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Abstract

What is the largest number of edges in a graph of order n and girth g? For d-
regular graphs, essentially the best known answer is provided by the Moore bound.
This result is extended here to cover irregular graphs as well, yielding an affirmative
answer to an old open problem ([4] p.163, problem 10).

What is the maximal number of edges in a graph with n vertices and girth g? Put
differently, what is the least number of vertices n = n(d, g) in a graph of girth g and an
average degree ≥ d?

If d is an integer, it is natural to compare the lower bound on n, to what is known for
d-regular graphs. The lower bound for d-regular graphs arises from the fact the ball of
radius bg−1

2
c around a vertex or an edge (depending on the parity of g) is a tree. This

simple argument yields the so-called Moore bound denoted by n0(d, g) (see [2], p. 180),
where:

n0(d, 2r + 1) = 1 + d
r−1∑
i=0

(d− 1)i

n0(d, 2r) = 2
r−1∑
i=0

(d− 1)i
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This simple lower bound is difficult to improve upon. There are graphs that achieve
equality, but only for g ∈ {3, 4, 5, 6, 8, 12}, (see [2] Theorem 23.6, and the survey [7]).
Some further improvement (only by +2) was achieved in [1, 3, 6]. In this note we show
that the Moore bound holds also for irregular graphs. This result has been conjectured
long ago and it appears in Bollobás’ “Extremal graph theory” [4], p.163 problem 10.

Theorem 1 The number of vertices n in a graph of girth g and average degree at least
d ≥ 2, satisfies:

n(d, g) ≥ n0(d, g).

Note 1 When d is an integer Theorem 1 is exactly the Moore bound. If d is not an
integer, or when the degree sequence of the graph is known, our proof yields a better
bound (see the proof for details).

Note 2 This bound is exponentially bigger (in g) than the previously known lower bound
on n given in [5] (the result there is stated as an upper bound on g):

n ≥ 4bd
2
c
g−2

2

.

Proof:

Let G be a graph with n vertices, girth g and an average degree d ≥ d. Vertices of degree
0 and 1 can be ignored: If we delete all the vertices of degree < 2, the resulting graph
G′ has n′ ≤ n vertices, girth g′ = g and an average degree d′ ≥ d ≥ d. If we prove the
theorem for G′, then by monotonicity of n0:

n ≥ n′ ≥ n0(d′, g′) ≥ n0(d, g),

proving the theorem for G. Henceforth we assume then w.l.o.g. that all vertex degrees
in G are at least 2.

Consider each edge of G as a pair of directed edges, and let A be the nd × nd matrix
indexed by directed edges:

(A) ~uv, ~wz =

{
1 v = w and u 6= z
0 otherwise

Also, let the matrix P be defined by:

(P ) ~uv, ~wz =

{
1

dv−1
v = w and u 6= z

0 otherwise
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where dv is the degree of the vertex v. The matrix P is the transition matrix of the
non-returning random walk. The state space of this walk is the set of directed edges, and
if at time t the walk is at the edge ~uv (we sometime say that the walk is at the vertex v
coming from u), then at time t+1 we move to an edge ~vw, where w is a random neighbor
of v that is not u.

Let x = 1
nd

1 be the uniform distribution on the directed edges. It can be easily verified
that x is a stationary distribution for the non-returning random walk, i.e., xP = x.

Let Ωe,l be the set of all length l non-returning walks starting at the edge e, and let the
number of these walks be Ne,l = |Ωe,l|. Define also, Nl as:

Nl =
∑
e

xeNe,l = 〈xAl, 1〉. (1)

For any walk ω = {e0 = e, e1, . . . , el} ∈ Ωe,l, denote by nf (ω), the number of occurrences
of f among e0, e1, . . . , el−1. Finally, let p(ω) be the probability of the walk ω, namely:

p(ω) =
∏
~uv

(dv − 1)−n ~uv(ω). (2)

We can now give a lower bound on Nl. First we rewrite (1) and then use the inequality
of the arithmetic and geometric means:

Nl =
∑
e

xe
∑

ω∈Ωe,l

p(ω)
1

p(ω)
≥
∏
e

∏
ω∈Ωe,l

(
1

p(ω)
)xep(ω).

Using (2), this becomes:

Nl ≥
∏
~uv

(dv − 1)

∑
e
xe
∑

ω∈Ωe,l
n ~uv(ω)p(ω)

.

The sum in the exponent of the rhs is exactly the expected number of visits to the edge
~uv, made by a non-returning random walk of length l starting with the initial distribution
x:

Nl ≥
∏
~uv

(dv − 1)
∑l−1

k=0(xP
k)

~uv =
∏
~uv

(dv − 1)
∑l−1

k=0
1

nd

=
∏
~uv

(dv − 1)
l

nd =

(∏
v

(dv − 1)
dv
nd

)l
= Λl

where Λ =
∏
v(dv − 1)

dv
nd . Since the function f(d) = (d− 1)d is log convex for d ≥ 2, it

implies that Λ ≥ d− 1 ≥ d− 1.

To prove the theorem, we consider two cases:

3



• If the girth is odd g = 2r + 1, consider the matrix:

C =
r∑
i=0

Ai +M
r−1∑
i=0

Ai,

where M is the nd× nd permutation matrix that matches each edge to its inverse:

(M) ~uv, ~wz =

{
1 v = w and u = z
0 otherwise

For every ~uv and z, the number
∑
w:w∼z C ~uv, ~wz is either zero or one. This follows

from the fact that
∑
w:w∼z (

∑r
i=0 A

i) ~uv, ~wz is the number of non-returning walks from

v to z of length ≤ r whose first move is not ~vu, and that
∑
w:w∼z

(
M
∑r−1
i=0 A

i
)
~uv, ~wz

is the number of non-returning walks from v to z of length ≤ r whose first move is
~vu. Therefore

∑
w:w∼z C ~uv, ~wz is the total number of non-returning walks from v to

z of length ≤ r. There is at most one such walk since no cycle of length < g exists
in the graph.

Therefore for every edge ~uv,

n ≥
∑
~wz

C ~uv, ~wz,

and therefore,

n ≥ 〈xC, 1〉 =
r∑
i=0

Ni +
r−1∑
i=0

Ni

≥
r∑
i=0

Λi +
r−1∑
i=0

Λi = n0(Λ + 1, g) ≥ n0(d, g).

The last inequality follows from our observation that Λ ≥ d−1 and the monotonicity
of n0.

• If the girth is even g = 2r, then consider the matrix:

D = (I +M)
r−1∑
i=0

Ai.

By similar considerations:

n ≥ 〈xD, 1〉 ≥ n0(Λ + 1, g) ≥ n0(d, g).

Note 3 The above proof actually shows that n ≥ n0(Λ + 1, g), where Λ =
∏
v(dv − 1)

dv
nd .

The graph of n/g cycles of length g having a common vertex, demonstrates that this bound
is nearly tight.
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