differ is bounded by 2δ, but this expectation is exactly
ER(µ(ri, rj)). The proof for EC(µ(ri, rj)) is analogous.

Observation 3.5 If A is a 0/1 matrix such that ER(µ(ri, rj)) < δ and EC(µ(ci, cj)) < δ, then A
is 4δ-homogeneous.

Proof: Assume on the contrary that A is not 4δ-homogeneous. This implies that when choosing
two points from A independently and uniformly at random, with probability at least 4δ they will
not have the same label. This is also a lower bound on the fraction of the 2 × 2 submatrices
that contain both 0’s and 1’s, as any two points with differing labels can be extended to such
a submatrix. On the other hand, if ER(µ(ri, rj)) < δ, then with probability more than 1 − 2δ
both rows of a uniformly random 2 × 2 submatrix are identical, as this matrix can be expressed
as choosing two random places from two random rows. By the same token, if ER(µ(ci, cj)) < δ
then with probability more than 1 − 2δ the two columns of a random 2 × 2 matrix are identical.
Together these would have implied that less than a 4δ fraction of the 2× 2 submatrices have both
0’s and 1’s, a contradiction.

Proof of Claim 3.2: Assume that M has a (δ, r)-partition defined by the row partition R1, . . . , Rs

and the column partition C1, . . . , Ct, s, t ≤ r. For a partition block B and a row u that intersects
B, let u|B be the restriction of u to the columns in B. Assume that B is a δ-homogeneous block
that contains the rows of Ri. Then by Observation 3.4, ER(uB, vB) ≤ 2δ for two rows chosen at
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random from Ri. For a non δ-homogeneous block, this expression is at most 1. Let wi = w(Ri) =
|Ri|/m, i = 1, . . . , s, and let Ei(µ(u, v)) be the expectation of µ(u, v) where u, v are two rows chosen
uniformly at random from Ri. Then the above implies that Σr

i=1wiEi(µ(u, v)) ≤ (1−δ)2δ+δ·1 ≤ 3δ,
as this sum goes over all blocks and there are at least a (1− δ) fraction of 0/1-blocks contributing
at most 2δ each.

Now this implies that the total weight of the Ri’s for which Ei(µ(u, v)) ≥ δ2/3 is at most 3δ1/3.
Let R0 be the union of all these Ri’s. Let R1, . . . , Rr′ be all other Ri’s, after renumbering. For
every i = 1, . . . , r′, by our assumption, Ei(µ(u, v)) < δ2/3 for randomly chosen u, v, so there is an
ri ∈ Ri for which for at least a (1 − δ1/3) fraction of the v’s in Ri, µ(ri, v) < δ1/3. Hence if we
define for 1 ≤ i ≤ r′ the set R′

i = {v ∈ Ri|µ(v, ri) < δ1/3} and then define R′
0 =

⋃r′

i=1(Ri \R′
i)∪R0,

we obtain that R′
0, . . . , R

′
r′ is indeed a (4δ1/3, r)-clustering for the rows of M . The proof for the

existence of a clustering of the columns is analogous.

Proof of Claim 3.3: By the assumptions of the claim, |R0| < δ2. Also, for any i ≥ 1 and
any two rows u, v ∈ Ri, µ(u, v) ≤ δ2. Thus for i = 1, . . . , s, Ei(µ(u, v)) ≤ δ2 where Ei is the
expectation when u, v are chosen at random from Ri. Hence for the above partition into rows,
Σs

i=0
|Ri|
m Ei(µ(u, v)) ≤ δ2 (as for each i > 1 the corresponding term in this average is at most δ2,

and for i = 0 the weight of the term is at most δ2). Similarly we get the analogous inequality for
columns. Let P be the partition of M into blocks that is defined by the cross product of the two
partitions above.

Recall that |Ri|
m , |Ci|

m are the weights w(Ri), w(Ci) of the corresponding sets. Also, for a block
B, let ER(µ(u|B, v|B)), EC(µ(u|B, v|B)) be the expectation of µ(·, ·) for two rows u, v, respectively
columns, chosen at random from B. By the law of complete probability, Σs

i=0w(Ri) ·Ei(µ(u, v)) =
EB(ER(µ(u|B, v|B))), where in the right hand side the outer expectation is on blocks of P chosen
according to their weights, and the inner expectation is on rows chosen at random in the block.
Hence, the fact that Σs

i=0w(Ri)Ei(µ(u, v)) ≤ 2δ2 implies that the total weight of all blocks B for
which ER(µ(u|B, v|B)) > δ is bounded by 2δ. By the same argument, for at most a 2δ fraction of the
blocks EC(µ(u|B, v|B)) > δ. Hence, for at least a 1−4δ fraction of the blocks (weighted by the block
weights), both ER(µ(u|B, v|B)) ≤ δ and EC(µ(u|B, v|B)) ≤ δ. However, by Observation 3.5 above,
each such block is 4δ-homogeneous, and hence at most a 4δ fraction of the blocks (measured by
weights) are not 4δ-homogeneous. This implies that P is a (4δ, r+1)-partition. Also, by definition,
the pattern of this partition is, for each block, the (1− 4δ)-dominant label of this block if there is
one, or X otherwise. Moreover, as αi, βi are the exact weights of the parts in the partition, we get
a 4δ-signature for it.

We are now ready to present the testing algorithm that yields Lemma 2.1. We start with its
essential elements, starting with a trivial observation about approximating distances.

Claim 3.6 Let u, v ∈ {0, 1}n, γ < 1. Choose randomly and independently (with repetitions) m
elements of [n], naming the resulting (multi-)set L = {l1, . . . , lm}. Let µ̃(u, v) = 1

m

∑m
k=1 |u(lk) −

v(ck)|, where u(i) and v(i) are the i’th coordinate of u and v respectively. Then |µ(u, v)−µ̃(u, v)| ≤ γ
with probability at least 1− 2exp(−γ2m).

Proof: Immediate by a Chernoff type inequality (See e.g [5, Corollary A.1.7]).
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We next construct a testing algorithm for an approximate notion of clustering. Testing algo-
rithms for clustering were already investigated in [2]; here we will use a simple self-contained proof
for an algorithm that gives an approximation in a very weak sense.

Lemma 3.7 If a set V of vectors over {0, 1}n has a (δ, r)-clustering, then there exists an approx-
imate oracle algorithm that makes poly(r, δ) bit queries (queries of one coordinate of one vector),
and provides a (4δ, 10r2/δ)-clustering of V in the following sense:

The algorithm makes poly(r, δ) queries in a preprocessing step, and with probability at least 0.9
the situation will be that there exists a (4δ, 10r2/δ)-clustering V ′

0 , . . . , V
′
t of V , such that for every

v ∈ V the algorithm makes poly(r, δ) additional queries and provides the i for which v ∈ V ′
i , giving

the correct i for at least a (1− 4δ) fraction of the vectors in V .

Proof: Suppose that V0, . . . , Vs is a (δ, r)-clustering of V . The algorithm starts by selecting uni-
formly at random r′ = 10r2/δ vectors v1, . . . , vr′ from V . With probability at least 0.95 (assuming
that r is large enough) the situation is that for every 1 ≤ i ≤ r for which |Vi| ≥ δ/r, we have picked
at least one vector from Vi.

We now pick uniformly at random (with repetitions) l = 10r′ log r′/δ coordinates from 1, . . . , n,
and let µ̃(·, ·) denote the corresponding approximated distance. Claim 3.6 implies that for every
v, v′ ∈ V , the probability for |µ(v, v′)− µ̃(v, v′)| > 1

2δ is bounded by δ/20r′, and so with probability
at least 0.95 the situation is that for at least a (1 − δ) fraction of the vectors v ∈ V , |µ(v, vi) −
µ̃(v, vi)| ≤ 1

2δ for every 1 ≤ i ≤ r′.

Assuming that both of the above events occurred (which is the case with probability at least
0.9), we define V ′

0 , . . . , V
′
r′ as follows. Every vector v that belonged to V0, or that belongs to a Vi

of size |Vi| < δ/r, or such that there exists some vi for which |µ(v, vi)− µ̃(v, vi)| > 1
2δ, is placed in

V ′
0 . For every other vector we let i be the index for which µ̃(v, vi) is minimal (or the smallest such

index if there exist several values that minimize µ̃(v, vi)), and define v to be in V ′
i .

We now claim that V ′
0 , . . . , V

′
r′ is indeed a (4δ, r′)-clustering. First, it is easy to see that |V ′

0 | ≤
3δ|V | < 4δ|V | from the assumption on the size of V0, and the guarantee that we have on the number
of vectors for which the distance was not well approximated. Now, if u, v ∈ V ′

i for some 1 ≤ i ≤ r′,
then we first note that µ(u, vi) ≤ 2δ. This is because if we denote by 1 ≤ j ≤ r the index for which
u ∈ Vj , then we have µ(u, vi) ≤ µ̃(u, vi) + 1

2δ ≤ µ̃(u, vj) + 1
2δ ≤ µ(u, vj) + δ ≤ 2δ. The same goes

for proving that µ(v, vi) ≤ 2δ, and so by the triangle inequality µ(u, v) ≤ 4δ. This concludes the
claim about V ′

0 , . . . , V
′
r′ .

Now we can describe the remainder of the algorithm: After choosing v1, . . . , vr′ and the l
coordinates as above, the algorithm now queries each of these coordinates from each vi, and by
this concludes the preprocessing stage. For the oracle stage, given a vector v ∈ V the algorithm
queries all the l chosen coordinates of v, and then calculates µ̃(v, vi) for every i. The algorithm
then outputs the index i that minimizes this, or the smallest such index in case there is more than
one. It is clear that the algorithm gives the correct index for every vector that is not in V ′

0 , whose
size is bounded by 4δ, concluding the proof.

We note here that we could also use the above to find an approximate oracle for a (4δ, r)-
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clustering (instead of a (4δ, 10r2/δ)-clustering), by trying to get from the set of queried vectors a
subset V ′, for which all but at most a 3δ fraction of the members of V are δ-close to a member
of V ′ (and verifying the validity of V ′ using a polynomial number of additional queries). This
would also improve the dependencies in Lemma 2.1, but we omit it as our proofs already ensure
the polynomial dependence on ε without this improvement.

We are now ready to describe the algorithm that proves Lemma 2.1, by finding with probability
3
4 a signature of a (16δ1/6, r′)-partition of M , if M has a (δ, r)-partition.

Algorithm Sig

• By Claim 3.2, there exist a (4δ1/3, r)-clustering of the rows. We perform the preprocess-
ing stage of the algorithm provided by Lemma 3.7 to obtain an approximate oracle for
a (16δ1/3, 10r2/(4δ2/3))-clustering of the set of rows of M , denote it by R′

0, . . . , R
′
r′ for

r′ = 10r2/(4δ2/3). Similarly, we obtain an approximate oracle for a (16δ1/3, r′)-clustering
C ′

0, . . . , C
′
r′ of the columns.

• We now choose uniformly and independently at random (with repetitions) a (multi-)set R of
l = 100r′ log r′/δ rows of M , and for each of these we use the clustering oracle for R′

0, . . . , R
′
r′ .

For 1 ≤ i ≤ r′, we set αi to be the number of rows from R for which the oracle answered “i”,
divided by l. We do the analogous operation for a set C of l columns M that were uniformly
and independently chosen (this time with respect to the oracle for C ′

0, . . . , C
′
r′), and use it to

set βi for 1 ≤ i ≤ r′. Both α0 and β0 are set to 0, as the above oracles never correctly detect
that a row is in R′

0 or a column is in C ′
0.

• Finally, for every 1 ≤ i ≤ r′ and 1 ≤ j ≤ r′ we look at the intersections of all the rows in
R which the oracle located in R′

i, and all the rows in C which the oracle located in C ′
j . We

query the entries of M at the intersections, and set Pi,j to be the value (0 or 1) that has the
majority of appearances in these queries.

We now claim that this is the required algorithm. First, we note that with probability at least
0.8, the oracles for both the clustering of the rows and the clustering of the columns are valid,
as guaranteed by Lemma 3.7. In turn this guarantees that R′

0, . . . , R
′
r′ and C ′

0, . . . , C
′
r′ form a

(16δ1/6, r′ + 1)-partition of M , by Claim 3.3. Also, each of the following occurs with probability at
least 0.99:

• The difference between every αi and the fraction of the rows of M for which the oracle outputs
“i” is at most δ/r′. This implies that

∑r′

i=0 |
|Ri|
n − αi| ≤ 2 · 16δ1/3 + r′ · δ/r′ < 33δ1/3.

• Similarly to the above,
∑r′

i=0 |
|Ci|
n −βi| < 33δ1/3. With the previous item this means that for all

but at most a 10δ1/6 fraction of the pairs (i, j), both | |Ri|
n −αi| ≤ 7δ1/6 and | |Cj |

n −βj | ≤ 7δ1/6.

• The fraction of appearances of “1” in the values taken under consideration when calculating
Pi,j , differs from the fraction of appearances in the intersections of all rows assigned to “i” and
all columns assigned to “j” (by the oracles) by no more than δ. In addition, by the previous
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item for all but at most a 10δ1/6 fraction of the pairs (i, j), the above fraction differ by no more
than 14δ1/6 from the fraction of appearances of “1” in R′

i ×C ′
j , and so (if δ is small enough)

for the 16δ1/6-homogeneous blocks among these, Pi,j will get the correct value. Therefore,
the (weighted) fraction of wrong Pi,j labels is no more than 16δ1/6 + 10δ1/6 = 26δ1/6.

Therefore with probability at least 3
4 all the above occurs (including the two oracles being valid),

and a 26δ1/6-signature of a 16δ1/6-partition is obtained.

As a final remark, the proof of Lemma 1.6 also uses an interim lemma about clusterings, Lemma
4.1 below. One could save further on the number of queries in the main theorem if the notion of
(δ, r)-clustering would be used throughout instead of the notion of (δ, r)-partitions, but it would
still be polynomial in ε. However, the notion of (δ, r)-partitions is more intuitive, and could have
applications outside the scope of this work, so we use it instead.

4 Proof of Lemma 1.6

We use the same definition of a (δ, r)-clustering (for sets of rows or columns) from the previous
section. Claim 3.3 that was proven above implies that if A has a (δ2/4, t)-clustering for both
its rows and its columns, then A admits a a (δ, t + 1)-partition. Therefore, the following lemma
immediately implies Lemma 1.6. Moreover, it follows that Lemma 1.6 is true even if we insist on
the forbidden submatrices obeying also the order of the rows and the columns of the input matrix
(which is ignored for our use of a matrix as representing a bipartite graph).

Lemma 4.1 Let k be a fixed integer and let δ > 0 be a small real. For every n × n, 0/1-matrix
A, with n > (k

δ )O(k), either A admits (δ, r)-clusterings for both the rows and columns with r ≤
(k/δ)O(k), or for every k × k, 0/1 matrix B, at least a (δ/k)O(k2) fraction of the k × k (ordered)
submatrices of A are copies of B.

We should also note that the above estimate is essentially tight, as shown by a random n × n
matrix A, where each entry is independently chosen to be 1 with probability 2δ, and 0 with
probability 1 − 2δ. The expected number of copies of the k × k all 1 matrix in such a matrix is
only a (2δ)k2

fraction of the total number of k× k submatrices, and it is not difficult to check that
with high probability A does not have a (δ, o(n))-clustering for either its rows or its columns.

We will prove the lemma only for the clustering of the columns, because the proof for rows is
virtually identical. We make no attempts to optimize the absolute constants and omit all floor and
ceiling signs to simplify the presentation. In order to prove the above lemma, we first need the
following simple corollary of Sauer’s Lemma [16, 18].

Lemma 4.2 For every t > 10k, every t×t2k−1, binary matrix M with no repeated columns contains
every possible k × k, binary matrix as a submatrix.
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Proof: By Sauer’s Lemma [16, 18], every set of s = 1+
∑k−1

i=0

(
t
i

)
consecutive columns of M contains

a k× 2k submatrix that has no repeated columns (and thus contains all 2k possible binary vectors
as columns). Note that s < tk−1 and s(1 + (k + 1)

(
t
k

)
) ≤ t2k−1. Thus M can be partitioned into

at least (1 + (k + 1)
(

t
k

)
) blocks of size t× s, each consisting of s consecutive columns. Considering

these 1 + (k − 1) ·
(

t
k

)
pairwise disjoint consecutive blocks, we now find in each of them a k × 2k

submatrix with no repeated columns. Considering now the set of k rows in each such submatrix,
we obtain by the pigeonhole principle k such submatrices of size k × 2k, one following the other,
and all having the same set of rows. This implies the desired result, as we can choose from each of
the submatrices a desired column, and thus construct any k × k matrix.

We now turn to the proof of Lemma 4.1. Fix δ and k, and suppose that n is large enough (as a
function of δ and k, to be chosen later). Let t be the smallest integer for which (1− 1

2δ)tt4k−2 < 0.1.
A simple computation shows that t = O(k

δ log(k
δ )). Define T = t2k−1 and suppose that A is an

n×n matrix with 0/1 entries which does not have a δ-clustering of the columns of size T . We have
to show that in this case A must contain many copies of every k × k matrix B.

Indeed let S be a random set of columns of A obtained by choosing, randomly, uniformly and
independently (with repetitions) τ = 5T/δ columns of A. We choose n such that n > 10(5T

δ )2.
Note that in particular for such an n, with probability at least 9/10 no column is chosen more than
once.

Claim 4.3 With probability at least 0.9, S contains T columns so that the Hamming distance
between any pair of them is at least 1

2δn.

Proof: Let us choose the members of S one by one, and construct, greedily, a subset S′ of S
consisting of columns so that the Hamming distance between any pair of them is at least 1

2δn as
follows. The first member of S belongs to S′, and for all i > 1, the i’th chosen column of S is
added to S′ if its Hamming distance from every previous member of S′ is at least 1

2δn. Since, by
assumption, there is no (δ, T )-clustering of the columns of A, as long as the cardinality of S′ is
smaller than T , the probability that the next chosen member of S will be added to S′ is at least δ
(given any history of the previous choices); otherwise it would mean that the balls of radius 1

2δn
around the members of S′ form a δ-clustering. It thus follows that the probability that by the end
of the procedure, the cardinality of S′ will still be smaller than T , is at most the probability that
a Binomial random variable with parameters 5T/δ and δ will have value at most T . Hence this
probability is smaller than 0.1, which implies the assertion of the claim.

The role of S′ as above is indicated in the following claim. Let R be a random set of t rows of
A, obtained by choosing t rows randomly and independently, with uniform distribution.

Claim 4.4 Let S′ be a fixed set of T columns of A for which the pairwise Hamming distance is at
least 1

2δn. Then, with probability at least 0.9, all the projections of the members of S′ on the rows
in R are distinct.

Proof: Let S′ be a fixed set of T columns of A so that the Hamming distance between every
pair is at least 1

2δn. For any two fixed columns c1, c2 ∈ S′ and a random row r we have that
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Probr(c1[r] = c2[r]) ≤ 1− 1
2δ, where c[j] is the jth coordinate of c. Hence, the expected number of

pairs of members of S′ whose projections on R are identical is at most
(
T
2

)
(1 − 1

2δ)t < 0.1, where
the last inequality follows from the choice of t. The desired result follows.

We can now conclude the proof of Lemma 4.1 as follows. Fix B to be any k × k, 0/1 matrix.
Choosing a random t × τ submatrix C of A is just like choosing a set R of t random rows and a
set S of τ random columns. By Claim 4.3, with probability at least 0.9, the set S of τ columns
contains a subset of the columns S′ of size T that has pairwise distances at least δn. Given that
this happens, by Claim 4.4 with probability 0.9 all the t projections of S′ on the t rows of C are
distinct. Hence with probability at least 0.8 (the probability that both events above hold) Lemma
4.2 assures that C contains B as a submatrix.

Now choosing a random k × k submatrix of A can be viewed as first choosing a random t × τ
matrix C as above and then choosing a random subset of k columns and k rows in C. Hence the
probability that such a random k by k matrix will be identical to B is at least 0.8/(

(
t
k

)(
τ
k

)
) =

( δ
k )O(k2).

5 A 1-sided test for bipartite graphs

The test presented above for bipartite graphs is not only 2-sided, it is also computation-intensive.
However, a slight variation of the tools presented in [14] changes the situation, so that the mere
existence of any (possibly 2-sided) test for a bipartite graph property that is characterized by
forbidden induced subgraphs implies the existence of a very simple 1-sided test.

Definition 5.1 A property P of graphs is called hereditary if whenever a graph G satisfies P and
H is an induced subgraph of G, then H also satisfies P.

For bipartite graphs the definition of hereditary properties is analogous, only here an induced
subgraph H of G also inherits the corresponding restriction of the bipartition of G.

For hereditary (non-bipartite) graph properties, the following results of Goldreich, Trevisan and
Alon show that the existence of any test implies the existence of a simple 1-sided test.

Lemma 5.2 (Cannonical testers, [14]) For any property P of graphs, if there exists an ε-test
for P making q queries, then there exists such a test that acts by uniformly sampling poly(q)
vertices of the input graph and basing the decision deterministically on (the isomorphism class of)
the subgraph induced on these vertices.

Lemma 5.3 (N. Alon, presented in [14]) If P is an hereditary property of graphs, and for ev-
ery ε there exists an ε-test for P making q(ε) queries (independently of the number of vertices n),
then for every ε there exists a 1-sided ε-test that works by uniformly sampling poly(q(ε)) vertices of
the input graph and accepting if and only if the induced subgraph on these vertices itself satisfies P.
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We should stress here that for the above lemma to work, the original test has to have the q(ε)
bound for every n, not just a large enough n. In our application, although the 2-sided test has an
implicit lower bound on n, this bound is itself a polynomial in q(ε), and so the test can be converted
to a test suitable for such a lemma with only a polynomial penalty in the number of queries (for
an n which is too small, we can simply query the entire input).

For our purpose we need the corresponding versions of the above lemmas for bipartite graphs.
We omit most of the proofs because they are mostly word-for-word identical to the proofs of the
original lemmas.

Lemma 5.4 For any property P of bipartite graphs, if there exists an ε-test for P making q queries,
then there exists such a test that acts by uniformly sampling poly(q) vertices from every color class
of the input graph and basing the decision deterministically on (the isomorphism class of) the
subgraph induced on these vertices.

Proof: Let G be the input graph with color classes U and V . We only prove here the existence of a
test that makes its queries by uniformly sampling q vertices from U and q vertices from V and then
checking the induced subgraph. The rest of the proof of the statement of the lemma (ensuring that
the test makes a deterministic decision based on the isomorphism class, with another polynomial
penalty in the number of queries), is word-for-word identical to the proof of Lemma 5.2 in [14,
Section 4].

Suppose that A is a testing algorithm for P making q queries. We construct a new testing
algorithm as follows: We construct sets ∅ = U0 ⊂ U1 ⊂ · · · ⊂ Uq ⊆ U and ∅ = V0 ⊂ V1 ⊂ · · · ⊂
Vq ⊆ V . We follow the course of A: For every 1 ≤ i ≤ q, toward the i’th query of A we make sure
by induction that our set of queries already includes the queries that A would have made before
the i’th query. The case i = 1 is trivial.

Suppose now that the i’th query of A is the pair (ui, vi), where u ∈ U and v ∈ V . We construct
Ui+1 and Vi+1 from Ui and Vi as follows. If ui 6∈ Ui, we set Ui+1 = Ui ∪ {ui}. Otherwise, we set
Ui+1 to be the union of Ui with an arbitrary additional vertex from U . We perform the analogous
operation for constructing Vi+1 from Vi and vi. We then make all possible queries between Ui+1

and Vi+1

It is clear that the induction condition now holds toward the i + 1’th query of A, as well as
that after all q queries of A were done, our query set includes all required queries for accepting or
rejecting the input according to the algorithm A.

Now if we randomly permute the sets U and V before the beginning of this algorithm, then it
is not hard to see that Uq and Vq are in fact uniformly random subsets of U and V respectively
(regardless of the original algorithm), as required.

Lemma 5.5 If P is an hereditary property of bipartite graphs, and for every ε there exists an ε-test
for P making q(ε) queries (independently of the number of vertices n), then for every ε there exists
a 1-sided ε-test that works by uniformly sampling poly(q(ε)) vertices of every color class of the input
graph, and accepting if and only if the induced subgraph on these vertices itself satisfies P.
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Proof: The proof of this lemma from Lemma 5.4 is virtually word-for-word identical to the proof
of Lemma 5.3 from Lemma 5.2 that is presented in [14, Appendix D].

Proof of Theorem 1.4: From Theorem 1.3 we know that there exists a 2-sided ε-test for SF

making poly(1/ε) queries (for a fixed F ) for every ε. Lemma 5.5 then immediately implies the
required result.

6 Open problems

More general combinatorial structures

A long standing question in graph property testing is that of whether there exists a test for the
property of a (general) graph being triangle-free, whose number of queries is less than a tower
function in ε. Noting the “conditional regularity” nature of Lemma 1.6 here, one would hope for an
analogue that will work for triangles. However, formulating such an analogue is not as simple as it
seems: For example, there could be a completely bipartite graph that has the tower lower bound of
[11] with regards to having a regular partition. Hence, the only hope would be of finding a partition
in which most of the non-regular pairs are somehow labeled as “irrelevant” for the existence of a
triangle in the graph. This still remains open; we already know however by [1] that, unlike the case
of bipartite graphs, a polynomial dependency is not possible for this case.

Another interesting open question would be to formulate a lemma in the spirit of Lemma 1.6
for higher dimensional matrices, that would in turn correspond to r-partite r-uniform hypergraphs.
Here too there is probably no avoiding the existence of “irrelevant” portions for which there is
no regularity. Take for example any three dimensional matrix which is constant along the last
dimension; it does not contain, for example, the 2× 2× 2 matrix that is all zero apart from exactly
one entry, while it may still not admit any relatively small regular partition.

Matrices with row and column order

This direction seems at the moment more accessible than those outlined above. It would be in-
teresting to test a matrix for the property of not containing a member of a forbidden family of
submatrices, with the same row and column orders (i.e. containing only a row or column permu-
tation of a forbidden matrix is now allowed). Lemma 1.6 holds also for this framework, so the
missing part would be “untangling” the sets of rows and columns in the resulting partition, in
order to prove from this partition that one need only consider a set of possible input matrices that
can be calculated from a small sample (as in the proof of Theorem 1.3).

A move from 2-sided testing to 1-sided testing is also no longer guaranteed, as the tools from
[14] no longer work when the row and column ordering has to be preserved. However, a Ramsey-like
lemma that was used in the old version of the proofs as they appear in [9] could help here, at the
cost of an additional exponent (the 1-sided test in [9] was triply exponential, where one additional
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exponent was from the use of the Ramsey-like lemma, and two others were from using an older
version of Lemma 1.6).

Non-binary matrices

It would also be interesting to prove the result for matrices that are not binary. It is enough to
look at matrices with a fixed finite alphabet, because one does not need to distinguish between the
different labels that do not appear in the finite set of forbidden matrices F .

Again “full conditional regularity” cannot be guaranteed, but this problem seems accessible
(though perhaps with a no longer polynomial dependence of the number of queries on ε). A
possible course of attack could be first partitioning into blocks so that each of which contains less
than the full set of labels, and then recursively classifying each block as either “repartitionable” or
“homogeneous” in a way somewhat reminiscent of what was done (more easily) in [10, 9] for poset
properties.

References

[1] N. Alon, Testing subgraphs in large graphs, Random Structures and Algorithms 21 (2002),
359-370.

[2] N. Alon, S. Dar, M. Parnas and D. Ron, Testing of clustering, SIAM J. of Computing
16(3):393–417, 2003.

[3] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs. Combi-
natorica 20:451–476, 2000.

[4] N. Alon and A. Shapira, Testing subgraphs in directed graphs, JCSS, 69(3):354–382, 2004.

[5] N. Alon and J. H. Spencer, The probabilistic method (second edition), John Wiley, 2000.

[6] R. Diestel, Graph Theory (second edition), Springer, 2000.

[7] E. Fischer, Testing graphs for colorability properties, Random Structures and Algorithms, in
press. A preliminary version appeared in 12th SODA Conference Proceedings, pages 873–882,
2001.

[8] E. Fischer, The art of uninformed decisions: A primer to property testing, BEATCS (Com-
putationa Complexity Column) 75:97–126, 2001.

[9] E. Fischer and I. Newman, Testing of matrix properties, In 33rd ACM STOC Conference
Proceedings, pages 286–295, 2001.

[10] E. Fischer and I. Newman, Testing of matrix-poset properties, manuscript.

[11] W. T. Gowers, Lower bounds of tower type for Szemerédi’s Uniformity Lemma, Geometric
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