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Abstract

The edge-integrity of a graph G is I ′(G) := min{|S| + m(G − S) : S ⊂ E}, where
m(H) denotes the maximum order of a component of H. A graph G is called honest
if its edge-integrity is the maximum possible, that is, equals the order of the graph.
The only honest 2-regular graphs are the 3-, 4-, and 5-cycles. Lipman [13] proved that
there are exactly twenty honest cubic graphs. In this paper we exploit a technique of
Bollobás [8, 9] to prove that for every k ≥ 6, almost all k-regular graphs are honest. On
the other hand, we show that there are only finitely many 4-regular honest graphs. To
prove this, we use a weighted version of the upper bound on the isoperimetric number
due to Alon [1]. We believe that this version is of interest by itself.

∗Research supported in part by a USA Israeli BSF grant and by the Fund for Basic Research administered
by the Israel Academy of Sciences.
†This work was partially supported by an Indiana-University Purdue-University Fort Wayne Scholar-in-

Residence Grant, and by the grant 97-01-01075 of the Russian Foundation for Fundamental Research.

1



1 Introduction

There are several parameters that measure connectivity and vulnerability of graphs. One of
them is the edge-integrity introduced by Barefoot, Entringer, and Swart [6, 7].

Definition 1 The edge-integrity of a graph G is

I ′(G) := min{|S|+m(G− S) : S ⊂ E},

where m(H) denotes the maximum order of a component of H.

Definition 2 A graph G is called honest if its edge-integrity is the maximum possible, that
is, equal to the order of the graph.

This definition was introduced by Bagga, Beineke, Lipman, and Pippert [4]. They proved
the following [4, 5]:

Theorem A. Every graph of diameter 2 is honest.

Theorem B. With the exception of the path of length 3, either G or the complement graph
Ḡ is honest.

It is easy to see that only 3-, 4-, and 5-cycles are honest 2-regular graphs. Lipman [13]
proved:

Theorem C. There are exactly twenty honest cubic graphs.

In [14] Lipman studies the existence of sparse honest graphs, i.e. graphs having average
degree less than log2 n, where n is the number of vertices. He introduces a sufficient condi-
tion for honesty (see Theorem 8 of Section 2.2). With the help of this theorem he proves
that the Kneser graph K(7, 3) is honest. This is the largest sparse honest graph constructed
in [14].

In this paper we continue studying honest sparse graphs. It appears that there are many
honest graphs with constant average degree and arbitrarily large number of vertices.

It is not difficult to construct explicitly large bounded degree honest graphs, using the
known constructions of expanders. Indeed, by the relation between the spectral properties
of a graph and its expansion properties (see, e.g., [2]), if G is a d-regular graph on n vertices
and λ is the second largest eigenvalue of its adjacency matrix, then for any set U of m
vertices of G, the number of edges between U and its complement is at least (d−λ)m(n−m)

n
.

It follows from Theorem 8 of Section 2.2 that if d − λ ≥ 2 then G is honest. In [15], [16],
for each prime p ≡ 1 ( mod 4), an infinite explicit family of d regular graphs whose second
largest eigenvalue is at most 2

√
d− 1 is constructed. Thus, for example, by packing two
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such 5-regular graphs together we get explicitly infinitely many 10-regular honest graphs.
Our first result here shows that degree 10 is not best possible.

Theorem 3 For every k ≥ 6, almost all k-regular graphs are honest.

On the other hand, we prove:

Theorem 4 Any honest graph with maximum degree 4 has at most 1060 vertices.

The case of 5-regular graphs remains unsettled.

Our main tool in the proof of Theorem 4, is the following extension of the main result
of [1].

Theorem 5 Let G = (V,E) be a multigraph with maximum degree d on n vertices, where n
is even and n > 40d9. Then there is a partition V = V− ∪ V+ where |V−| = |V+| = n/2 such
that

e(V−, V+) ≤ |E|
2

(1− 3

8
√

2d
), (1)

where e(V−, V+) is the total number of edges between V− and V+.

This inequality is a particular case of the following weighted version of the main result in [1].

Let G = (V,E) be a simple weighted graph, that is, a graph with no loops and no multiple
edges, with a non-negative weight w(e) assigned to each edge. Assume V = {1, 2, . . . , n}
and let di denote the degree of i. For two disjoint subsets U,U ′ of V , let w(U,U ′) denote the
total weight of the edges between U and U ′.
For any positive integer k, define

ε2k = ε2k+1 =

(
2k
k

)
22k+1

.

It is not difficult to check, as is done in [17], that for every positive integer d, εd ≥ 1
2
√

2
√
d
.

Theorem 6 Let G = (V,E) be a weighted graph as above, where V = {1, 2, . . . , n}, n is
even and di is the degree of i. If n > 40d9

i , then there is a partition V = V− ∪ V+ where
|V−| = |V+| = n/2 such that

w(V−, V+) ≤
∑
ij∈E

w(ij)

2
(1− 3

8
εdi −

3

8
εdj) ≤

∑
ij∈E

w(ij)

2
(1− 3

16
√

2di
− 3

16
√

2dj
). (2)

The idea of the proof is that of [1] with two twists. We believe that Theorem 6 is of inde-
pendent interest.

The structure of the paper is as follows: In the next Section we introduce notation and
discuss related results. In Section 3 we prove Theorem 3. In Section 4 we prove Theorem 4
using Theorem 5. The last Section is devoted to the proof of Theorem 6 which immediately
implies Theorem 5.
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2 Background

2.1 (n, r)-configurations

For r ≥ 3 and n > r, let G(n, r − reg) denote the set of all r-regular graphs with vertex set
V = {1, 2, ..., n}. We always assume that rn = 2k is an even number, and so k is the number
of edges in a graph. We say that almost all r-regular graphs have a certain property Q if the
portion of graphs in G(n, r − reg) not possessing Q is o(|G(n, r − reg)|).
It is not too easy to calculate |G(n, r − reg)| (see e.g. [9]). In order to facilitate studying
G(n, r− reg), Bollobás [8] (for a more detailed description see [9]) introduced a very conve-
nient model of (n, r)-configurations.
Let W =

⋃n
j=1 Wj be a fixed set of 2k = rn labeled vertices, where |Wj| = r for each j. An

(n, r)-configuration F is a partition of W into k pairs of vertices, called edges of F. Let Φ be
the set of (n, r)-configurations. Clearly

|Φ| = N(k) = (2k − 1)!!.

(Recall that for any positive odd integer m, m!! = m · (m − 2) · . . . · 3 · 1.) For F ∈ Φ, let
φ(F ) be the multigraph with vertex set V = {1, 2, ..., n} in which each i and j are joined by
the same number of edges as Wi and Wj are joined in F . In other words, φ(F ) is obtained
from F by merging each Wi into a vertex i. Clearly, φ(F ) is an r-regular multigraph on
V (sometimes, with loops). Most important is the fact that the portion of F ∈ Φ such
that φ(F ) is a simple graph is at least cr, where cr > 0, for every sufficiently large n, and
each simple graph on V corresponds to the same number of (n, r)-configurations (namely,
to (r!)n). Thus if we prove that almost all (n, r)-configurations have a certain property Q,
then almost all r−regular graphs have Q, as well.

2.2 Edge-integrity versus isoperimetric number

Another parameter that measures connectivity and vulnerability of graphs is the isoperimet-
ric number of a graph introduced by Buser [11] and studied by several authors, including
Bollobás [10]. For a graph G and U ⊂ V (G), let f(U) denote the number of edges between
U and V (G) \ U .

Definition 7 The isoperimetric number of G is

i(G) = min{f(U)

|U |
: U ⊂ V },

where the minimum is taken over all subsets U of V with |U | ≤ |V |/2.

The isoperimetric number of G turns out to be related to its edge-integrity, and thus to its
honesty. It is easy to see that if the isoperimetric number of a graph G is less than 1, then
the graph is not honest. Thus, to prove Theorem 4, we shall derive from Theorem 6 that
only finitely many 4-regular graphs have isoperimetric number 1 or larger.
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On the other hand, the fact that the isoperimetric number of a graph G is greater than 1
does not imply that the graph is honest, as can be seen by the following example. Let the
graphs G1, G2, and G3, be three disjoint copies of K8−{e}- the complete graph on 8 vertices
with a missing edge e = (a1, a2), (b1, b2), (c1, c2), respectively. The degrees of the graphs at
these vertices ai, bi, and ci (i = 1, 2) are 6, while all the other vertices have degree 7. We add
15 edges such that between any two disjoint parts Gi, Gj, (i 6= j, i, j = 1, 2, 3) there are 5
edges connecting them, and the obtained graph G is 8-regular. Now, it is easy to check that
G is not honest, and i(G) = 10/8.
Still, the following theorem of Lipman (which we exploit in the proof of Theorem 3) implies
that each graph G with i(G) ≥ 2 is honest.

Theorem 8 (Lipman [14]). Let G be a graph with n vertices. Suppose that for every integer
m ≤ n/2 and every set of vertices C with |C| = m,

f(C) ≥
⌈

2m(n−m)

n

⌉
.

Then G is honest.

Bollobás [10] proved the following:

Theorem 9 [10]. Let r and 0 < η < 1 be such that

24/r < (1− η)1−η(1 + η)1+η.

Then almost all r-regular graphs have isoperimetric number at least (1− η)r/2.

Theorem 9 implies that for each k ≥ 9, the isoperimetric number of almost all k-regular
graphs is at least 2.06. Since all graphs with isoperimetric number greater or equal 2 are
honest, it follows that for every k ≥ 9, almost all k-regular graphs are honest.

3 Proof of Theorem 3

Proof. Let r ≥ 6 be a fixed integer and let mr−f be an even integer. Let t(n, r,m, f) be
the number of (n, r)-configurations such that a given subset of vertices of size m is connected
with the rest by exactly f edges. Then

t(n, r,m, f) =

(
mr

f

)(
(n−m)r

f

)
f ! (mr − f − 1)!! ((n−m)r − f − 1)!!.

Hence the portion of (n, r)-configurations in which at least one subset of vertices of size m
is connected with the rest by at most 2m(n−m)/n edges is estimated from above by

T (n, r,m) =

(
n

m

) ∑
{f≤2m(n−m)/n | rm−f is even}

(
mr

f

)(
(n−m)r

f

)
×

×f ! (mr − f − 1)!! ((n−m)r − f − 1)!!/(nr − 1)!!. (3)
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First, let m ≤ 100 and f < 2m. Then there exists a number C = C(m, r) such that(
n

m

)
t(n, r,m, f)/(nr − 1)!! ≤ C nm(n−m)f (nr)−(mr+f)/2 < C n(f−(r−2)m)/2.

It follows that for r ≥ 6 and m ≤ 100, T (n, r,m) ≤ 2C n−m.

Now, we consider 100 < m ≤ n/2. We show that t(n, r,m, f) is an increasing function in f.
For 2m ≤ f < 2 + 2m(n−m)/n, consider the ratio

t(n, r,m, f − 2)

t(n, r,m, f)
=

(
mr
f−2

)(
(n−m)r
f−2

)
(f − 2)! (mr − f + 1)!! ((n−m)r − f + 1)!!(

mr
f

)(
(n−m)r

f

)
f ! (mr − f − 1)!! ((n−m)r − f − 1)!!

=
(f − 1)f · (f − 1)f · (mr − f + 1) · ((n−m)r − f + 1)

(mr − f + 1)(mr − f + 2)((n−m)r − f + 1)((n−m)r − f + 2)(f − 1)f

=
(f − 1)f

(mr − f + 2)((n−m)r − f + 2)
< 1/4.

This means that

T (n, r,m) < 2

(
n

m

)
t(n, r,m, f0)/(nr − 1)!!, (4)

where f0 is the maximum integer less than 2m(n −m)/m such that mr − f0 is even. Our

general aim is to show that
∑dn/2e
m=1 T (n, r,m) = o(1). We already saw that

∑100
m=1 T (n, r,m) =

O(1/n).
By (4) and Stirling’s formula, we have

T (n, r,m) < 2

(
n
m

)(
mr
f0

)(
(n−m)r
f0

)
f0! (mr − f0 − 1)!! ((n−m)r − f0 − 1)!!

(nr − 1)!!
<

<
2nnn(mr)mr((n−m)r)r(n−m)

mm(n−m)n−mf f0
0 (mr − f0)0.5(mr−f0)((n−m)r − f0)0.5((n−m)r−f0)(rn)0.5rn

.

Since the derivative of f f (mr− f)0.5(mr−f)((n−m)r− f)0.5((n−m)r−f) with respect to f when
f is around 2m(n−m)/2 is negative, substituting 2m(n−m)/2 instead of f0 gives an upper
bound for T (n, r,m). Dividing both the numerator and the denominator by n(r+1)n, we
obtain

T (n, r,m) <
2n

(m/n)m(1−m/n)n−m(2(1−m/n)m/n)2m(n−m)/n
×

× (rm/n)rm

(rm/n− 2(1−m/n)m/n)0.5rm−(n−m)m/n
×

× (r(1−m/n))r(n−m)

rrn/2(r(1−m/n)− 2(1−m/n)m/n)0.5r(n−m)−(n−m)m/n
.
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Let α = m/n. Then

T (n, r,m) < T1(n, r, α) =
2n (rα)rαn

ααn(1− α)(1−α)n(2α(1− α))2α(1−α)nrrn/2
×

× (r(1− α))r(1−α)n

(αr − 2α(1− α))(0.5r−(1−α))αn((1− α)r − 2α(1− α))(0.5r−α)(1−α)n
.

Let T2(n, r, α) = 1
n

log(T1(n, r, α)/(2n)). We have

T2(n, r, α) = 0.5r log r + α(0.5r − 2 + α) logα + (1− α)(0.5r − 1− α) log(1− α)−

−2α(1− α) log 2− α(0.5r − 1 + α) log(r − 2 + 2α)− (1− α)(0.5r − α) log(r − 2α).

Now we take three derivatives of T2(n, r, α) with respect to α;

∂T2(n, r, α)

∂α
= (0.5r − 2 + 2α) logα− (0.5r − 2α) log(1− α) + (4α− 2) log 2−

−(0.5r − 1 + 2α) log(r − 2 + 2α) + (0.5r + 1− 2α) log(r − 2α);

∂2T2(n, r, α)

∂α2
= 2 logα +

0.5r − 2 + 2α

α
+ 2 log(1− α) +

0.5r − 2α

1− α
+ 4 log 2−

−2 log(r − 2 + 2α)− r − 2 + 4α

r − 2 + 2α
− 2 log(r − 2α)− r + 2− 4α

r − 2α
;

∂3T2(n, r, α)

∂α3
=

2

α
− 0.5r − 2

α2
− 2

1− α
+

0.5r − 2

(1− α)2
− 4

r − 2 + 2α
− 2r − 4

(r − 2 + 2α)2
+

+
4

r − 2α
+

2r − 4

(r − 2α)2
= 2(1− 2α)

(
2α(1− α)− 0.5r + 2

2α2(1− α)2
− 4

(r − 2 + 2α)(r − 2α)
−

− 4(r − 2)(r − 1)

(r − 2 + 2α)2(r − 2α)2

)
.

It is not hard to check that for 0 < α < 0.5 and r ≥ 6,

∂3T2(n, r, α)

∂α3
< 0.

It follows that ∂T2(n,r,α)
∂α

is concave up. Note also that ∂T2(n,r,0.5)
∂α

= 0 for every r. Since a

concave up function has at most two zeros, we conclude that either ∂T2(n,r,0.5)
∂α

is negative
on (0, 0.5), or it is first negative and then positive. In other words, either T2(n, r, α) is
monotonically decreasing at (0, 0.5), or it first decreases and then monotonically increases.
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In both cases, in order to find max{T2(n, r, α) | 100/n ≤ α ≤ 0.5}, it is enough to check the
values for α = 100/n and α = 0.5. We have

T2(n, r, 0.5) = 0.5(r log r − (r − 2) log 2− (r − 1) log(r − 1) < −0.02

for each r ≥ 6. It is a routine computation to check that

T2(n, r, 100/n) = −100 log n (0.5r − 2)/n+O(1/n).

Thus, for a fixed r ≥ 6 and large n, T2(n, r, α) < −50 log n for any 0 < α < 0.5. It follows
that T (n, r,m) < 2n−49 for each fixed r ≥ 6 and any 100 < m ≤ n/2. This, together with
Theorem 8, proves the theorem. 2

4 Proof of Theorem 4

We shall use the following fact.

Lemma 10 [12] Let T be a tree with maximum degree q. Then for any k ≤ |V (T )|, the
vertex set V (T ) can be divided into two parts V1 and V2 such that
(a) |V1| = k;
(b) the subgraph T 〈V2〉 induced by V2 is a tree;
(c) the number of components of T 〈V1〉 is at most 1 + log q−1

q−2
k.

Let n > 1060 and G = (V,E) be a multigraph on n vertices with maximum degree 4. Let
k = 105 and m = bn/2kc. If G is not connected, then it is not honest. Otherwise G has a
spanning tree T . Applying Lemma 10 to T and to the subsequent trees guaranted by the
lemma 2m times for each j = 1, . . . , 2m, we find a disjoint subset Wj of V such that

|Wj| = k and |EG(Wj)| ≥ k − 1− blog3/2 kc > k − 30. (5)

Denote W0 = V \ ⋃2m
j=1 Wj. Let H be obtained from G −W0 by merging each Wj into a

vertex, say, wj and deleting loops. Then by (5),

degH(wj) ≤ 4|Wj| − 2|EG(Wj)| ≤ 2(k + 30) = 200060 for every wj ∈ V (H).

Applying Theorem 5 to H, we conclude that there is a partition (U+, U−) of V (H) such that
|U+| = |U−| = m and

|EH(U+, U−)| ≤ |E(H)|
2

(
1− 3

16
√

100030

)
≤ 200060

m

2

(
1− 1

2000

)
≤

≤ 1.0003 · (n/2) · (1− 0.0005) < (1− 0.0002) · (n/2).

Let Z =
⋃
wj∈U+

Wj. Then |Z| = km > 0.5n− 100000 and

f(Z) < |EH(U+, U−)|+ f(W0) < (1− 0.0002)(n/2) + 4 · 200000 ≤

≤ (1− 0.0002)(|Z|+ 100000) + 8 · 105 < 0.9999|Z| − (0.0001|Z| − 106) < 0.9999|Z|.
The set Z witnesses that i(G) < 0.9999, and hence G is not honest. 2
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5 Proof of Theorem 6

5.1 Lemmas

We now prove several lemmas that will enable us to modify the proof of [1] and adapt it to
our purpose. Let w1, w2, . . . , wd ≥ 0 be d real numbers whose sum is 1, and let δ1, . . . , δd be
d independent, identically distributed random variables , each taking the values −1 and +1
with equal probability. Let X = X(w1, w2, . . . , wd) be the random variable X = |∑d

i=1 δiwi|.

Lemma 11 For each w1, w2, . . . , wd as above, the expectation of X(w1, . . . , wd) satisfies

E(X(w1, . . . , wd)) ≥ E(X(1/d, 1/d, . . . , 1/d)).

Proof. Given a sequence w1, . . . , wd of d non-negative reals whose sum is 1, and assuming
two elements of the sequence, say w1 and w2 differ, let u1, . . . , ud be the sequence defined by
u1 = u2 = (w1 +w2)/2, and ui = wi for all i > 2. By the triangle inequality, for every real x,

|x+w1 +w2|+ |x−w1−w2|+ |x+w1−w2|+ |x−w1 +w2| ≥ |x+w1 +w2|+ |x−w1−w2|+2|x|

= |x+ u1 + u2|+ |x− u1 − u2|+ |x+ u1 − u2|+ |x− u1 + u2|.

This implies, by breaking the expectation of E(X(w1, . . . , wd)) into the sum of 2d−2 terms
each being a sum of four terms as above, that E(X(w1, . . . , wd)) ≥ E(X(u1, . . . , ud)). Re-
peating this argument we obtain the desired result at the limit. 2

Lemma 12 With the numbers εd defined in the introduction

E(X(1/d, 1/d, . . . , 1/d)) = 2εd.

Proof. We describe the proof for odd d, the computation for even d is similar. For an odd
d, observe that

(d−1)/2∑
i=0

i

(
d

i

)
= d

(d−1)/2∑
i=1

(
d− 1

i− 1

)
=
d(2d−1 −

(
d−1

(d−1)/2

)
)

2
.

Therefore

(d−1)/2∑
i=0

(
d

i

)
(d− 2i) = d2d−1 − d(2d−1 −

(
d− 1

(d− 1)/2

)
) = d

(
d− 1

(d− 1)/2

)
.

It follows that

E(X(1/d, 1/d, . . . , 1/d)) =
1

2d

d∑
i=0

(
d

i

)
|d− 2i|1

d
=

2d
(

d−1
(d−1)/2

)
d2d

= 2εd. 2
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Lemma 13 Let w1, . . . , wd be non-negative reals, and suppose that the sum
∑d
i=1 δiwi is

never zero for each of the 2d choices of δi ∈ {−1, 1}. Let δi be independent, identically
distributed random variables each taking the values −1 and +1 with equal probability, and
define 1

2
+ ε(i) to be the following probability

1

2
+ ε(i) = Prob(sign(δi) = sign(

d∑
i=1

δiwi)).

Then
d∑
i=1

ε(i)wi ≥ (
d∑
i=1

wi)εd.

Proof. Clearly it suffices to prove the assertion of the lemma for the case
∑d
i=1 wi = 1, as

both sides are linear with respect to this sum. In this case,

E(X(w1, w2, . . . , wd)) =
1

2d
∑

δi∈{−1,1}
(
d∑
i=1

δiwi) sign(
d∑
i=1

δiwi)

=
d∑
i=1

wi((
1

2
+ ε(i))− (

1

2
− ε(i))) = 2

d∑
i=1

wiε(i).

The result now follows from the previous two lemmas. 2

5.2 The proof

We now prove Theorem 6. Given a weighted graph G = (V,E) on n vertices as in the
theorem, we must show that there is a partition V = V− ∪ V+, where |V−| = |V+| = n/2 and
w(V−, V+) satisfies (2).
The basic idea is very simple: we first assign each vertex v a random sign h(v) ∈ {−1, 1}
and if h(v) is not equal to sign(

∑
u∈N(v) w(vu)h(u)), then we randomly decide whether to

reverse its sign or leave it as it is. It is then shown that the expected total weight of edges
between the negative vertices and the positive vertices is not too large. One difficulty in
the process of obtaining a rigorous proof along these lines is that we have to keep the two
classes of equal size. This causes several problems, and we overcome them by combining, as
in [1], the FKG-Inequality with some combinatorial ideas. The main difference between the
proof in [1] and the proof here, is that in the simple case considered in [1], one can obtain
a sufficiently good upper bound for the probability that each edge separately is a crossing
edge, and the desired result thus follows by linearity of expectation. Here one has to aver-
age over all edges incident with a vertex, using the lemmas of the previous subsection. An
additional convenient trick is to first apply, if needed, a small perturbation to the weights
to make sure that no linear combination of the weights of the edges incident with a vertex
with −1, 1 coefficients vanishes. This will ensure that the sum

∑
u∈N(v) w(vu)h(u) will always

have a well defined sign. As the perturbation can be arbitrarily small it is obvious it makes
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no difference and hence we may and will assume from now on that the weights satisfy this
generic assumption.

We need the following lemma, proved in [1].

Lemma 14 Let H be a graph on n = 2m vertices, with maximum degree ∆, and suppose
n > 40∆3. Then there is a perfect matching M = {(ui, vi) : 1 ≤ i ≤ m} of all vertices of H
satisfying the following properties.
(i) Each edge of M is not an edge of H.
(ii) There is no alternating cycle of length 4 or 6 consisting of edges of H and M alternately.

Returning to the proof of Theorem 6, consider the following randomized procedure for con-
structing a partition of the set of vertices of G = (V,E) into two equal parts V− and V+. First,
let H be the graph on V in which two vertices are adjacent if their distance in G is at most
3. By assumption, the maximum degree ∆ in H satisfies n > 40∆3, and hence, by Lemma
14 there is a matching M = {(ui, vi) : 1 ≤ i ≤ m} satisfying the assertion of the lemma.
Let h : V 7→ {−1, 1} be a random function obtained by choosing, for each i, 1 ≤ i ≤ m,
randomly and independently, one of the two possibilities (h(ui) = −1 and h(vi) = 1) or
(h(ui) = 1 and h(vi) = −1), both choices being equally probable. Call a vertex v ∈ V
stable if h(v) = sign(

∑
u∈N(v) w(vu)h(u), otherwise call it active. Call a pair of vertices

(ui, vi) matched under M an active pair if both ui and vi are active, otherwise, call it a stable
pair. Let h′ : V 7→ {−1, 1} be the random function obtained from h by randomly modifying
the values of the vertices in active pairs as follows. If (ui, vi) is an active pair then choose
randomly either (h′(ui) = −1 and h′(vi) = 1) or (h′(ui) = 1 and h′(vi) = −1), both
choices being equally probable. Otherwise, define h′(ui) = h(ui) and h′(vi) = h(vi). Finally,
define V− = h′−1(−1) and V+ = h′−1(1).

It is obvious that |V−| = |V+| = m ( = n/2). To complete the proof we prove an up-
per bound for the expected value of w(V−, V+). Fix an edge of G; by renaming the vertices
if needed, we may assume, without loss of generality, that its two vertices are u1 and u2,
which are matched under M to v1 and v2 respectively. Our objective is to estimate the
probability that h′(u1) 6= h′(u2). This is done by estimating the conditional probability
of this event assuming that h(u1) = h(u2) and the conditional probability assuming that
h(u1) 6= h(u2). Before starting to estimate these probabilities, note that by the choice of M
the sets {v1}∪N(v1) and {v2}∪N(v2) of the closed neighborhoods of v1 and v2, respectively,
are disjoint and both of them do not intersect the set {u1, u2} ∪N(u1) ∪N(u2). Moreover,
the only edges of M whose two ends lie in the set

{u1, u2, v1, v2} ∪N(u1) ∪N(u2) ∪N(v1) ∪N(v2)

are the two edges {u1, v1} and {u2, v2}. These facts, illustrated in Figure 1, will be useful as
they imply that various events are independent. Thus, for example, the event (v1 is active
and h(v1) = −1) is independent of the event (v2 is active and h(v2) = 1), as those are
determined by disjoint sets of random choices. (Note that for this to hold it is not enough
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u2 v2

v1u1

Figure 1: A typical edge u1u2

that the closed neighborhoods of v1 and v2 are disjoint; one also needs the fact that there
are no edges of M joining these two neighborhoods.)

In order to estimate the conditional probability Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)] note,
first, that in case h(u1) = h(u2) then if at least one of the pairs (u1, v1) or (u2, v2) is active,
then this probability is precisely a half. On the other hand, if they are both stable, it is zero.
Therefore

Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)] =
1

2
− 1

2
Prob[(u1, v1), (u2, v2) stable | h(u1) = h(u2)]

(6)
Clearly

Prob[(u1, v1), (u2, v2) stable | h(u1) = h(u2)]

= Prob[(u1, v1) stable | h(u1) = h(u2)] ·Prob[(u2, v2) stable | h(u1) = h(u2), (u1, v1) stable]
(7)

Furthermore,
Prob[(u1, v1) stable | h(u1) = h(u2)]

= Prob[v1 stable | h(u1) = h(u2)]

+Prob[v1 active | h(u1) = h(u2)] · Prob[u1 stable | h(u1) = h(u2), v1 active].

Since, by the choice of M , the set {u1, u2} does not intersect N(v1) and none of its members
is matched under M to a member of N(v1), it follows that

Prob[v1 stable | h(u1) = h(u2)] = Prob[v1 stable] = 1/2.

12



Let e denote the edge u1u2 and define ε(u1, e) by the equation

1

2
+ ε(u1, e) = Prob(h(u2) = sign(

∑
u∈N(u1)

w(u1u)h(u)).

Note that by Lemma 13, if e1, . . . , ed is the set of all edges incident with u1, the inequality

d∑
i=1

w(ei)ε(u1, ei) ≥ (
d∑
i=1

w(ei))εd, (8)

holds. This will be useful in the end of the proof. We claim that

Prob[u1 stable | h(u1) = h(u2), v1 active]

= Prob[u1 stable | h(u1) = h(u2)] =
1

2
+ ε(u1, e).

To see this, note, first, that by the choice of M the event (v1 active) is determined only
by the values of |h(w) − h(v1)| for w ∈ N(v1) and hence does not influence the conditional
probability Prob[u1 stable | h(u1) = h(u2)]. The above expression for the last conditional
probability thus follows from the definition of ε(u1, e).

Substituting the expressions above we conclude that

Prob[(u1, v1) stable | h(u1) = h(u2)] =
1

2
+

1

2
(
1

2
+ ε(u1, e)) =

3

4
+

1

2
ε(u1, e). (9)

We can now apply a similar reasoning to estimate the conditional probability

Prob[(u2, v2) stable | h(u1) = h(u2), (u1, v1) stable].

The crucial point is that when h(u1) = h(u2), the event ((u2, v2) stable) and the event ((u1, v1)
stable) behave monotonically with respect to the h-values on the intersection N(u1)∩N(u2),
in case this intersection is nonempty. That is, if one of these events occurs, then by changing
the value of some h(w) for w in this intersection from −h(u1) = −h(u2) to h(u1), this event
still occurs. It thus follows from the FKG Inequality (cf. e.g., [3], Chapter 6) that

Prob[(u2, v2) stable | h(u1) = h(u2), (u1, v1) stable] ≥ 3

4
+

1

2
ε(u2, e), (10)

where ε(u2, e) is defined just like ε(u1, e) before. Combining (7),(9) and (10),

Prob[(u1, v1), (u2, v2) stable | h(u1) = h(u2)] ≥ 9

16
+

3

8
ε(u1, e) +

3

8
ε(u2, e) +

1

4
ε(u1, e)ε(u2, e),

and therefore, by (6)

Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)] ≤ 1

2
(

7

16
− 3

8
ε(u1, e)−

3

8
ε(u2, e)−

1

4
ε(u1, e)ε(u2, e)). (11)
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Similar arguments can be used to estimate the conditional probability

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)].

Here are the details. Note, first, that

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)] =
1

2
+

1

2
Prob[(u1, v1), (u2, v2) stable | h(u1) 6= h(u2)]

(12)
Next, observe that

Prob[(u1, v1), (u2, v2) stable | h(u1) 6= h(u2)]

= Prob[(u1, v1) stable | h(u1) 6= h(u2)] ·Prob[(u2, v2) stable | h(u1) 6= h(u2), (u1, v1) stable]
(13)

Furthermore,
Prob[(u1, v1) stable | h(u1) 6= h(u2)]

= Prob[v1 stable | h(u1) 6= h(u2)]

+Prob[v1 active | h(u1) 6= h(u2)] · Prob[u1 stable | h(u1) 6= h(u2), v1 active].

As before, by the choice of M ,

Prob[v1 stable | h(u1) 6= h(u2)] = Prob[v1 stable] = 1/2,

and
Prob[u1 stable | h(u1) 6= h(u2), v1 active]

= Prob[u1 stable | h(u1) 6= h(u2)] =
1

2
− ε(u1, e),

since if h(u1) 6= h(u2) then u1 is stable if and only if h(u2) 6= sign(
∑
u∈N(u1) w(u1u)h(u)).

Substituting, we conclude that

Prob[(u1, v1) stable | h(u1) 6= h(u2)] =
1

2
+

1

2
(
1

2
− ε(u1, e)) =

3

4
− 1

2
ε(u1, e). (14)

By a similar computation, and using the FKG-Inequality it follows, next, that

Prob[(u2, v2) stable | h(u1) 6= h(u2), (u1, v1) stable] ≤ 3

4
− 1

2
ε(u2, e), (15)

since when h(u1) 6= h(u2) then the event ((u1, v1) stable) is monotone increasing with respect
to changing the values of some h(w) for w ∈ N(u1) ∩ N(u2) from h(u2) to h(u1), whereas
the event ((u2, v2) stable) is monotone decreasing with respect to such a change.

By (13),(14) and (15),

Prob[(u1, v1), (u2, v2) stable | h(u1) 6= h(u2)] ≤ 9

16
− 3

8
ε(u1, e)−

3

8
ε(u2, e) +

1

4
ε(u1, e)ε(u2, e),

14



and therefore, by (12)

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)] ≤ 1

2
(
25

16
− 3

8
ε(u1, e)−

3

8
ε(u2, e)+

1

4
ε(u1, e)ε(u2, e)). (16)

Combining (11) and (16) we finally conclude that

Prob[h′(u1) 6= h′(u2)]

= Prob[h(u1) = h(u2)] · Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)]

+Prob[h(u1) 6= h(u2)] · Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)]

≤ 1

2
− 3

16
ε(u1, e)−

3

16
ε(u2, e).

Since (u1, u2) was a typical edge, by linearity of expectation and by (8), the expected value
of w(V−, V+) satisfies

w(V−, V+) ≤
n∑
i=1

∑
j∈N(i)

(
w(ij)

4
− 3

16
w(ij)ε(i, ij))

≤
n∑
i=1

∑
j∈N(i)

w(ij)

4
(1− 3

4
εdi) =

∑
ij∈E

w(ij)

2
(1− 3

8
εdi −

3

8
εdj).

This completes the proof. 2
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